首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Embryonic development of the proepicardium and coronary vessels   总被引:2,自引:0,他引:2  
In the last few years, an increasing interest in progenitor cells has been noted. These cells are a source of undifferentiated elements from which cellular components of tissues and organs develop. Such progenitor tissue delivering stem cells for cardiac development is the proepicardium. The proepicardium is a transient organ which occurs near the venous pole of the embryonic heart and protrudes to the pericardial cavity. The proepicardium is a source of the epicardial epithelium delivering cellular components of vascular wall and interstitial tissue fibroblasts. It contributes partially to a fibrous tissue skeleton of the heart. Epicardial derived cells play also an inductive role in differentiation of cardiac myocytes into conductive tissue of the heart. Coronary vessel formation proceeds by vasculogenesis and angiogenesis. The first tubules are formed from blood islands which subsequently coalesce forming the primitive vascular plexus. Coronary arteries are formed by directional growth of vascular protrusions towards the aorta and establishing contact with the aortic wall. The coronary vascular wall matures by attaching smooth muscle cell precursors and fibroblast precursors to the endothelial cell wall. The cells of tunica media differentiate subsequently into vascular smooth muscle by acquiring specific contractile and cytoskeletal markers of smooth muscle cells in a proximal - distal direction. The coronary artery wall matures first before cardiac veins. Maturity of the vessel wall is demonstrated by the specific shape of the internal surface of the vascular wall.  相似文献   

2.
As a degenerative and inflammatory desease of elderly patients, about 80% of abdominal aortic aneurysms (AAA) show considerable wall calcification. Effect of calcifications on computational wall stress analyses of AAAs has been rarely treated in literature so far. Calcifications are heterogeneously distributed, non-fibrous, stiff plaques which are most commonly found near the luminal surface in between the intima and the media layer of the vessel wall. In this study, we therefore investigate the influence of calcifications as separate AAA constituents on finite element simulation results. Thus, three AAAs are reconstructed with regard to intraluminal thrombus (ILT), calcifications and vessel wall. Each patient-specific AAA is simulated twice, once including all three AAA constituents and once neglecting calcifications as it is still common in literature. Parameters for constitutive modeling of calcifications are thereby taken from experiments performed by the authors, showing that calcifications exhibit an almost linear stress–strain behavior with a Young’s modulus E ≥ 40 MPa. Simulation results show that calcifications exhibit significant load-bearing effects and reduce stress in adjacent vessel wall. Average stress within the vessel wall is reduced by 9.7 to 59.2%. For two out of three AAAs, peak wall stress decreases when taking calcifications into consideration (8.9 and 28.9%). For one AAA, simulated peak wall stress increases by 5.5% due to stress peaks near calcification borders. However, such stress singularities due to sudden stiffness jumps are physiologically doubtful. It can further be observed that large calcifications are mostly situated in concavely shaped regions of the AAA wall. We deduce that AAA shape is influenced by existent calcifications, thus crucial errors occur if they are neglected in computational wall stress analyses. A general increase in rupture risk for calcified AAAs is doubted.  相似文献   

3.
Velocity profiles across a vessel were investigated in poststenotic regions of the canine left coronary artery by our 80-channel 20 MHz ultrasound velocimeter. The velocity waveform in a small artery just before its penetration into myocardium was measured by our laser Doppler method. The poststenotic velocity configuration was characterized by a narrow region of high velocity with diastolic reverse flow near the wall which may dissipate energy. The velocity waveform in the distal small arteries exhibited increased systolic reverse flow with decreased diastolic forward flow, resulting in a remarkable reduction of coronary inflow into the myocardium.  相似文献   

4.
在细小血管中,由于血细胞明显的趋轴效应,管中的血液分为两个不同的区域,即具有血细胞的核心区和邻近管壁和血浆层。应用两相分层流模型,研究在相同的流量和管径下,当核心区中的血液分别为牛顿流体和Casson流体时,不同的血浆层厚度对细小血管壁剪应力和剪应力梯度的影响。结果表明,血浆层的存在对壁剪应力和壁剪应力梯度有较大影响,当血浆层厚度仅为血管半径的1%和3%时,壁剪应力梯度分别下降约10%和20%。  相似文献   

5.
Information on the layer-specific residual deformations of aortic tissue and how these vary throughout the vessel is important for understanding the regionally-varying aortic functions and pathophysiology, but not so much can be found in the literature. Toward this end, porcine aortas were sectioned into eighteen rings, with one ring from each anatomical position radially cut to obtain the zero-stress state for the intact wall and the other ring dissected into intimal-medial and adventitial layers; these rings were then radially cut to reach the zero-stress state for the intima-media and adventitia. Peripheral variations in internal/external circumferences, thickness, and opening angle of the intact wall and its layers were measured through image analysis at the no-load and zero-stress states. Intact wall and layer circumferences at both states significantly declined along the aorta, as did intact wall and intimal-medial but not adventitial thickness. Adventitia exhibited the greatest opening angles, approaching 180 deg all over the aorta. The opening angles of the intima-media and intact wall were quite similar, with the highest values in the ascending aorta, the lowest at the diaphragm, and increasing subsequently. Bending-related residual stretches were released by radial cutting that were compressive internally and tensile externally, displaying distinct axial variation for the intima-media and intact wall, and non-significant variation for the adventitia. Evidence is provided for the release upon layer separation of compressive stretches in the intima-media and of tensile stretches in the adventitia, whose values were smallest in the descending thoracic aorta and highest near the iliac artery bifurcation.  相似文献   

6.
The large epicardial coronary arteries and veins span the surface of the heart and gradually penetrate into the myocardium. It has recently been shown that remodeling of the epicardial veins in response to pressure overload strongly depends on the degree of myocardial support. The nontethered regions of the vessel wall show significant intimal hyperplasia compared with the tethered regions. Our hypothesis is that such circumferentially nonuniform structural adaptation in the vessel wall is due to nonuniform wall stress and strain. Transmural stress and strain are significantly influenced by the support of the surrounding myocardial tissue, which significantly limits distension of the vessel. In this finite-element study, we modeled the nonuniform support by embedding the left anterior descending artery into the myocardium to different depths and analyzed deformation and strain in the vessel wall. Circumferential wall strain was much higher in the untethered than tethered region at physiological pressure. On the basis of the hypothesis that elevated wall strain is the stimulus for remodeling, the simulation results suggest that large epicardial coronary vessels have a greater tendency to become thicker in the absence of myocardial constraint. This study provides a mechanical basis for understanding the local growth and remodeling of vessels subjected to various degrees of surrounding tissue.  相似文献   

7.
Thomas JB  Milner JS  Steinman DA 《Biorheology》2002,39(3-4):443-448
The human carotid artery bifurcation is a complex, three-dimensional structure exhibiting non-planarity and both in- and out-of-plane curvature. The aim of this study was to determine the relative importance of vessel planarity, a potential geometric risk factor for atherogenesis, in determining the local hemodynamics. A combination of computational fluid dynamics and magnetic resonance imaging was used to reconstruct the subject-specific hemodynamics for three subjects. Planar models were then constructed by translating the centroids of the lumen contours onto a plane defined by the centroids of the vessel branches near the bifurcation apex. A novel "patching" technique was used to convert the continuous arterial surfaces into contiguous but discrete patches according to an objective scheme, making it possible to compare the original and planar models without the need for registration and warping. Results suggest that the planarity of the vessel has a relatively minor effect on the spatial distribution of mean and oscillatory wall shear stress. Out-of-plane curvature was, however, found to have a marked influence on the extent and magnitude of these hemodynamic variables. We conclude that vessel curvature - whether in- or out-of-plane - rather than planarity may deserve further scrutiny as a potential geometric risk for atherogenesis.  相似文献   

8.
Change in the diffuse portion of the double electric layer at the blood-vascular wall border under the effect of thorium nitric oxide and heparin affects the tone and contractile ability of the rat tail artery: thorium diminishes the vessel rigidity and the amplitude of its contractile response, whereas heparin augments the rigidity as well as the amplitude of the response. Thorium nitric oxide also diminishes rigidity of the vessel connective tissue skeleton. The difference of potentials between the vessel lumen and its wall seems to be capable of affecting the contractile apparatus of the smooth muscle cells by means of activation of potential-sensitive ionic channels.  相似文献   

9.
Frog denervated submaxillar muscle arterioles dilates under the influence of visible light. In darkness the vessel returns to tis initial condition. The degree of dilatation is in the main inversely proportional to the initial diameter of the vessel. Besides, the vessel reactivity also depends on the thickness of its wall. Thick-walled arterioles are the most reactive ones. Their diameter becomes 2 -3 times greater under the influence of visible light. This light-evoked vasodilatation should be taken into account during intravital microscopy, as such a considerable dilatation of arterioles caused by light changes their reactivity considerably.  相似文献   

10.
In this study we analyzed the microanatomy of the dorsal vessel of the triatomine Panstrongylus megistus. The organ is a tubule anatomically divided into an anterior aorta and a posterior heart, connected to the body wall through 8 pairs of alary muscles. The heart is divided in 3 chambers by means of 2 pairs of cardiac valves. A pair of ostia can be observed in the lateral wall of each chamber. A bundle of nerve fibers was found outside the organ, running dorsally along its major axis. A group of longitudinal muscular fibers was found in the ventral portion of the vessel. The vessel was found to be lined both internally and externally by pericardial cells covered by a thin laminar membrane. Inside the vessel the pericardial cells were disposed in layers and on the outside they formed clusters or rows.  相似文献   

11.
根据血管入口流动条件,从血液流动、血管壁运动、血液-血管壁耦合运动3个方面出发,推导出血管生运动的教学模型.通过理论分析与实例计算,进一步明确了模型的物理意义.  相似文献   

12.
Progressive accumulation of cholesterol in the arterial wall causes atherosclerosis, the pathologic process underlying most heart attacks and strokes. Low density lipoprotein (LDL), the major carrier of blood cholesterol, has been implicated in the buildup of cholesterol in atherosclerotic plaques. Endothelial cells that line arteries function to transport LDL into the vessel wall. Models for the mechanism of cholesterol accumulation in atherosclerotic plaques emphasize increased LDL uptake into the vessel wall or increased retention of LDL that has entered the vessel wall. This article reviews the pathways of cholesterol entry and removal, the metabolism, and the physical changes of cholesterol in the vessel wall. How these processes are believed to contribute to cholesterol buildup in atherosclerotic plaques is discussed.  相似文献   

13.
We have previously demonstrated that natto-extracts containing nattokinase (NK) inactivates plasminogen activator inhibitor type 1 and then potentiates fibrinolytic activity. In the present study, we investigated the effects of dietary supplementation with natto-extracts on neointima formation and on thrombolysis at the site of endothelial injury. Endothelial damage in the rat femoral artery was induced by intravenous injection of rose bengal followed by focal irradiation by transluminal green light. Dietary natto-extracts supplementation containing NK of 50 or 100 CU/body was started 3 weeks before endothelial injury and then continued for another 3 weeks. Intimal thickening in animals given supplementation was significantly (P<0.01) suppressed compared with controls and the intima/media ratio in animals with 50 and 100 CU/body NK and control group was 0.09 +/- 0.03, 0.09 +/- 0.06 and 0.16 +/- 0.12, respectively. Although femoral arteries were reopened both in control animals and those treated with NK within 8 hours after endothelial injury, mural thrombi were histologically observed at the site of endothelial injury. In the control group, the center of vessel lumen was reopened and mural thrombi were attached on the surface of vessel walls. In contrast, in NK-treated groups, thrombi near the vessel wall showed lysis and most of them detached from the surface of vessel walls. In conclusion, dietary natto-extracts supplementation suppressed intimal thickening produced by endothelial injury in rat femoral artery. These effects may partially be attributable to NK, which showed enhanced thrombolysis near the vessel wall.  相似文献   

14.
Summary The distribution of gas hold-up in pseudoplastic xanthan-gum media, as prepared to mimic bioreactor states formed in the time-course of fermentation of Streptomyces fradiae during the antibiotic production of Tylosin, is studied. Cases of gas maldistribution at high viscosity, such as very low gas concentration near the vessel wall and relatively high gas concentration near the vessel axis, which reveal flow deficiencies, such as gas channelling and flow stagnancy, are registered and quantified.  相似文献   

15.
The pulsatile flow of non-Newtonian fluid in a bifurcation model with a non-planar daughter branch is investigated numerically by using the Carreau-Yasuda model to take into account the shear thinning behavior of the analog blood fluid. The objective of this study is to deal with the influence of the non-Newtonian property of fluid and of out-of-plane curvature in the non-planar daughter vessel on wall shear stress (WSS), oscillatory shear index (OSI), and flow phenomena during the pulse cycle. The non-Newtonian property in the daughter vessels induces a flattened axial velocity profile due to its shear thinning behavior. The non-planarity deflects flow from the inner wall of the vessel to the outer wall and changes the distribution of WSS along the vessel, in particular in systole phase. Downstream of the bifurcation, the velocity profiles are shifted toward the flow divider, and low WSS and high shear stress temporal oscillations characterized by OSI occur on the outer wall region of the daughter vessels close to the bifurcation. Secondary motions become stronger with the addition of the out-of-plane curvature induced by the bending of the vessel, and the secondary flow patterns swirl along the non-planar daughter vessel. A significant difference between the non-Newtonian and the Newtonian pulsatile flow is revealed during the pulse cycle; however, reasonable agreement between the non-Newtonian and the rescaled Newtonian flow is found. Calculated results for the pulsatile flow support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.  相似文献   

16.
In the T-10 tokamak, the magnetic field spatially resonant with a helical MHD perturbation is generated using the controlled halo current supplied using a contact method in the scrape-off-layer plasma. This paper is concerned with studying the spatial structure of the halo current and its magnetic field. For this purpose, the magnetic field of the halo current was measured in one of the cross sections of the torus near the tokamak vacuum vessel wall. The spatial distribution of the magnetic field as a function of the halo current configuration was calculated in the cylindrical approximation. The terms proportional to the plasma pressure were disregarded. The configuration of the halo current and the spatial structure of its magnetic field were determined by comparing the calculated and experimental results.  相似文献   

17.
Summary Male Wistar rats were injected intravenously with 5-(3H)uridine-labeled lymphocytes isolated from lymph nodes of syngeneic donors and enriched in T cells. After short periods of time (3 to 120 min after injection), labeled lymphocytes were localized in spleen compartments using autoradiography to identify routes of lymphocyte movement from blood into splenic parenchyma and to follow migration pathways of recirculating lymphocytes within the periarterial lymphoid sheath (PALS). Topographical analysis of labeled lymphocytes was performed in specific planes of PALS characterized by the diameter of the arterial vessel and termed PALS large, PALS medium, and PALS small (PALS L, PALS M, PALS S, respectively). Attention was also paid to accumulations of labeled lymphocytes close to the arterial vessel wall. Initially, labeled lymphocytes were localized in PALS S and PALS M near the terminal branching of arterial vessels and in the marginal zone (MZ). We conclude that lymphocytes emigrate from blood into splenic parenchyma within two white pulp compartments: in MZ, and directly within PALS through the wall of capillary vessels. The sequential accumulation of labeled cells near arterial vessels of increasing diameter suggests that the recirculating pool of lymphocytes migrates into the central part of PALS L by two routes: from MZ, and along arterial vessels from PALS S and PALS M.R.B. was a fellow of the Alexander von Humboldt-Stiftung, on leave from the Department of Histology and Embryology, Institut of Biostructure, Academy of Medicine, ul. Swiecickiego 6, PL-60-781 Pozna, Poland.  相似文献   

18.
It has long been known that platelets undergo margination when flowing in blood vessels, such that there is an excess concentration near the vessel wall. We conduct experiments and three-dimensional boundary integral simulations of platelet-sized spherical particles in a microchannel 30 μm in height to measure the particle-concentration distribution profile and observe its margination at 10%, 20%, and 30% red blood cell hematocrit. The experiments involved adding 2.15-μm-diameter spheres into a solution of red blood cells, plasma, and water and flowing this mixture down a microfluidic channel at a wall shear rate of 1000 s−1. Fluorescence imaging was used to determine the height and velocity of particles in the channel. Experimental results indicate that margination has largely occurred before particles travel 1 cm downstream and that hematocrit plays a role in the degree of margination. With simulations, we can track the trajectories of the particles with higher resolution. These simulations also confirm that margination from an initially uniform distribution of spheres and red blood cells occurs over the length scale of O(1 cm), with higher hematocrit showing faster margination. The results presented here, from both experiments and 3D simulations, may help explain the relationship between bleeding time in vessel trauma and red blood cell hematocrit as platelets move to a vessel wall.  相似文献   

19.
20.
Correlation among shear rate measures in vascular flows   总被引:2,自引:0,他引:2  
A variety of shear rate measures have been calculated from hemodynamic data obtained by laser Doppler anemometry in flow-through casts of human aortic bifurcations. Included are measures sensitive to the mean and amplitude of the shear rate, its maximum rate of change, the duration of stasis and flow reversal near the wall, and the unidirectionality of the flow. Many of these measures are highly correlated with one another. This suggests that that it will be difficult to identify from in vivo measurements those aspects of the flow field to which the vessel wall is most sensitive. It may be possible to separate the effects of purely temporal factors (e.g., the duration of flow reversal) from those related to wall shear stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号