首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adhesion of Bacillus cereus spores (NCTC 2599) to hydrophobic and hydrophilic glass surfaces was studied when environmental conditions were varied. The spores were exposed in media of different polarities as well as different pH and ionic concentrations. With increasing ethanol concentrations, the polarity of the medium was decreased and the predominant force of attraction was found to be hydrophobic. The spore surface was uncharged at a pH around 3, at which value the spore was most adhesive to both hydrophobic and hydrophilic glass. This could be attributable to the absence of electrostatic repulsion. An increased ionic concentration of the bulk increased the degree of adhesion especially to the hydrophilic surfaces. This indicates the suppression of a solvation barrier at high ionic concentrations, when the polymers of the spore surface become dehydrated.  相似文献   

2.
Atomic force microscopy (AFM) has been used to probe, under physiological conditions, the surface ultrastructure and molecular interactions of spores of the filamentous fungus Phanerochaete chrysosporium. High-resolution images revealed that the surface of dormant spores was uniformly covered with rodlets having a periodicity of 10 +/- 1 nm, which is in agreement with earlier freeze-etching measurements. In contrast, germinating spores had a very smooth surface partially covered with rough granular structures. Force-distance curve measurements demonstrated that the changes in spore surface ultrastructure during germination are correlated with profound modifications of molecular interactions: while dormant spores showed no adhesion with the AFM probe, germinating spores exhibited strong adhesion forces, of 9 +/- 2 nN magnitude. These forces are attributed to polysaccharide binding and suggested to be responsible for spore aggregation. This study represents the first direct characterization of the surface ultrastructure and molecular interactions of living fungal spores at the nanometer scale and offers new prospects for mapping microbial cell surface properties under native conditions.  相似文献   

3.
H usmark , U. & R önner , U. 1990. Forces involved in adhesion of Bacillus cereus spores to solid surfaces under different environmental conditions. Journal of Applied Bacteriology 69 , 557–562.
The adhesion of Bacillus cereus spores (NCTC 2599) to hydrophobic and hydro-philic glass surfaces was studied when environmental conditions were varied. The spores were exposed in media of different polarities as well as different pH and ionic concentrations. With increasing ethanol concentrations, the polarity of the medium was decreased and the predominant force of attraction was found to be hydrophobic. The spore surface was uncharged at a pH around 3, at which value the spore was most adhesive to both hydrophobic and hydrophilic glass. This could be attributable to the absence of electrostatic repulsion. An increased ionic concentration of the bulk increased the degree of adhesion especially to the hydrophilic surfaces. This indicates the suppression of a solvation barrier at high ionic concentrations, when the polymers of the spore surface become dehydrated.  相似文献   

4.
A new method is described for characterizing the physicochemical properties of native microbial cells by using atomic force microscopy (AFM) with chemically functionalized probes. Adhesion forces were measured, under deionized water, between probes and model substrata functionalized with alkanethiol self-assembled monolayers terminated with OH and CH(3) groups. These were found to be 6 +/- 2 nN (n = 1024), 0.9 +/- 0.4 nN, and approximately 0 nN, for CH(3)/CH(3), CH(3)/OH, and OH/OH surfaces, respectively, and were not significantly influenced by changes of ionic strength (0.1 M NaCl versus deionized water). This shows that functionalized probes are very sensitive to changes of surface hydrophobicity. Using OH- and CH(3)-terminated probes, patterns of rodlets, approximately 10 nm in diameter, were visualized, under physiological conditions, at the surface of spores of Phanerochaete chrysosporium. Multiple (1024) force-distance curves recorded over 500 x 500-nm areas at the spore surface, either in deionized water or in 0.1 M NaCl solutions, always showed no adhesion for both OH- and CH(3)-terminated probes. Control experiments indicated that the lack of adhesion is not due to transfer of cellular material onto the probe, but to the hydrophilic nature of the spore surface.  相似文献   

5.
Adhesion of bacillus spores in relation to hydrophobicity   总被引:4,自引:0,他引:4  
The adhesion of spores of five different Bacillus species to solid surfaces of different hydrophobicity was evaluated. The spore surface hydrophobicity was measured using hydrophobic interaction chromatography (HIC). A large variation in hydrophobicity was found among the spores of the different species tested. The degree of adhesion of spores to the solid surfaces was consistent with the results obtained using the HIC method. The most hydrophobic spores, according to the HIC method, adhered in a much larger extent to the hydrophobic surfaces. Furthermore, spores generally adhered to a greater extent to hydrophobic and hydrophilic surfaces than did the vegetative cells.  相似文献   

6.
To gain a better understanding of the factors influencing spore adhesion in dairy manufacturing plants, casein-modified glass surfaces were prepared and characterized and their effect on the adhesion kinetics of spores from a Geobacillus sp., isolated from a dairy manufacturing plant (DMP) was assessed using a flow chamber. Surfaces were produced by initially silanizing glass using (3-glycidyloxypropyl) trimethoxysilane (GPS) or (3-aminopropyl) triethoxysilane to form epoxy-functionalized (G-GPS) or amino-functionalized glass (G-NH(2)) substrata. Casein was grafted to the G-GPS directly by its primary amino groups (G-GPS-casein) or to G-NH(2) by employing glutaraldehyde as a linking agent (G-NH(2)-glutar-casein). The surfaces were characterised using streaming potential measurements, contact angle goniometry, infrared spectroscopy and scanning electron microscopy. The attachment rate of spores suspended in 0.1?M KCl at pH 6.8, was highest on the positively charged (+14 mV) G-NH(2) surface (333 spores cm(-2) s(-1)) compared to the negatively charged glass (-22 mV), G-GPS (-20 mV) or G-GPS-casein (-21 mV) surfaces (162, 17 or 6 spores cm(-2) s(-1) respectively). Whilst there was a clear decrease in attachment rate to negatively charged casein-modified surfaces compared to the positively charged amine surface, there was no clear relationship between surface hydrophobicity and spore attachment rate.  相似文献   

7.
Bacterial adhesion on biomaterial surfaces is the initial step in establishing infections and leads to the formation of biofilms. In this study, silicone was modified with different biopolymers and silanes, including: heparin, hyaluronan, and self-assembled octadecyltrichlorosilane (OTS), and fluoroalkylsilane (FAS). The aim was to provide a stable and bacteria-resistant surface by varying the degree of hydrophobicity and the surface structure. The adhesion of Escherichia coli (JM 109) on different modified silicone surfaces was investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Mica, an ideal hydrophilic and smooth surface, was employed as a control specimen to study the effect of hydrophobicity and surfaces roughness on bacterial adhesion. AFM probes were coated with E. coli and the force measurements between the bacteria-immobilized tip and various materials surfaces were obtained while approaching to and retracting from the surfaces. A short-range repulsive force was observed between the FAS coated silicone and bacteria. The pull-off force of bacteria to FAS was the smallest among coated surfaces. On the other hand, heparin exhibited a long-range attractive force during approach and required a higher pull-off force in retraction. Both AFM and SEM results indicated that FAS reduced bacterial adhesion whereas heparin enhanced the adhesion compared to pure silicone. The work demonstrates that hydrophobicity cannot be used as a criterion to predict bacterial adhesion. Rather, both the native properties of the individual strain of bacteria and the specific functional structure of the surfaces determine the strength of force interaction, and thus the extent of adhesion.  相似文献   

8.
To gain a better understanding of the factors influencing spore adhesion in dairy manufacturing plants, casein-modified glass surfaces were prepared and characterized and their effect on the adhesion kinetics of spores from a Geobacillus sp., isolated from a dairy manufacturing plant (DMP) was assessed using a flow chamber. Surfaces were produced by initially silanizing glass using (3-glycidyloxypropyl) trimethoxysilane (GPS) or (3-aminopropyl) triethoxysilane to form epoxy-functionalized (G-GPS) or amino-functionalized glass (G-NH2) substrata. Casein was grafted to the G-GPS directly by its primary amino groups (G-GPS-casein) or to G-NH2 by employing glutaraldehyde as a linking agent (G-NH2-glutar-casein). The surfaces were characterised using streaming potential measurements, contact angle goniometry, infrared spectroscopy and scanning electron microscopy. The attachment rate of spores suspended in 0.1 M KCl at pH 6.8, was highest on the positively charged (+14 mV) G-NH2 surface (333 spores cm?2 s?1) compared to the negatively charged glass (?22 mV), G-GPS (?20 mV) or G-GPS-casein (?21 mV) surfaces (162, 17 or 6 spores cm?2 s?1 respectively). Whilst there was a clear decrease in attachment rate to negatively charged casein-modified surfaces compared to the positively charged amine surface, there was no clear relationship between surface hydrophobicity and spore attachment rate.  相似文献   

9.
Native cellulose model films containing both amorphous and crystalline cellulose I regions were prepared by spin-coating aqueous cellulose nanofibril dispersions onto silica substrates. Nanofibrils from wood pulp with low and high charge density were used to prepare the model films. Because the low charged nanofibrils did not fully cover the silica substrates, an anchoring substance was selected to improve the coverage. The model surfaces were characterized using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The effect of nanofibril charge density, electrolyte concentration, and pH on swelling and surface interactions of the model film was studied by quartz crystal microbalance with dissipation (QCM-D) and AFM force measurements. The results showed that the best coverage for the low charged fibrils was achieved by using 3-aminopropyltrimethoxysilane (APTS) as an anchoring substance and hence it was chosen as the anchor. The AFM and XPS measurements showed that the fibrils are covering the substrates. Charge density of the fibrils affected the morphology of the model surfaces. The low charged fibrils formed a network structure while the highly charged fibrils formed denser film structure. The average thickness of the films corresponded to a monolayer of fibrils, and the average rms roughness of the films was 4 and 2 nm for the low and high charged nanofibril films, respectively. The model surfaces were stable in QCM-D swelling experiments, and the behavior of the nanofibril surfaces at different electrolyte concentrations and pHs correlated with other studies and the theories of Donnan. The AFM force measurements with the model surfaces showed well reproducible results, and the swelling results correlated with the swelling observed by QCM-D. Both steric and electrostatic forces were observed and the influence of steric forces increased as the films were swelling due to changes in pH and electrolyte concentration. These films differ from previous model cellulose films due to their chemical composition (crystalline cellulose I and amorphous regions) and fibrillar structure and hence serve as excellent models for the pulp fiber surface.  相似文献   

10.
Adhesion of bacillus spores in relation to hydrophobicity   总被引:3,自引:3,他引:0  
R önner , U., H usmark , U. & H enriksson , A. 1990. Adhesion of bacillus spores in relation to hydrophobicity. Journal of Applied Bacteriology 69 , 550–556.
The adhesion of spores of five different Bacillus species to solid surfaces of different hydrophobicity was evaluated. The spore surface hydrophobicity was measured using hydrophobic interaction chromatography (HIC). A large variation in hydrophobicity was found among the spores of the different species tested. The degree of adhesion of spores to the solid surfaces was consistent with the results obtained using the HIC method. The most hydrophobic spores, according to the HIC method, adhered in a much larger extent to the hydrophobic surfaces. Furthermore, spores generally adhered to a greater extent to hydrophobic and hydrophilic surfaces than did the vegetative cells.  相似文献   

11.
C Dahlgren 《Cell biophysics》1982,4(2-3):133-141
Contact angle measurements have been used to correlate surface hydrophobicity of a supporting substratum with adhesion and locomotion of polymorphonuclear leukocytes. The binding of human serum albumin, a well-known chemokinetic substance, to hydrophilic glass slides gave rise to hydrophobic surfaces with adhesive properties conductive to cell polarization, thus allowing cell locomotion. Parallel contact angle and cell adhesion measurements suggested that albumin modified the cell-substratum interaction by increasing the van der Waals forces of attraction and reducing the electrostatic forces. By allowing cells to adhere to a hydrophobic surface (siliconized glass), it was found that protein could be omitted from in vitro test systems for leukocyte locomotion. It is suggested that quantitatively equal cell adhesion values may, depending on the type of attraction forces working in adhesion to the substratum, result in different locomotion patterns.  相似文献   

12.
Contact angle measurements have been used to correlate surface hydrophobicity of a supporting substratum with adhesion and locomotion of polymorphonuclear leukocytes. The binding of human serum albumin, a well-known chemokinetic substance, to hydrophilic glass slides gave rise to hydrophobic surfaces with adhesive properties conducive, to cell polarization thus allowing cell locomotion. Parallel contact angle and cell adhesion measurements suggested that albumin modified the cellsubstratum interaction by increasing the van der Waals forces of attraction and reducing the electrostatic forces. By allowing cells to adhere to a hydrophobic surface (siliconized glass), it was found that protein could be omitted from in vitro test systems for leukocyte locomotion. It is suggested that quantitatively equal cell adhesion values may, depending on the type of attraction forces working in adhesion to the substratum, result in different locomotion patterns.  相似文献   

13.
The role of curli expression in attachment of Escherichia coli O157:H7 to glass, Teflon, and stainless steel (SS) was investigated through the creation of csgA knockout mutants in two isolates of E. coli O157:H7. Attachment assays using epifluorescence microscopy and measurements of the force of adhesion of bacterial cells to the substrates using atomic force microscopy (AFM) force mapping were used to determine differences in attachment between wild-type (wt) and csgA-negative (ΔcsgA) strains following growth in four different media. The hydrophobicity of the cells was determined using contact angle measurements (CAM) and bacterial adhesion to hydrocarbons (BATH). The attachment assay results indicated that ΔcsgA strains attached to glass, Teflon, and SS surfaces in significantly different numbers than their wt counterparts in a growth medium-dependent fashion (P < 0.05). However, no clear correlation was seen between attachment numbers, surface type, or growth medium. No correlation was seen between BATH and CAM results (R(2) < 0.70). Hydrophobicity differed between the wt and ΔcsgA in some cases in a growth medium- and method-dependent fashion (P < 0.05). AFM force mapping revealed no significant difference in the forces of adhesion to glass and SS surfaces between wt and ΔcsgA strains (P > 0.05) but a significantly greater force of adhesion to Teflon for one of the two wt strains than for its ΔcsgA counterpart (P < 0.05). This study shows that CsgA production by E. coli O157:H7 may alter attachment behavior in some environments; however, further investigation is required in order to determine the exact relationship between CsgA production and attachment to abiotic surfaces.  相似文献   

14.
Self-assembling oligopeptides are novel materials with potential bioengineering applications; this paper explores the use of one of these oligopeptides, EAK 16 II, for modifying the surface properties of cell-supporting substrates. To characterize the surface properties, thermodynamic measurements of liquid contact angle and surface free energy were correlated to atomic force microscopy (AFM) observations. A critical concentration of 0.1 mg/ml was found necessary to completely modify the surface properties of the substrate with EAK 16 II. Adhesion of a yeast cell, Candida utilis, was modified by the coating of EAK 16 II on both hydrophobic (plastic) and hydrophilic (glass) surfaces: Cell coverage was slightly enhanced on the glass substrate, but decreased significantly on the plastic substrate. This indicates that the yeast cell adhesion was mainly determined via hydrophobic interactions between the substrate and the cell wall. However, on the EAK 16 II modified glass substrate, surface roughness might be a factor in causing a slightly larger cell adhesion than that on bare glass. The morphology of adhered cells was also obtained with AFM imaging, showing a depression at the center of the cell on all substrates. Small depressions on the oligopeptide-coated surfaces and plastic substrate may indicate good water-retaining ability by the cell. There was no apparent difference in cell adhesion and morphology among cells obtained from lag, exponential and stationary growth phases.  相似文献   

15.
Aims: The surfaces of spores from a Geobacillus sp. isolated from a milk powder production line were examined to obtain fundamental information relevant to bacterial spore adhesion to materials. Materials and Results: The surfaces of spores were characterized using transmission electron microscopy and infrared spectroscopy. Thin sections of spores stained with ruthenium red revealed an exosporium with a hair‐like nap around the spores. Attenuated total reflection infrared spectra of the spores exposed to different pH solutions on a ZnSe prism revealed that pH‐sensitive carboxyl and phosphodiester groups associated with proteins and polysaccharides contributed to the spore’s negative charge which was revealed by our previous zeta potential measurements on the spores. Lowering the pH to the isoelectric point of spores resulted in an increase in intensity of all spectral bands, indicating that the spores moved closer to the zinc selenide (ZnSe) surface as the charged surface groups were neutralized and the spore surface polymers compressed. The attachment of spores to stainless steel was threefold higher at pH 3 compared with pH 7. Conclusions: This research showed that spore attachment to surfaces is influenced by electrostatic interactions, surface polymer conformation and associated steric interactions. Significance and Impact of the Study: The adhesion of thermophilic spores is largely controlled by functional groups of surface polymers and polymer conformation.  相似文献   

16.
Spores newly released from plurilocular sporangia of Ectocarpus siliculosus (Dillw.) Lyngb. sporophytes were assayed for chemotaxis to nutrients and for settlement stimulation by nutrients. To enable these measurements with relatively small volumes and numbers of released spores, we developed a computer-assisted motion-analysis assay for spore chemotaxis and verified the results with a more standard, capillary tube chemotaxis assay. The presence of a nutrient gradient did not influence the swimming behavior of E. siliculosus spores in the motion-analysis assay, and likewise no chemotactic effect was measured in the capillary tube assay. Microplate settlement assays previously utilized with bacteria and invertebrates were adapted for use with algal spores. E. siliculosus spores settled at higher rates on a hydrophobic plastic surface than on surfaces with either positively or negatively charged hydrophilic coatings. Nutrient mixtures had no effect on the rate of spore settlement on hydrophobic surfaces.  相似文献   

17.
Previous studies have described both surface morphology and adhesive properties of fungal spores, but little information is currently available on their mechanical properties. In this study, atomic force microscopy (AFM) was used to investigate both surface topography and micromechanical properties of Aspergillus nidulans spores. To assess the influence of proteins covering the spore surface, wild-type spores were compared with spores from isogenic rodA(+) and rodA(-) strains. Tapping-mode AFM images of wild-type and rodA(+) spores in air showed characteristic "rodlet" protein structures covering a granular spore surface. In comparison, rodA(-) spores were rodlet free but showed a granular surface structure similar to that of the wild-type and rodA(+) spores. Rodlets were removed from rodA(+) spores by sonication, uncovering the underlying granular layer. Both rodlet-covered and rodlet-free spores were subjected to nanoindentation measurements, conducted in air, which showed the stiffnesses to be 110 +/- 10, 120 +/- 10, and 300 +/- 20 N/m and the elastic moduli to be 6.6 +/- 0.4, 7.0 +/- 0.7, and 22 +/- 2 GPa for wild-type, rodA(+) and rodA(-) spores, respectively. These results imply the rodlet layer is significantly softer than the underlying portion of the cell wall.  相似文献   

18.
The putative functions and functional efficiencies of periodic nanostructures on the surface of cicada wings have been investigated by atomic force microscopy (AFM) used as a tool for imaging, manipulation, and probing of adhesion. The structures consist of hexagonal close-packed protrusions with a lateral spacing of ∼200 nm and may have multiple functionalities. Not only do the structures confer survival value by virtue of camouflage, but they may also serve as antiwetting and self-cleaning surfaces and thus be resistant to contamination. These effects have been demonstrated by exposure to white light, liquid droplets, and AFM adhesion measurements. The dependence of optical reflectivity and surface adhesion on surface topography has been demonstrated using AFM as a nanomachining tool as well as an imaging and force-sensing probe. The intact arrays display exceptionally low adhesion for particles in the size range 20 nm-40 μm. The particles can be removed from the array by forces in the range 2-20 nN; conversely, forces in the range 25-230 nN are required to remove identical particles from a flat hydrophilic surface (i.e., polished Si). Measurements of contact angles for several liquids and particle adhesion studies show that the wing represents a low-surface-energy membrane with antiwetting properties. The inference is that a combination of chemistry and structure constitutes a natural technology for conferring resistance to contamination.  相似文献   

19.
20.
Adhesion of bacteria occurs on virtually all natural and synthetic surfaces and is crucial for their survival. Once they are adhering, bacteria start growing and form a biofilm, in which they are protected against environmental attacks. Bacterial adhesion to surfaces is mediated by a combination of different short- and long-range forces. Here we present a new atomic force microscopy (AFM)-based method to derive long-range bacterial adhesion forces from the dependence of bacterial adhesion forces on the loading force, as applied during the use of AFM. The long-range adhesion forces of wild-type Staphylococcus aureus parent strains (0.5 and 0.8 nN) amounted to only one-third of these forces measured for their more deformable isogenic Δpbp4 mutants that were deficient in peptidoglycan cross-linking. The measured long-range Lifshitz-Van der Waals adhesion forces matched those calculated from published Hamaker constants, provided that a 40% ellipsoidal deformation of the bacterial cell wall was assumed for the Δpbp4 mutants. Direct imaging of adhering staphylococci using the AFM peak force-quantitative nanomechanical property mapping imaging mode confirmed a height reduction due to deformation in the Δpbp4 mutants of 100 to 200 nm. Across naturally occurring bacterial strains, long-range forces do not vary to the extent observed here for the Δpbp4 mutants. Importantly, however, extrapolating from the results of this study, it can be concluded that long-range bacterial adhesion forces are determined not only by the composition and structure of the bacterial cell surface but also by a hitherto neglected, small deformation of the bacterial cell wall, facilitating an increase in contact area and, therewith, in adhesion force.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号