首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The xynA gene encoding a xylanase from the recently isolated Bacillus sp. strain BP-7 has been cloned and expressed in Escherichia coli. Recombinant xylanase A showed high activity on xylans from hardwoods and cereals, and exhibited maximum activity at pH 6 and 60°C. The enzyme remained stable after incubation at 50°C and pH 7 for 3 h, and it was strongly inhibited by Mn2+, Fe3+, Pb2+, and Hg2+. Analysis of xylanase A in zymograms showed an apparent molecular size of 24 kDa and a pI of above 9. The amino acid sequence of xylanase A, as deduced from xynA gene, shows homology to alkaline pI-low molecular weight xylanases of family 11 such as XynA from Bacillus subtilis. Analysis of codon usage in xynA from Bacillus sp. BP-7 shows that the G+C content at the first and second codon positions is notably different from the mean values found for glycosyl hydrolase genes from Bacillus subtilis.  相似文献   

2.
A clone producing halos on tributyrin plates was isolated from a genomic library of Bacillus sp. BP-7. The insert contained an open reading frame that coded for a protein of 487 amino acids with homology to carboxylesterases. The cloned enzyme showed clear preference for esters of short-chain fatty acids, being classified as an esterase. Maximum activity was found at 45 degrees C and pH 7.5. The enzyme displayed stability in the pH range from 6 to 9.5, and at temperatures from 4 degrees to 45 degrees C. Zymogram analysis of the protein revealed a molecular mass of 53 kDa and a pI of 5.1. The enzyme showed homology to members of the bacterial subclass of type B carboxylesterases, a set of proteins potentially useful for biotechnological applications.  相似文献   

3.
Resveratrol is a stilbene with well-known health-promoting effects in humans that is produced constitutively or accumulates as a phytoalexin in several plant species including grape (Vitis sp.). Grape berries accumulate stilbenes in the exocarp as cis- and trans-isomers of resveratrol, together with their respective 3-O-monoglucosides. An enzyme glucosylating cis- and trans-resveratrol was purified to apparent homogeneity from Concord (Vitis labrusca) grape berries, and peptide sequencing associated it to an uncharacterized Vitis vinifera full-length clone (TC38971, tigr database). A corresponding gene from Vitis labrusca (VLRSgt) had 98% sequence identity to clone TC38971 and 92% sequence identity to a Vitis viniferap-hydroxybenzoic acid glucosyltransferase that produces glucose esters. The recombinant enzyme was active over a broad pH range (5.5-10), producing glucosides of stilbenes, flavonoids and coumarins at higher pH and glucose esters of several hydroxybenzoic and hydroxycinnamic acids at low pH. Vitis labrusca grape berries accumulated both stilbene glucosides and hydroxycinnamic acid glucose esters, consistent with the bi-functional role of VLRSgt in stilbene and hydroxycinnamic acid modification. While phylogenetic analysis of VLRSgt and other functionally characterized glucosyltransferases places it with other glucose ester-producing enzymes, the present results indicate broader biochemical activities for this class of enzymes.  相似文献   

4.
Sequence analysis of a Paenibacillus sp. BP-23 recombinant clone coding for a previously described endoglucanase revealed the presence of an additional truncated ORF with homology to family 48 glycosyl hydrolases. The corresponding 3509-bp DNA fragment was isolated after gene walking and cloned in Escherichia coli Xl1-Blue for expression and purification. The encoded enzyme, a cellulase of 1091 amino acids with a deduced molecular mass of 118 kDa and a pI of 4.85, displayed a multidomain organization bearing a canonical family 48 catalytic domain, a bacterial type 3a cellulose-binding module, and a putative fibronectin-III domain. The cloned cellulase, unique among Bacillales and designated Cel48C, was purified through affinity chromatography using its ability to bind Avicel. Maximum activity was achieved at 45 degrees C and pH 6.0 on acid-swollen cellulose, bacterial microcrystalline cellulose, Avicel and cellodextrins, whereas no activity was found on carboxy methyl cellulose, cellobiose, cellotriose, pNP-glycosides or 4-methylumbeliferyl alpha-d-glucoside. Cellobiose was the major product of cellulose hydrolysis, identifying Cel48C as a processive cellobiohydrolase. Although no chromogenic activity was detected from pNP-glycosides, TLC analysis revealed the release of p-nitrophenyl-glycosides and cellodextrins from these substrates, suggesting that Cel48C acts from the reducing ends of the sugar chain. Presence of such a cellobiohydrolase in Paenibacillus sp. BP-23 would contribute to widen up its range of action on natural cellulosic substrates.  相似文献   

5.
A Blanco  T Vidal  J F Colom    F I Pastor 《Applied microbiology》1995,61(12):4468-4470
Xylanase A from the recently isolated Bacillus sp. strain BP-23 was purified to homogeneity. The enzyme shows a molecular mass of 32 kDa and an isoelectric point of 9.3. Optimum temperature and pH for xylanase activity were 50 degrees C and 5.5 respectively. Xylanase A was completely inhibited by N-bromosuccinimide. The main products of birchwood xylan hydrolysis were xylotetraose and xylobiose. The enzyme was shown to facilitate chemical bleaching of pulp, generating savings of 38% in terms of chlorine dioxide consumption. The amino-terminal sequence of xylanase A has a conserved sequence of five amino acids found in xylanases from family F.  相似文献   

6.
Six genes encoding high-molecular-mass subtilisins (HMSs) of alkaliphilic Bacillus spp. were cloned and sequenced. Their open reading frames of 2,394–2,424 bp encoded prosubtilisins of 798–808 amino acids (aa) consisting of the prepropeptides of 151–158 aa and the mature enzymes of 640–656 aa. The deduced aa sequences of the mature enzymes exhibited 60–95% identity to those of FT protease of Bacillus sp. strain KSM-KP43, a subtilisin-like serine protease, and a minor serine protease, Vpr, of Bacillus strains. Three of the six recombinant enzymes were susceptible to proteolysis, but the others were autodigestion resistant. All enzymes had optimal pH values of 10.5–11.0, optimal temperatures of 40–45°C for hydrolysis of a synthetic substrate, and were heat labile. These alkaline proteases seem to form a new subtilisin family, as judged by their aa sequences and phylogenetic analysis.Communicated by K. Horikoshi  相似文献   

7.
Phenolic acid decarboxylase (PAD) catalyzes the synthesis of vinyl phenols from hydroxycinnamic acids. The gene encoding PAD from Lactobacillus brevis was cloned and expressed as a fusion protein in Escherichia coli. The recombinant PAD enzyme is a heat-labile enzyme that functions optimally at 22°C and pH 6.0. The purified enzyme did not show thermostability at temperatures above 22°C. L. brevis PAD is able to decarboxylate exclusively the hydroxycinnamic acids, such as p-coumaric, caffeic, and ferulic acids, with K m values of 0.98, 0.96, and 0.78 mM, respectively. The substrate specificity exhibited by L. brevis PAD is similar to the PAD isolated from Bacillus subtilis and B. pumilus, but different from that of L. plantarum and Pediococcus pentosaceus. As the C-terminal region may be involved in determining PAD substrate specificity and catalytic capacity, amino acid differences among these proteins could explain the differences observed. The substrate specificity shown by L. brevis PAD shows promise for the synthesis of high-added value products from plant wastes.  相似文献   

8.
A gene encoding maltogenic amylase from acidic Bacillus sp. US149 (maUS149) was cloned, sequenced and over-expressed in Escherichia coli. The nucleotide sequence analysis revealed an open reading frame (ORF) of 1749 bp encoding a protein of 582 residues. The alignment of deduced amino acid sequence revealed a relatively low homology with the already reported maltogenic amylases. In fact, its highest identity, of only 60%, was found with the maltogenic amylase of Thermus sp. IM6501. The recombinant enzyme (MAUS149) was found to be intracellular and was purified to homogeneity from the cell crude extract with a yield of 23%. According to PAGE analysis, under reducing and non-reducing conditions, the recombinant enzyme has an apparent molecular weight of 135 kDa and is composed of two identical subunits of 67.5 kDa each. The maximum activity was obtained at 40°C and pH 6.5. MAUS149 could be classified as a maltogenic amylase since it produces mainly maltose from starch, maltose and glucose from β-cyclodextrin, and panose from pullulan.  相似文献   

9.
Summary An extracellular xylanase was purified to homogeneity from the culture filtrate of a thermophilic Bacillus sp. The molecular weight of the purified xylanase was 44 kDa, as analysed by SDS/PAGE. The enzyme reaction followed Michaelis–Menten kinetics with Kmapp and Vmax values of 0.025 mg/ml and 450 U/mg protein, respectively, as obtained from a Lineweaver–Burk plot. The xylanase contained no other enzyme activity except for the hydrolysis of xylan substrate. The optimal temperature of the enzyme assay was 50 °C. The optimum pH for the xylanase activity was at three peaks 6.5, 8.5 and 10.5, respectively and the enzyme was stable over a broad range of pH from pH 6 to 10.5. Metal ions tested with demetalized enzyme had no effect, with the exception of Hg2+ and Pb2+ (both strong inhibitors). Inhibition of the enzyme activity by N-bromosuccinimide (amino acid modifier) indicated the role of tryptophan residues in the catalytic function of the enzyme. Due to these outstanding properties, the xylanase of Bacillussp. finds potential applications in biopulping, biobleaching and de-inking of recycled paper and other industrial processes.  相似文献   

10.
A novel alkaline mannanase Man26A has been found in the culture of an alkaliphilic Bacillus sp. strain JAMB-750 and the optimal pH for the mannanase activity of the enzyme was around pH 10 (J Biol Macromol 4: 67–74, 2004). This optimal pH is the highest among those of the mannanases reported to date. The gene man26A coding the enzyme was cloned from the genomic DNA of strain JAMB-750 and sequenced. It encodes a protein of 997 amino acids including a signal peptide. The N-terminal half (Glu27–Val486) of the enzyme exhibited moderate similarities to other mannanases belonging to glycoside hydrolase family 26, such as the enzymes from Cellvibrio japonicus (37% identity), Cellulomonas fimi (33% identity), and Bacillus sp. strain AM-001 (28% identity). The C-terminal half was found to contain four domains. The first, second, third, and fourth domains exhibited similarities to the carbohydrate-binding module, the mannan-binding module, the Homo sapiens collagen type IX alpha I chain, and the membrane anchor region of Gram-positive surface proteins, respectively. Its recombinant mannanase was produced extracellularly using Bacillus subtilis as the host. The optimal pH for the mannanase activity of the recombinant enzyme was around pH 10. The enzyme was very resistant to surfactants, for example, SDS up to 2.0% (w/v).  相似文献   

11.
A recombinant Escherichia coli clone expressing an endoglucanase was identified from a genomic library of the halophilic bacterium Halomonas sp. S66-4, and the enzyme was designated Cel8H. The cel8H gene consisted of 1,053 bp and encoded 350 amino acids sharing the highest identity of 48% to other known endoglucanases. The protein was expressed in E. coli BL21 (DE3) and purified to homogeneity. The purified recombinant enzyme had an optimal activity of 4.9 U/mg at pH 5 and 45°C toward the substrate carboxymethylcellulose. It exhibited extraordinary properties which differed from endoglucanases reported previously at the point of high salt tolerance above 5 M, simultaneously with high pH stability at pH 4–12 and high temperature stability at 40–60°C. Various substrate tests indicated that the enzyme hydrolyzes β-1,4-glucosidic bonds specifically.  相似文献   

12.
Strains Paenibacillus sp. BP-23 and Bacillus sp. BP-7, previously isolated from soil from a rice field, secreted high levels of pectinase activity in media supplemented with pectin. Production of pectinases in strain Paenibacillus sp. BP-23 showed catabolite repression, while in Bacillus sp. BP-7 production of pectin degrading enzymes was not negatively affected by glucose. The two strains showed lyase activities as the predominant pectinases, while hydrolase activity was very low. Analysis of Paenibacillus sp. BP-23 in SDS–polyacrylamide gels and zymograms showed five pectinase activity bands. The strict requirement of Ca2+ for lyase activity of the strain indicates that correspond to pectate lyases. For Bacillus sp. BP-7, zymograms showed four bands of different size. The strain showed a Ca2+ requirement for lyase activity on pectate but not on pectin, indicating that the pectinolytic system of Bacillus sp. BP-7 is comprised of pectate lyases and pectin lyases. The results show differences in pectin degrading systems between the two aerobic sporogenous bacterial strains studied.  相似文献   

13.
The gene for a highly alkaline pectate lyase, Pel-4A, from alkaliphilic Bacillus sp. strain P-4-N was cloned, sequenced, and overexpressed in Bacillus subtilis cells. The deduced amino acid sequence of the mature enzyme (318 amino acids, 34 805 Da) showed moderate homology to those of known pectate lyases in the polysaccharide lyase family 1. The purified recombinant enzyme had an isoelectric point of pH 9.7 and a molecular mass of 34 kDa, and exhibited a very high specific activity compared with known pectate lyases reported so far. The enzyme activity was stimulated 1.6 fold by addition of NaCl at an optimum of 100 mM. When Pel-4A was stored at 50°C for 60 h, striking stabilization by 100 mM NaCl was observed in a pH range from 5 to 11.5, whereas it was stable only around pH 11 in the absence of NaCl. Received: June 10, 2000 / Accepted: October 3, 2000  相似文献   

14.
A chitosanase-producing Bacillus sp. DAU101 was isolated from Korean traditional food. This strain was identified on the basis of phylogenetic analysis of the 16S rDNA sequence, gyrA gene, and phenotypic analysis. The gene encoding chitosanase (csn) was cloned and sequenced. The csn gene consisted of an open reading frame of 837 nucleotides and encodes 279 amino acids with a deduced molecular weight of 31,420 Da. The deduced amino acid sequence of the chitosanase from Bacillus sp. DAU101 exhibits 88 and 30 % similarity to those from Bacillus subtilis and Pseudomonas sp., respectively. The chitosanase was purified by glutathione S-transferase fusion purification system. The molecular weight of purified enzyme was about 27 kDa, which suggests the deletion of a signal peptide by sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The pH and temperature optima of the enzyme were 7.5 and 50 °C, respectively. The enzyme activity was increased by about 1.6-fold by the addition of 5 or 10 mM Ca2+. However, Hg2+ and Ni+ ions strongly inhibited the enzyme. The enzyme produced, GlcN2–4, were the major products from a soluble chitosan.  相似文献   

15.
A new high-alkaline protease (ALTP) was purified to homogeneity from a culture of the strictly anaerobic and extremely alkaliphilic Alkaliphilus transvaalensis. The molecular mass was 30 kDa on sodium dodecyl sulfate–polyacrylamide gel electrophoresis. The enzyme showed the maximal caseinolytic activity higher than pH 12.6 in KCl–NaOH buffer at 40°C. Hydrolysis of the oxidized insulin B-chain followed by mass spectrometric analysis of the cleaved products revealed that as many as 24 of the total 29 peptide bonds are hydrolyzed in a block-cutting manner, suggesting that ALTP has a widespread proteolytic functions. Calcium ion had no effect on the activity and stability of ALTP, unlike known subtilisins. The deduced amino acid sequence of the enzyme comprised 279 amino acids plus 97 prepropeptide amino acids. The amino acid sequence of mature ALTP was confirmed by capillary liquid chromatography coupled to tandem mass spectrometry, which was the 93% coverage of the deduced amino acid sequence. The mature enzyme showed moderate homology to subtilisin LD1 from the alkaliphilic Bacillus sp. strain KSM-LD1 with 64% identity, and both enzymes formed a new subcluster at an intermediate position among true subtilisins and high-alkaline proteases in a phylogenetic tree of subtilase family A. ALTP is the first high-alkaline protease reported from a strict anaerobe in this family.  相似文献   

16.
An edible-oil degrading bacterial strain HH-01 was isolated from oil plant gummy matter and was classified as a member of the genus Bacillus on the basis of the nucleotide sequence of the 16S rRNA gene. A putative lipase gene and its flanking regions were cloned from the strain based on its similarity to lipase genes from other Bacillus spp. The deduced product was composed of 214 amino acids and the putative mature protein, consisting of 182 amino acids, exhibited 82% amino acid sequence identity with the subfamily I.4 lipase LipA of Bacillus subtilis 168. The recombinant product was successfully overproduced as a soluble form in Escherichia coli and showed lipase activity. The gene was, therefore, designated as lipA of HH-01. HH-01 LipA was stable at pH 4–11 and up to 30°C, and its optimum pH and temperature were 8–9 and 30°C, respectively. The enzyme showed preferential hydrolysis of the 1(3)-position ester bond in trilinolein. The activity was, interestingly, enhanced by supplementing with 1 mM CoCl2, in contrast to other Bacillus lipases. The lipA gene seemed to be constitutively transcribed during the exponential growth phase, regardless of the presence of edible oil.  相似文献   

17.
Aims: To isolate, clone and express a novel phytase gene (phy) from Bacillus sp. in Escherichia coli; to recover the active enzyme from inclusion bodies; and to characterize the recombinant phytase. Methods and Results: The molecular weight of phytase was estimated as 40 kDa on SDS-polyacrylamide gel electrophoresis. A requirement of Ca2+ ions was found essential both for refolding and activity of the enzyme. Bacillus phytase exhibited a specific activity of 16 U mg−1 protein; it also revealed broad pH and temperature ranges of 5·0 to 8·0 and 25 to 70°C, respectively. The Km value of phytase for hydrolysis of sodium phytate has been determined as 0·392 mmol l−1. The activity of enzyme has been inhibited by EDTA. The enzyme exhibited ample thermostability upon exposure to high temperatures from 75 to 95°C. After 9 h of cultivation of transformed E. coli in the bioreactor, the cell biomass reached 26·81 g wet weight (ww) per l accounting for 4289 U enzyme activity compared with 1·978 g ww per l producing 256 U activity in shake-flask cultures. In silico analysis revealed a β-propeller structure of phytase. Conclusions: This is the first report of its kind on the purification and successful in vitro refolding of Bacillus phytase from the inclusion bodies formed in the transformed E. coli. Significance and Impact of the Study: Efficient and reproducible protocols for cloning, expression, purification and in vitro refolding of Bacillus phytase enzyme from the transformed E. coli have been developed. The novel phytase, with broad pH and temperature range, renaturation ability and substrate specificity, appears promising as an ideal feed supplement. Identification of site between 179th amino acid leucine and 180th amino acid asparagine offers scope for insertion of small peptides/domains for production of chimeric genes without altering enzyme activity.  相似文献   

18.
An alkaline -mannanase was purified to homogeneity from a culture broth of alkaliphilic Bacillus sp. N16-5. The enzyme had optimum activity at pH 9.5 and 70°C. It was composed of a single polypeptide chain with a molecular weight of 55 kDa deduced from SDS-PAGE, and its isoelectric point was around pH 4.3. The enzyme efficiently hydrolyzed galactomannan and glucomannan, producing a series of oligosaccharides and monosaccharides. The -mannanase gene (manA) contained an open reading frame (ORF) of 1,479 bp, encoding a 32-amino acids signal peptide, and a mature protein of 461 amino acids, with a calculated molecular mass of 50,743 Da. Strain N16-5 ManA, deduced from the manA ORF, exhibited relatively high amino acid similarity to the members of the glycosyl hydrolase family 5. The eight conserved active-site amino acids in family 5 glycosyl hydrolase were found in the deduced amino acid sequence of strain N16-5 ManA.  相似文献   

19.
Kang NY  Choi YL  Cho YS  Kim BK  Jeon BS  Cha JY  Kim CH  Lee YC 《Biotechnology letters》2003,25(14):1165-1170
A gene (pagA) encoding -agarase from Pseudomonas sp. SK38 was cloned and expressed in Escherichia coli. The structural gene consists of 1011 bp encoding 337 amino acids with a predicted molecular weight of 37326 and has a signal peptide of 18 amino acids. The deduced amino acid sequence showed 57% and 58% homology to -agarase from Pseudoalteromonas atalntica and Aeromonas sp., respectively. The recombinant enzyme was purified and biochemically characterized. The enzyme had maximum activity at pH 9 and 30 °C. It was stable at pHs from 8 to 9 and below 37 °C.  相似文献   

20.
Aromaticl-amino acid transaminase is an enzyme that is able to transfer the amino group froml-glutamate to unnatural aromatic α-keto acids to generate α-ketoglutarate and unnatural aromaticl-amino acids, respectively. Enrichment culture was used to isolate thermophilicBacillus sp. T30 expressing this enzyme for use in the synthesis of unnaturall-amino acids. The asymmetric syntheses ofl-homophenylalanine andl-phenylglycine resulted in conversion yields of >95% and >93% from 150 mM 2-oxo-4-phenylbutyrate and phenylglyoxylate, respectively, usingl-glutamate as an amino donor at 60°C. Synthesizedl-homophenylalanine andl-phenylglycine were optically pure (>99% enantiomeric excess) and continuously pre-cipitated in the reaction solution due to their low solubility at the given reaction pH. While the solubility of the α-keto acid substrates is dependent on temperature, the solubility of the unnaturall-amino acid products is dependent on the reaction pH. As the solubility difference between substrate and product at the given reaction pH is therefore larger at higher temperature, the thermophilic transaminase was successfully used to shift the reaction equilibrium toward rapid product formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号