首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene expression in quiescent mouse embryo fibroblasts was studied by labelling the cells with [14C] amino acids and analysing the proteins by electrophoresis in polyacrylamide gradient gels containing sodium dodecyl sulfate. Cycloheximide (CH) pretreatment of the cells was found to induce the synthesis of four proteins of molecular weights 72,000, 68,000, 42,000, and 29,000. These proteins were induced by CH both in serum-arrested and serum-stimulated cells. Addition of platelet-derived growth factor to serum-arrested quiescent cells also induced the synthesis of these proteins. Addition of CH and fetal calf serum (20%) to quiescent cells resulted in a dramatic increase in the synthesis of actin and another protein of molecular weight 29,000. The 29,000-dalton protein was present in higher quantities in the nuclei of induced cells. This protein appeared to be an early protein whose synthesis was transiently induced in quiescent cells within 3 hours of addition of 20% fetal calf serum (FCS). The synthesis of this protein was virtually turned off at 5-6 hours after the addition of serum. However, if CH or a combination of CH and FCS was present, a continuous synthesis of the 29 K protein was observed.  相似文献   

2.
Quiescent and proliferating cultures of Swiss mouse embryo fibroblasts were pulse labelled with [14C]-amino acids and the newly synthesized proteins that were secreted into the medium were resolved by electrophoresis on Polyacrylafde gradient gels. Conditioned media obtained from quiescent cultures that were stimulated to grow by the addition of 20% fetal calf serum showed the presence of two unique polypeptides of molecular weights 48000 and 26000. A polypeptide of molecular weight 45000 was present in increased amounts in serum-stimulated cells than in quiescent cells. This protein was also superinduced in quiescent cells by cycloheximide treatment. Mouse embryo fibroblasts grown under over-crowded conditions secreted two proteins of molecular weights 35000 and 11000. The 35 K polypeptide was shown to be related to the major excreted protein of transformed cells, since it was immunoprecipitated by an antiserum to major excreted protein. These results indicate that the 48 K and 26 K proteins may be proliferation specific proteins, while the 35 K protein present in the conditioned media of over-confluent cells may be a marker of morphological transformation.  相似文献   

3.
Synchronized cultures of mouse embryo fibroblasts upon release from hydroxyurea (HOU) arrest, secreted several proteins of which a polypeptide of molecular weight 45,000 (45K) was barely visible in the conditioned medium of cells that synthesized DNA at peak levels. The quantity of the 45K protein was higher in the medium of HOU arrested cells and the level got progressively reduced as the cells entered into the DNA synthetic phase. Conditioned media containing the 45K protein inhibit DNA synthesis when added to synchronized cultures. These results suggest that the 45K secreted protein may be involved in the autocrine regulation of turning-off of DNA synthesis at the end of S phase.  相似文献   

4.
Serum-stimulated mouse embryo fibroblasts specifically secrete two proteins of molecular weights 48,000 and 26,000. The 48 kDa protein showed affinity to concanavalin A and was precipitated by antibody to plasminogen activator inhibitor. Immunoflowcytometry using anti plasminogen activator inhibitor-1 serum indicate the presence of the 48 kDa protein in quiescent cells; this protein was virtually absent in serum-stimulated cells. The presence of the plasminogen activator inhibitor-1 related protein in quiescent cells and its absence in serum-stimulated cells in combination with the observation on the absence of this protein, in the medium of quiescent cells and its presence in the medium of stimulated cells indicate that the 48 kDa protein was transferred from the cells into the medium upon serum-stimulation. The serum-mediated transfer of plasminogen activator inhibitor-1 from the cells into the medium was inhibited by actinomycin-D suggesting that the transfer process required actinomycin-D sensitive events. Treatment of pre-labelled quiescent cells with medium containing 20% fetal calf serum resulted in the gradual transfer of the labelled 48 kDa protein to the extra cellular matrix. These studies indicate that exposure of quiescent cells to fetal calf serum results in the transfer of plasminogen activator inhibitor-1 from the cells to the growth mediumvia extracellular matrix. The translocation of the protease inhibitor from the cells to the matrix and medium may enable the cellular and possibly the membrane proteases to act on growth factors or their receptors thereby initiating the mitogenic response.  相似文献   

5.
Short-term labelling of secondary cultures of mouse embryo fibroblasts with [14-C] aminoacids enabled the identification and quantitation of proteins specific for quiescent and proliferative stages. Intracellular and secreted proteins of cells maintained under different growth conditions were resolved in high resolution SDS-polyacrylamide gradient gels. Two proteins, identified as fibronectin and procollagens and a 34 000 D polypeptide were found to be secreted by all three types (density-arrested, serum arrested and proliferating) of cells. Both types of arrested cells exclusively secreted a 375 000 D protein while the proliferating cells specifically secreted a 48 000 D polypeptide. During progression of cells from quiescence to proliferation, two intracellular proteins showed major variations. A 205 000 D intracellular protein was found to be synthesized in higher amounts by proliferating cells than by arrested cells. Another protein, identified as actin, showed a marked increase in synthesis following the release of cells from serum arrest. The arrested cells showed reduced levels of actin synthesis and the turning-off process in the synthesis of actin was found to be relatively slow as the cells entered into quiescence.  相似文献   

6.
A-549 cells of human lung adenocarcinoma were subjected to heat shock (30 min, 44 degrees C) which caused substantial decreases in the rates of biosynthesis of the great bulk of cellular proteins with simultaneous increases in the synthesis rates of the 70 kDa protein predominantly localized in cell cytosol. By the 6th hour after the heat shock cessation this protein synthesis reached its maximum; by the 18th hour it was no longer detectable, while the protein itself was not denatured. During the recovery after the heat shock the ability of the serum-free culture medium conditioned by A-549 cells in autocrine regulation of [3H]thymidine incorporation into DNA and [3H]leucine incorporation into proteins changed also. The conditioned medium obtained within 1-3 hours after the heat shock did not influence the intensity of DNA synthesis, while the medium obtained 4-48 hours after the heat shock stimulated this process, the maximal effect (3.3-fold stimulation) being observed in the case of the 48-hour conditioned medium. Temporary (1 hour) acidification of the conditioned media down to pH 2.0 resulted in complete inhibition of the stimulating activity. Besides, these media acquired an ability to inhibit [3H]thymidine incorporation into the DNA of tracer cells. Study of effects of conditioned media on the rate of [3H]leucine incorporation into A-549 cell proteins revealed that the media obtained 1-4 hours after the heat shock inhibited this process, while the media obtained 6-18 hours thereafter stimulated it 1.2-2.1-fold. In the test systems under study temporary acidification of the media increased their stimulating influence on [3H]leucine incorporation into cellular proteins.  相似文献   

7.
Quiescent and serum-stimulated cultures of Swiss mouse embryo fibroblasts (MEF) showed alterations in cell morphology including an enlargement in size upon treatment with 2% dimethyl sulfoxide (DMSO). Treatment of MEF and monkey kidney epithelial cells (MK2) with 2% DMSO at the early periods of serum-stimulated growth inhibited RNA, protein and DNA synthesis. DMSO treatment of cells at late stages of serum-stimulated growth (MEF after 1 hr and MK2 cells after 3 hr of stimulation) had little effect on DNA and protein synthesis although cell enlargement occurred in these cells. When the [35S]methionine labelled proteins of the control and the DMSO treated cells were analysed by high resolution polyacrylamide gel electrophoresis, no apparent difference was observed in the pattern of intracellular proteins of these cells. In contrast, the extracellular levels of two serum-induced secreted proteins of MEF (Mr 48,000 and 26,000) were dramatically reduced by DMSO treatment. The DMSO sensitive 48 kDa protein was found to be the major component of the extracellular matrix, while the 26 kDa protein was not. The 48 kDa protein was identified as plasminogen activator inhibitor (PAI-1). Densitometric quantitation showed a gradual accumulation of this protein in the matrix of serum-stimulated cells. The deposition of this protein in the matrix was inhibited by DMSO. Flow-cytometric quantitation of indirect immunofluorescence indicated higher intracellular levels of the 48 kDa protein in fetal calf serum (FCS) + DMSO treated cells, suggesting that the low level of this protein in the medium of DMSO treated cells is probably due to lack of transport of this protein from the cells into the medium.  相似文献   

8.
Human skin fibroblasts, both postnatal and embryonic, were cultured in the stationary phase of growth for 6-10 days in the DMEM with bovine serum (BS), 0.1-0.5% fetal calf serum (FCS) or 1% human serum (HS). On the day 4 of culturing, a considerable increase was observed in the synthesis and secretion of protein by postnatal fibroblasts in the Eagle medium with 0.1-0.5% FCS, or with 0.5% BS, and in medium 199 with 0.1-0.5 BS, or with 0.1 FCS. Maximum synthesis and secretion of 14C-proline labeled protein was observed on day 2 of culturing of cells in the DMEM medium with 1% HS. In the DMEM medium with low serum content, protein synthesis being virtually unchanged, 75-80% of protein was secreted by cells into the culture medium with BS on days 2-4; in the medium with FCS such a high secretion of protein was observed only on day 4. High synthesis of protein by fetal fibroblasts in the DMEM medium with 0.1% BS and high protein secretion in all the media with 0.1% BS or 0.5% FCS were observed. The maximum level of secretion of protein by fibroblasts coincided with a considerable increase in both RNA and DNA syntheses. The data obtained suggest that cells in deep resting state actively react to the composition of the medium as well as to the quality and quantity of the serum. It may also be suggested that the mechanism of protein secretion has an important role in maintenance of the constant level of intracellular proteins in resting cells.  相似文献   

9.
Treatment of quiescent cultures of mouse embryo fibroblasts with 20% fetal calf serum (FCS) or cycloheximide (CH) resulted in the induction of a nuclear protein of molecular weight 29 000 daltons. The 29 Kd protein induced by these two agents was found to be tightly bound to the chromatin since it was not released from the chromatin by a combination of 2.5 M NaCl and 3.2 M urea. The chromatin associated CH-induced 29 Kd protein and the 29 Kd protein obtained from serum-induced cells displayed similar N-chlorosuccinimide cleavage patterns. Pulse-chase experiments indicate a half-life of an hour for the 29 Kd protein. The kinetics of induction of the 29 Kd protein in the early hours of mitogen addition, short half-life, nuclear localisation and strong association with chromatin suggest that this protein may have important roles in cell proliferation, possibly as a mediator of mitogen action.  相似文献   

10.
Stimulation of quiescent 3T3 cells by serum dramatically induces the synthesis of a group of secreted polypeptides with a molecular weight (MW) of 45 K (p45 A, B, C, D). The synthesis of these polypeptides increases 10-fold during the first 2 h. Cycloheximide superinduces the 45 K polypeptides and actinomycin D (actD) blocks completely their induction by serum. Peptide mapping analysis and pulse-chase experiments revealed that p45 A is a precursor of polypeptides p45 B, C, D. Tunicamycin treatment inhibits the synthesis of all four polypeptides but a new related protein appears, p-p45, the unglycosylated precursor. In the presence of tunicamycin, p-p45 is also found in the medium, demonstrating that glycosylation is not essential for the secretion. In vitro translation experiments show that the levels of p45 mRNA present in stimulated cells are severalfold higher than that of non-stimulated cells. Purified growth factors, such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF) and epidermal growth factor (EGF) induce the synthesis of p45 in quiescent cells.  相似文献   

11.
Chinese hamster ovary cells continuously secrete a cysteine endopeptidase   总被引:1,自引:0,他引:1  
Summary The protease activity in serum-free conditioned medium of chinese hamster ovary (CHO) cells was measured using peptidyl (or aminoacyl)-4-methylcoumaryl-7-amides (MCAs) as the substrates. Aminopeptidase increased in level as amounts of nonviable cells increased during cultivation in serum-free medium, indicating that the activity seems to be originated from intracellular proteases. The activity toward Boc-Leu-Arg-Arg-MCA, which was strongly inhibited by p-chloromercuribenzonate and N-ethylmaleimide, was the strongest among those toward peptidyl-MCAs in the conditioned medium within 48 h-cultivation in serum-free medium. In contrast to the case of aminopeptidase activity, the endopeptidase activity decreased in level after 48 h-cultivation although amounts of nonviable cells increases. Thus, CHO cells continuously secrete the cysteine proteases. This work was supported by the management of the Research Association for Biotechnology as a part of the R&D of Basic Technology for Future Industries sponsored by NEDO (New Energy and Industrial Technology Development Organization).  相似文献   

12.
The effect of the culture media on the composition of the outer membrane protein of Vibrio vulnificus strain 393 from human blood was examined. Only one major outer membrane protein, with an apparent molecular weight of 37,000 (37K protein) and 34,000 (34K protein), was formed in the cells grown in 3% NaCl-BHI broth and chemically defined medium, respectively. The production of one major outer membrane protein was also observed in other isolates from humans and asari clam when they were grown in 3% NaCl-BHI broth. On the other hand, three major outer membrane proteins, with apparent molecular weights of 48,000 (48K protein), 37,000 (37K protein), and 34,000 (34K protein), were produced in the cells grown in 3% NaCl-nutrient broth. Three proteins, 48K, 37K, and 34K from strain 393, were purified and the amino acid compositions were determined. Although there was a little difference in the composition of amino acid among three proteins, the amino acid compositions of the three porin-like proteins showed characteristic properties of the porins of Escherichia coli and Salmonella typhimurium. Immunoblot analysis of the outer membrane proteins from four vibrios, E. coli, and S. typhimurium using monospecific antisera against these three porin-like proteins showed that only the antiserum against 37K protein cross-reacted with the outer membrane proteins from all the strains tested.  相似文献   

13.
Summary Although several proteases have been identified in homogenates of cultured epithelial cells of the eye lens and in lens tissues, there is little information regarding intracellular protein degradation in intact lens cells in vitro. Cultured lens cells may be useful in the study of intracellular protein degradation in the lens, a tissue with a wide range of protein half-lives. This is of interest because alterations in protein turnover in the lens have been implicated in cataract formation. This study examines intracellular protein degradation in cultured bovine lens epithelial cells (BLEC). Cell cultures were incubated with radiolabeled leucine to label intracellular proteins. Protein degradation was measured by monitoring the release of trichloroacetic-acid-soluble radioactivity into the culture medium. The average half-life of long-lived proteins (half-life >50 h) was typically about 57 h in serum-supplemented medium. Average rates of degradation of long-lived proteins increased by up to 73% when fetal bovine serum was withdrawn from the culture medium. Serum had no effect on the degradation of short-lived proteins (half-life <10 h). Degradation of long-lived proteins in the presence and absence of serum was further studied in cultured BLEC from population doubling level (PDL) 2 to 43. Average half-life of proteins in serum-supplemented medium was 52 to 58 h and did not vary significantly as a function of PDL. Degradation rates in serum-free medium increased approximately twofold up to PDL 7, but returned by PDL 25 to original levels, which were maintained through PDL 43. This work was supported in part by grants from U. S. Department of Agriculture contract 53-3K06-5-10, Massachusetts Lions Eye Research Fund, Inc., and the Daniel and Florence Guggenheim Foundation. D. A. E. is a recipient of a National Eye Institute postdoctoral fellowship.  相似文献   

14.
We demonstrate in this study that both TIMP-1 and TIMP-2 are major serum factors that stimulate the induction of TIMP-1 mRNA in quiescent human gingival fibroblasts (Gin-1 cells) at mid-G1 (6-9 h after serum stimulation) of the cell cycle, but not that of TIMP-2. When we chased the secretion of both TIMP proteins into culture medium containing 10% FCS freed of both TIMPs, TIMP-2 secretion rose to the level in 10% FCS after 24 h, but TIMP-1 secretion remained at a fairly low level even after 3 days, thus reflecting a contrastive difference in the induction of both TIMP mRNAs. The stimulating activity of TIMP-1 on the expression of the TIMP-1 gene switched over to inhibitory activity, when the TIMP-1 concentration in the culture medium exceeded about 30 ng/ml. The depletion of TIMP-1 and TIMP-2 from FCS affected remarkably the induction of c-jun and c-fos mRNAs, but not that of c-ets-1 mRNA. TIMP-1 and TIMP-2-dependent expression of AP-1 protein was further demonstrated by using nuclear extracts of Gin-1 cells in an electrophoretic mobility shift assay.  相似文献   

15.
The role of mitogen-activated calcium influx from the extracellular medium in the control of cell proliferation was studied in Balb-c 3T3 fibroblasts. Stimulation of serum-deprived, quiescent cells with 10% foetal calf serum (FCS) induced a long-lasting (up to 70 min elevation of intracellular free calcium concentration ([Ca2+]i). Both the sustained [Ca 2+]i increase and the related inward current, described in a previous paper [Lovisolo D. Munaron L. Baccino FM. Bonelli G. (1992) Potassium and calcium currents activated by foetal calf serum in Balb-c 3T3 fibroblasts. Biochim. Biophys. Acta, 1104, 73–82], could be abolished either by chelation of extracellular calcium with EGTA or by SKF 96365, an imidazole derivative that can block receptor-activated calcium channels. The effect of the abolition of these ionic signals on FCS-induced proliferation was investigated by adding either EGTA or SK&F 96365 to the culture medium during the first hours of stimulation of quiescent cells with 10% FCS. As measured after 24 h, a 22% inhibition of growth was observed when SK&F 96365 was added for the first hour, and stronger inhibitions, up to 56%, were obtained by adding the blocker for the first 2 or 4 h. Similar effects were observed with addition of 3 mM EGTA, though the inhibition was less marked for the 4 h treatment. By contrast, incubation with either substance in the next 4 h of serum stimulation did not influence cell growth, except for a slight inhibition observed when SKF 96365 was applied from the 4th to the 8th hour. The reduction in growth resulting from the abolition of the early calcium influx was paralleled by an accumulation of cells in the G2/M phase. Both growth inhibition and G2/M accumulation were reversible, since after further 24 h in 10% FCS cells had fully recovered the exponential growth. These data indicate that the early calcium influx seen in response to mitogen stimulation develops on a timescale long enough to play a significant role in cell cycle progression, and that its block in the early G1 phase can lead to a reduction of proliferation by arresting cells in later stages of the cycle.  相似文献   

16.
Transformation of NIH/3T3 cells by Kirsten murine sarcoma virus (MSV) caused a dramatic reduction in the number of cell-surface receptors for epidermal growth factor (EGF). However, the number of EGF receptors remained at a very low level in a non-tumourigenic revertant cell line isolated from the virus-transformed cells, indicating that an increase in EGF receptors is not a requirement for the phenotypic reversion of Kirsten MSV-transformed 3T3 cells. Serum-free conditioned medium from normal and virus-transformed cell lines contained similar amounts of cell growth-promoting activity as assayed by the ability to stimulate DNA synthesis in quiescent Swiss 3T3 cell cultures. However, the concentrated conditioned medium from these cell lines showed no evidence of beta-transforming growth factor (TGF) activity as assayed by promotion of anchorage-independent growth of untransformed normal rat kidney (NRK) fibroblasts in agarose. The cellular release of alpha-TGF activity was assayed by measuring the ability of concentrated conditioned medium to inhibit the binding of 125I-EGF to Swiss 3T3 cells. Conditioned medium protein from the virus-transformed cell line inhibited 125I-EGF binding but only to the same extent as conditioned medium protein prepared from the untransformed cell line. The alpha-TGF secretion by these cell lines was estimated to be 30-45-fold lower than the level of alpha-TGF released by a well-characterized alpha-TGF-producing cell line (3B11). These results suggest that the induction of TGF release is not a necessary event in the transformation of NIH/3T3 cells by Kirsten MSV.  相似文献   

17.
To determine whether activation of protein kinase C is involved in the proliferation of interleukin-3 (IL-3) -dependent cells, we examined the effect of tumor-promoting phorbol esters on the in vitro proliferation of the IL-3-dependent cell lines FD and DA-1. The viability of FD and DA-1 cells cultured for 24 hours in 100 nM phorbol myristate acetate (PMA) and 10% FCS was similar to that of cells cultured in 25% WEHI-3 conditioned medium as a source of IL-3, and 10% FCS. FD cells failed to proliferate in concentrations of FCS of up to 50%, while DA-1 cell proliferation was not markedly influenced by FCS. By contrast, PMA promoted the proliferation of FD and DA-1 cells in the absence of FCS and enhanced their proliferation in the presence of 10% FCS, 60- and 20-fold, respectively. Stimulation of proliferation was achieved with as little as 10 nM PMA and was maximal at 100 nM PMA. Low concentrations (0.05-0.1%) of WEHI-3 CM promoted the proliferative response of FD and DA-1 cells to PMA, but at concentrations of WEHI-3 CM greater than 0.8%, no further increment in proliferation was obtained with PMA. As little as 1/2 hour of exposure to phorbol esters was sufficient to cause translocation of protein kinase C from the cytosol to the membranes of DA-1 cells, and 1 hour of exposure to phorbol esters was sufficient to stimulate DNA synthesis. A protein kinase C inhibitor, H-7, at a concentration of 10 microM inhibited phorbol ester-induced stimulation of DA-1 cell proliferation. When DA-1 cells were exposed to the calcium ionophore A23187 in addition to both a phorbol ester and IL-3, their proliferation was enhanced over that stimulated by only the phorbol ester and IL-3. The data indicate that stimulation of proliferation of IL-3-dependent cells involves the activation of protein kinase C.  相似文献   

18.
In Exp. 1, 5-8-cell embryos from superovulated cattle were co-cultured with oviducal tissue suspended in Ham's F10 + 10% fetal calf serum (F10FCS) or in F10FCS alone. After 4 days, the proportion of embryos developing into compact morulae or blastocysts was greater (P less than 0.005) in co-culture (38/82; 46%) than in F10FCS (1/27; 4%). In Exp. 2, a solution of collagenase, trypsin, DNAse and EDTA was used to disperse oviducal tissue, which was then cultured in TCM199 + 10% fetal calf serum (M199FCS) to obtain monolayers. Embryos (1-8 cells) were then co-cultured with monolayers or in M199FCS alone. The proportion of embryos developing into compact morulae and blastocysts after 4-5 days was higher (P less than 0.005) in co-culture (15/34; 43%) than in M199FCS (1/37; 3%); mean numbers of cells/embryo were also higher (P less than 0.001) (27.70; range 2-82 in co-culture; 8.83; range 2-18 in M199FCS). In Exp. 3, embryos obtained from in-vitro maturation and fertilization were used to compare development between co-culture and medium conditioned by oviducal tissue. Initial cleavage rate (no. embryos greater than 1 cell/total) was 76% (611/807) and did not differ among treatments. After 5 days, the proportion cleaving to greater than 16 cells was higher (P less than 0.005) in co-culture (71/203; 35%) and conditioned medium (48/205; 23%) compared to M199FCS (14/203; 7%). Similarly, the proportion developing into compact morulae and blastocysts was greater (P less than 0.005) in co-culture (44/203; 22%) and conditioned medium (46/205; 22%) than in M199FCS (7/203; 3%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The protein corona, which immediately is formed after contact of nanoparticles and biological systems, plays a crucial role for the biological fate of nanoparticles. In the here presented study we describe a strategy to control the amount of corona proteins which bind on particle surface and the impact of such a protein corona on particle-cell interactions. For corona formation, polyethyleneimine (PEI) coated magnetic nanoparticles (MNP) were incubated in a medium consisting of fetal calf serum (FCS) and cell culture medium. To modulate the amount of proteins bind to particles, the composition of the incubation medium was varied with regard to the FCS content. The protein corona mass was estimated and the size distribution of the participating proteins was determined by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). Additionally, the zeta potential of incubated particles was measured. Human blood–brain barrier-representing cell line HBMEC was used for in vitro incubation experiments. To investigate the consequences of the FCS dependent protein corona formation on the interaction of MNP and cells flow cytometry and laser scanning microscopy were used. Zeta potential as well as SDS–PAGE clearly reveal an increase in the amount of corona proteins on MNP with increasing amount of FCS in incubation medium. For MNP incubated with lower FCS concentrations especially medium-sized proteins of molecular weights between 30 kDa and 100 kDa could be found within the protein corona, whereas for MNP incubated within higher FCS concentrations the fraction of corona proteins of 30 kDa and less increased. The presence of the protein corona reduces the interaction of PEI-coated MNP with HBMEC cells within a 30 min-incubation.  相似文献   

20.
Cytomatrix synthesis in MDCK epithelial cells   总被引:1,自引:0,他引:1  
Detailed information regarding the synthesis rates of individual protein components is important in understanding the assembly and dynamics of the cytoskeletal matrix of eukaryotic cells. As an approach to this topic, the dual isotope technique of Clark and Zak (J. Biol. Chem., 256:4863-4870, 1981), was employed to measure fractional synthesis rates (FSRs) in growing and quiescent cultures of MDCK epithelial cells. Cell protein was labeled to equilibrium with [14C]leucine over several days and then pulse-labeled for 4 hours with [3H]leucine. FSRs (as percent per hour) were calculated from the 3H/14C ratio of cell extracts or individual proteins separated by two-dimensional polyacrylamide gel electrophoresis and the 3H/14C ratio of free leucine in the medium. Synthesis of total cell protein rose from approximately 1.4%/hour in quiescent cells to 3.5%/hour in the growing cultures. The latter rate was sufficient to account for the rate of protein accumulation and a low level of turnover in the growing cultures. The FSR of the buffered-Triton soluble extract was higher and the cytoskeletal FSR significantly lower than that for total protein in quiescent monolayers. This difference, however, was not observed in growing cultures. A distinct pattern of differences was seen in the FSRs of individual cytoskeletal proteins in the quiescent cultures. Vimentin synthesis was significantly lower than that of the keratins and the keratin FSRs were not obviously matched in pairwise fashion. Unexpectedly, the FSRs of alpha- and beta-tubulin diverged in quiescent cells with alpha-tubulin turnover exceeding beta-tubulin. Likewise, components of the microfilament lattice showed unequal fractional synthesis rates, myosin and alpha-actinin being faster than actin. In addition, the FSR for globular actin exceeded that of the cytoskeletal associated form. The results suggest that metabolic coupling between individual cellular filament systems is not strict. The data are, however, consistent with models that predict that assembly of a subcellular structure influences the turnover of its component proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号