首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Native cytochrome b5 interacts with either RLM5 or LM2 to form tight equimolar complexes (Kd = 250 and 540 nM, respectively) in which the content of high spin cytochrome P-450 was substantially increased. Cytochrome b5 caused 3- and 7-fold increases in the binding affinities of RLM5 and LM2 for benzphetamine, respectively, and benzphetamine decreased the apparent Kd for cytochrome b5 binding. Upon formation of the ternary complex between cytochromes P-450, b5, and benzphetamine the percentage of cytochrome P-450 in the high spin state was increased from 28 to 74 (RLM5) and from 9 to 85 (LM2). Cytochrome b5 caused 13- and 7-fold increases in the rate of RLM5- and LM2-dependent p-nitroanisole demethylation, respectively. Amino-modified (ethyl acetimidate or acetic anhydride) cytochrome b5 produced results similar to those obtained above with native cytochrome b5. In contrast, modification of as few as 5 mol of carboxyl groups/mol of amidinated cytochrome b5 resulted in both a substantial loss of the spectrally observed interactions with either cytochrome P-450 LM2 or cytochrome P-450 RLM5, and in a loss of the cytochrome b5-mediated stimulation of p-nitroanisole demethylation catalyzed by either monooxygenase. In further studies, native and fully acetylated cytochromes b5 reoxidized carbonmonoxy ferrous LM2 at least 20 times faster than amidinated, carboxyl-modified cytochrome b5 derivatives. In contrast, amidination, or acetylation of amino groups, or amidination of amino groups plus methylamidination of the carboxyl groups did not appreciably slow the rate of reduction of the cytochrome b5 by NADPH-cytochrome P-450 reductase. Collectively, the results provide strong evidence for an essential role of cytochrome b5 carboxyl groups in functional interactions with RLM5 and LM2.  相似文献   

2.
The hydroxylation of prostaglandin (PG) E1, PGE2, and PGA1 was investigated in a reconstituted rabbit liver microsomal enzyme system containing phenobarbital-inducible isozyme 2 or 5,6-benzoflavone-inducible isoenzyme 4 of P-450, NADPH-cytochrome P-450 reductase, phosphatidylcholine, and NADPH. Significant metabolism of prostaglandins by isozyme 2 occurred only in the presence of cytochrome b5. Under these conditions, PGE1 hydroxylation was linear with time (up to 45 min) and protein concentration, and maximal rates were obtained with a 1:1:2 molar ratio of reductase: cytochrome b5:P-450LM2. Moreover, P-450LM2 catalyzed the conversion of PGE1, PGE2, and PGA1 to the respective 19- and 20-hydroxy metabolites in a ratio of about 5:1, and displayed comparable activities toward the three prostaglandins based on the total products formed in 60 min. Apocytochrome b5 or ferriheme could not substitute for intact cytochrome b5, while reconstitution of apocytochrome b5 with ferriheme led to activities similar to those obtained with the native cytochrome. Isozyme 4 of P-450 differed markedly from isozyme 2 in that it catalyzed prostaglandin hydroxylation at substantial rates in the absence of cytochrome b5, was regiospecific for position 19 of all three prostaglandins, and had an order of activity of PGA1 greater than PGE1 greater than PGE2. P-450LM4 preparations from untreated and induced animals had similar activities with PGE1 and PGE2, respectively. Addition of cytochrome b5 resulted in a 20 to 30% increase in the rate of PGE1 hydroxylation and an appreciably greater enhancement in the extent of all the P-450LM4-catalyzed reactions, the stimulation being greatest with PGE2 (3-fold) and least with PGA1 (1.6-fold). Cytochrome b5 was thus required for maximal metabolism of all three prostaglandins, but did not alter the regiospecificity or the order of activity of P-450 isozyme 4 with the individual substrates. In the presence of cytochrome b5, the prostaglandin hydroxylase activities of isozyme 4 were two to six times higher than those of isozyme 2.  相似文献   

3.
Lipophilic thiol compounds interact spectrally with liver microsomes from phenobarbital-pretreated rats by formation of unusual optical difference spectra with peaks at 378, 471, 522 and 593 nm in the oxidized state. The binding kinetics were biphasic. The EPR spectrum of cytochrome P-450 was slightly modified but the magnitude of the low-spin signal was unchanged. n-Octanethiol competitively displaced metyrapone and n-octane from the active site of cytochrome P-450. Other thiols behaved similarly with variations in the magnitude and the affinity of the binding process. Tertiary thiols caused the formation of the high-spin cytochrome P-450 substrate complex, and model studies with myoglobin revealed that steric hindrance prevented the liganding of the tertiary thiol group to the ferric cytochrome P-450. Addition of thiols to dithionite reduced microsomes resulted in relatively small spectral changes with maxima at 449 nm typical for ligand complexes of the ferrous cytochrome. It was concluded that lipophilic thiols can be bound as ligands by at least two species of oxidized cytochrome P-450 which represent, however, not more than about one fifth of the total cytochrome P-450 content in liver microsomes from phenobarbital-pretreated rats.  相似文献   

4.
Water-soluble carbodiimide-catalyzed cross-linking of purified cytochrome P-450 LM2, cytochrome b5, and NADPH-cytochrome P-450 reductase was used to identify stable complexes formed between these proteins. High yields of P-450-b5 and P-450 reductase-b5 dimers, and lower yields of P-450 reductase-LM2 dimers were obtained. Substitution of native b5 and P-450 reductase with fully amidinated derivatives showed that LM2 and b5 were cross-linked exclusively through their respective amino and carboxyl groups. However, there appeared to be two complexation sites on the reductase which cross-link to b5 through amino groups and to LM2 through carboxyl groups respectively. A heterotrimer could not be identified following incubation of all three proteins together with EDC.  相似文献   

5.
A novel human liver cytochrome P-450 isozyme (P-450-AA), which catalyzes arachidonic acid epoxidation, has been purified to electrophoretic homogeneity from human liver. As judged spectrally, the newly described isozyme is low spin in the oxidized state, with a soret band at 415 nm and an increased maximum at 451 nm in the CO-difference spectrum. Cytochrome P-450-AA appeared homogeneous as judged by the appearance of a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an estimated molecular weight of 53,100. Although cytochrome P-450-AA had a relatively low specific content of 10.8 nmol/mg, it possessed a high activity of arachidonic acid epoxidation. The P-450-AA oxidized arachidonic acid in a reconstituted system into the four regioisomeric epoxyeicosatrienoic acids (EETs) (5, 6-, 8, 9-, 11, 12-, 14, 15-EETs) at a rate of 2,010 pmol/nmol/min, a rate which is 37-fold higher than that observed with the crude microsomal preparation. Moreover, the purified cytochrome P-450-AA catalyzed the de-ethylation of 7-ethoxyresorufin at the rate of 2970 pmol/nmol/min, whereas other cytochrome P-450-dependent reactions were carried out at 23-2,000-fold lower rates and ranged between 0.3-130 pmol/nmol/min. The amino acid composition is different from that of other cytochrome P-450 isozymes. The NH2-terminal sequence of 20-amino acid residues was compared to that of LM2 and PB2-B2, the phenobarbital-induced forms in rabbit and rats, respectively. Comparison was also made with two forms of human cytochrome P-450, HLc and HLd. There were 7/20 identical residues for P-450-AA and LM2 and 4/20 for P-450-AA and PB2-B2. There were 2/20 identical residues for P-450-AA and HLd, and no identical residues were found for HLc. We conclude that the biologically active EETs, are formed by a distinct and unique P-450 isozyme from human liver and that arachidonic acid can serve as a screen for detection of the novel P-450 isozyme.  相似文献   

6.
A protein-protein association of cytochrome P-450 LM2 with NADPH-cytochrome P-450 reductase, with cytochrome b5, and with both proteins was demonstrated in reconstituted phospholipid vesicles by magnetic circular dichroism difference spectra. A 23% decrease in the absolute intensity of the Soret band of the magnetic CD spectrum of cytochrome P-450 was observed when it was reconstituted with reductase. A difference spectrum corresponding to a 7% decrease in absolute intensity was obtained when cytochrome b5 was incorporated into vesicles that already contained cytochrome P-450 and cytochrome P-450 reductase compared to a decrease of 13% in absolute intensity when cytochrome b5 was incorporated into vesicles that contained only cytochrome P-450. The use of the magnetic circular dichroism confirmed that protein-protein associations that have been detected by absorption spectroscopy between purified and detergent-solubilized proteins also exist in membranes. High ionic strength was shown to interrupt direct electron flow from cytochrome P-450 reductase to cytochrome P-450 but not the electron flow from reductase through cytochrome b5 to cytochrome P-450. Upon incorporation of cytochrome b5 into cytochrome P-450- and cytochrome P-450 reductase-containing vesicles, an increase of benzphetamine N-demethylation activity was observed. The magnitude of this increase was numerically identical to the residual activity of the reconstituted vesicles measured in the presence of 0.3 M KCl. It is concluded that there is a requirement for at least one charge pairing for electron transfer from reductase to cytochrome P-450. These observations are combined in a proposed mechanism of coupled reversible association reactions in the membrane.  相似文献   

7.
Cytochrome P-450-dependent prostaglandin omega-hydroxylation is induced over 100-fold during late gestation in rabbit pulmonary microsomes (Powell, W.S. (1978) J. Biol. Chem. 253, 6711-6716). Purification of cytochromes P-450 from lung microsomes of pregnant rabbits yielded three fractions. Two of these fractions correspond to rabbit lung P-450I (LM2) and P-450II (LM5), which together constitute 70-97% of total cytochrome P-450 in lung microsomes from nonpregnant rabbits. The third form, which we designate rabbit cytochrome P-450PG-omega, regioselectively hydroxylates prostaglandins at the omega-position in reconstituted systems with a turnover of 1-5 min-1. Titration with purified pig liver cytochrome b5, demonstrated a 4-fold maximum stimulation at a cytochrome b5 to a P-450 molar ratio of 1-2. Rabbit lung P-450PG-omega formed a typical type I binding spectrum upon the addition of prostaglandin E1 with a calculated K8 of 1 microM, which agreed reasonably well with the kinetically calculated Km of 3 microM. Cytochrome P-450PG-omega was isolated as a low-spin isozyme with a lambda max (450 nm) in the CO-difference spectrum distinguishable from P-450I (451 nm) and P-450II (449 nm). Sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis demonstrated that although purified P-450PG-omega had a relatively low specific content (12.1 nmol mg-1), it appeared homogeneous with a calculated minimum Mr of 56,000, intermediate between rabbit LM4 and LM6. When lung microsomes from pregnant and nonpregnant rabbit were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, a protein band, with a Mr identical to P-450PG-omega, was observed in the pregnant rabbit, whereas this band appeared to be very faint or absent in microsomes from the nonpregnant rabbit. Purification of cytochromes P-450 from nonpregnant rabbit lung yielded only P-450I and P-450II. P-450PG-omega appears to be a novel rabbit P-450, possessing high activity towards omega-hydroxylation of prostaglandins, and is greatly induced during pregnancy in rabbit lung.  相似文献   

8.
Reduction of cytochrome P-450S21 (SF) (SF, substrate-free; purified from bovine adrenocortical microsomes) with sodium dithionite (Na2S2O4) in the presence of phenylisocyanide produced a ferrous cytochrome P-450S21 (SF)-phenylisocyanide complex with Soret absorbance maxima at 429 and 456 nm. On the other hand, when a preformed ferric cytochrome P-450S21 (SF)-NADPH-cytochrome-P-450 reductase (Fp2) complex was reduced chemically or enzymatically under the same conditions, the absorbance spectrum of the ferrous cytochrome P-450S21 (SF)-phenylisocyanide complex changed drastically, as characterized by an increase in absorbance intensity at 429 nm and a decrease at 456 nm. Similar spectral changes were observed by addition of reduced Fp2 to the preformed ferrous cytochrome P-450S21 (SF)-phenylisocyanide complex. Experiments to reduce a ferric cytochrome P-450S21 (SF)-phenylisocyanide complex with sodium dithionite in the presence of various amounts of Fp2 showed that; (1), the spectral change reached maxima for both absorption increase at 429 nm and decrease at 456 nm when cytochrome P-450S21 and Fp2 were previously mixed at the cytochrome P-450S21:Fp2 ratio of 1:5; (2), the spectral change was suppressed in 300 mM potassium phosphate buffer (pH 7.4). These results suggest that the absorbance spectral change is due to a conformational change around the heme moiety induced by association with reduced Fp2.  相似文献   

9.
M Tsubaki  Y Ichikawa  Y Fujimoto  N T Yu  H Hori 《Biochemistry》1990,29(37):8805-8812
Cytochrome P-45011 beta was purified as the 11-deoxycorticosterone-bound form from bovine adrenocortical mitochondria and its active site was investigated by resonance Raman and EPR spectroscopies. Resonance Raman spectra of the purified sample revealed that the heme iron adopts the pure pentacoordinated ferric high-spin state on the basis of the nu 10 (1629cm-1) and nu 3 (1490 cm-1) mode frequencies, which are higher than those of the hexacoordinated ferric high-spin cytochrome P-450scc-substrate complexes. In the ferrous-CO state, a Fe2(+)-CO stretching mode was identified at 481.5 cm-1 on the basis of an isotopic substitution technique; this frequency is very close to that of cytochrome P-450scc in the cholesterol-complexed state (483 cm-1). The EPR spectra of the purified sample at 4.2 K showed ferric high-spin signals (at g = 7.98, 3.65, and 1.71) that were clearly distinct from the cytochrome P-450scc ferric high-spin signals (g = 8.06, 3.55, and 1.68) and confirmed previous assignments of ferric high-spin signals in adrenocortical mitochondria. The EPR spectra of the nitric oxide (NO) complex of ferrous cytochrome P-45011 beta showed EPR signals with rhombic symmetry (gx = 2.068, gz = 2.001, and gy = 1.961) very similar to those of the ferrous cytochrome P-450scc-NO complex in the presence of 22(S)-hydroxycholesterol and 20(R),22-(R)-dihydroxycholesterol at 77 K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Procedures are described for the isolation of two forms of rabbit liver microsomal liver microsomal cytochrome P-450 (P-450LM) in homogeneous state. They are designated by their relative electrophoretic mobilities on polyacrylamide gel in the presence of sodium dodecyl sulfate as P-450LM2 and P-450LM4. P-450LM2, which was isolated from phenobarbital-induced animals, has a subunit molecular weight of 48,700. The best preparations contain 20 nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. P-450LM4, which is induced by beta-naphthoflavone but is also present in phenobarbital-induced and untreated animals, was isolated from all three sources and found to have a subunit molecular weight of 55,300. The best preparations contain 17nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. Some of the purified preparations of the cytochromes, although electrophoretically homogeneous, contain apoenzyme due to heme loss during purification. The purified proteins contain no detectable NADPH-cytochrome P-450 reductase, cytochrome b5, or NADH-cytochrome b5 reductase, and only low levels of phospholipid (about 1 molecule per subunit). Amino acid analysis indicated that P-450LM2 and P-450LM4 are similar in composition, but the latter protein has about 60 additional residues. The COOH-terminal amino acid of P-450LM2 is arginine, as shown by carboxypeptidase treatment, whereas that of P-450LM4 is lysine. NH2-terminal amino acid residues could not be detected. Carbohydrate analysis indicated that both cytochromes contain 1 residue of glucosamine and 2 of mannose per polypeptide subunit. The optical spectra of the oxidized and reduced cytochromes and carbon monoxide complexes were determined. Oxidized P-450LM2 has maxima at 568, 535, and 418 nm characteristic of a low spin hemeprotein, and P450LM4 from beta-naphthoflavone-induced, phenobarbital-induced, or control microsomes has maxima at 645 and 394 nm, characteristic of the high spin state. The spectrum of -450lm4 becomes similar to that of P-450LM2 at high protein concentrations or upon the addition of detergent (Renex), whereas the spectrum of P-450LM2 is unaffected by the protein concentration or the presence of detergent. Electron paramagnetic resonance spectrometry of the purified cytochromes indicated that oxidized -450lm2 is in the low spin state, whereas P-450LM4 is largely, but not entirely, in the high spin state.  相似文献   

11.
The zwitterionic detergent 3-(3-cholamidopropyl)-dimethylammonio-1-propanesulfonate (CHAPS) supports reconstituted cyclohexane hydroxylase activity of cytochrome P-450LM2 and NADPH-cytochrome reductase purified from phenobarbital-induced rabbit liver. Maximum activity (approximately 50% of that with phospholipid) was observed at 2 mM CHAPS. Inhibition took place at higher CHAPS, until at 20 mM CHAPS, no cyclohexane hydroxylase activity was observed. There was little denaturation of the two enzymes under these conditions. At 2 mM CHAPS, P-450LM2 was pentameric (Mr = 250,000) and reductase was dimeric (Mr = 139,500) by sedimentation equilibrium. P-450 was monomeric in 20 mM CHAPS. In addition, a stable complex between the two enzymes was not detected under conditions of maximum activity, even in the presence of saturating substrate. This confirms our previous conclusion that a stable complex between cytochrome P-450LM2 and NADPH-cytochrome P-450 reductase is not a prerequisite for reconstituted xenobiotic hydroxylation (Dean, W. L., and Gray, R. D. (1982) J. Biol. Chem. 257, 14679-14685). Difference spectra of ferric P-450LM2 revealed that below 5 mM CHAPS, the high spin form of the cytochrome was slightly stabilized, while higher CHAPS levels stabilized the low spin form. Monomeric P-450LM2 formed with 20 mM CHAPS catalyzed the hydroxylation of toluene by cumene hydroperoxide. Thus, the reason that monomeric cytochrome P-450LM2 was inactive in NADPH-supported hydroxylation may either be because the bound detergent blocked productive interaction of the cytochrome with reductase or the monomer may be intrinsically incapable of interaction with reductase.  相似文献   

12.
Cytochrome P-450 LM2 purified from rabbit liver microsomes has been shown to be a substrate for cAMP-dependent protein kinase. Cytochrome b5, in contrast, was a very poor substrate for cAMP-dependent protein kinase, although it stimulated the activity of the kinase toward histone. When purified rabbit cytochrome b5 was mixed with purified LM2, phosphorylation of LM2 by cAMP-dependent protein kinase was inhibited approximately 80-90%. Recently, a functional covalent complex of cytochrome b5 and LM2 was prepared and purified to homogeneity (P.P. Tamburini and J.B. Schenkman (1987) Proc. Natl. Acad. Sci. USA 84, 11-15). When present as a covalent complex with cytochrome b5, the phosphorylation of LM2 in the complex by cAMP-dependent protein kinase was also inhibited about 80-90% relative to an equivalent amount of LM2 alone. On the other hand, when the LM2 was phosphorylated prior to interaction with cytochrome b5, the ability of the latter to perturb the spin equilibrium of LM2 and oxidation of p-nitroanisole by the LM2 was diminished to an extent comparable to the degree of phosphorylation. The results suggest either that the phosphorylation site on LM2 may be within the cytochrome b5 binding site or that phosphorylation and cytochrome b5 cause mutually exclusive conformational changes in LM2. In addition, eight different forms of cytochrome P-450 from the rat (RLM2, RLM3, fRLM4, RLM5, RLM5a, RLM5b, RLM6, and PBRLM5) were examined as potential substrates for cAMP-dependent protein kinase under the same conditions. Maximal phosphorylation of about 20 mol% was obtained with LM2, and about half as much with PBRLM5. The low extent of phosphorylation of LM2 was not due to the prior presence of phosphate on the enzyme since LM2, as isolated, contains less than 0.1 mol phosphate/mol of enzyme. The other forms of cytochrome P-450 tested showed little or no phosphorylation in vitro despite the presence of a cAMP-dependent protein kinase phosphorylation sequence on at least two of them.  相似文献   

13.
Some new relations between cytochrome P-450-dependent monooxygenases were discovered. Cytochrome b5, a representative of "microsomal" monooxygenases, was shown to form a highly specific complex with cytochrome P-450scc, a member of the "ferredoxin" monooxygenase family. This interaction is characterized by a dissociation constant, Kd, of 0.28 microM. The cytochrome P-450scc-cytochrome b5 complex may be cross-linked with water-soluble carbodiimide. Using proteolytic modification of cytochrome b5, it was shown that both hydrophilic and hydrophobic fragments of cytochrome b5 are involved in the interaction with cytochrome P-450scc. Cytochrome b5 immobilized via amino groups is an effective affinity matrix for cytochrome P-450scc purification. The role of some amino acid residues in cytochrome P-450scc interaction with cytochrome b5 was studied. The role and the nature of complexes in cytochrome P-450-dependent monooxygenases as well as interrelationships between "microsomal" and "ferredoxin" monooxygenases are discussed.  相似文献   

14.
The mechanism of the inactivation of the major phenobarbital-inducible isozyme of rat liver cytochrome P-450 (P-450 PB-B2) by chloramphenicol has been investigated. Preparations of the enzyme from animals treated in vivo with chloramphenicol (CAP PB-B2) have been isolated, and their catalytic, spectral, and physical properties have been compared with those of the native PB-B2. The CAP PB-B2 exhibited: 1) a 60-70% loss in the rate of NADPH-supported monooxygenase activity with the substrates benzphetamine, 7-ethoxycoumarin, and p-nitroanisole; 2) a 60% decrease in the extent of enzymatic P-450 reduction catalyzed by NADPH-cytochrome P-450 reductase under both aerobic and anaerobic conditions; 3) a 60% decrease in the steady-state level of the ferrous dioxygen complex in the presence of substrates; 4) a 60% decrease in the magnitude of the type I spectral change induced by benzphetamine; and 5) a shift in the wavelength maximum for the chemically reduced ferrous-carbonyl complex from 450 to 451.5 nm. On the other hand, the ability of the CAP PB-B2 to catalyze the iodosobenzene-supported metabolism of 7-ethoxycoumarin and p-nitroanisole was unaltered. The results are consistent with a scheme whereby the binding of metabolites of chloramphenicol to amino acid residues in the PB-B2 close to the heme moiety blocks electron transport from NADPH-cytochrome P-450 reductase, thereby leading to a loss of monooxygenase activity.  相似文献   

15.
T Shimizu  T Nozawa  M Hatano  Y Imai  R Sato 《Biochemistry》1975,14(19):4172-4178
Magnetic circular dichroism (MCD) spectra have been measured for cytochrome P-450 (P-450) purified from phenobarbital-induced rabbit liver microsomes. The temperature dependence of some of the MCD spectra has also been determined. The MCD spectrum of oxidized P-450 seems to suggest that it is in a state intermediate between the ferric low-spin states. Model experiments suggest that this anomaly arises from the coordination of a thiolate anion to the heme. Reduced P-450 shows a very peculiar MCD spectrum; the spectrum as well as its temperature dependence suggest that the heme in reduced P-450 is a "mixture" in terms of redox and/or spin states. The MCD spectrum of the CO complex of reduced P-450 exhibits an apparent Faraday A term around 450 nm which consists of about 50% C term and 50% the other terms, indicating that it is not in a purely ferrous low-spin state. The CO complex of reduced cytochrome P-420 (P-420), on the other hand, shows an MCD spectrum characteristic of a ferrous low-spin heme. It is suggested from model experiments that the thiolate anion coordinates to the heme trans to CO in the P-450-CO complex. The Soret region of the MCD spectrum of the EtNC complex of reduced P-450 is characterized by two apparent A terms around 430 and 455 nm, whereas that of the corresponding complex of P-420 has only one apparent A term around 434 nm.  相似文献   

16.
A procedure was developed for the purification of an acetone-inducible form of cytochrome P-450 (P-450ac) to electrophoretical homogeneity from liver microsomes of acetone-treated rats. The P-450ac preparation containing 16.0 to 16.5 nmol P-450/mg protein moved as a single protein band with an estimated molecular weight of 52,000 upon gel electrophoresis in the presence of sodium dodecyl sulfate. The ferric P-450ac showed an absorption maximum at 394 nm at 25 degrees C, suggesting that it exists mainly in the high-spin form. It also existed in the low-spin form, especially at lower temperatures, as indicated by the absorption maximum in the 412-nm region. Upon reconstitution with NADPH: cytochrome P-450 reductase and phospholipid, P-450ac efficiently catalyzed both the demethylation and denitrosation of N-nitrosodimethylamine (NDMA) showing Vmax values of 23.8 and 2.3 nmol min-1 nmol P-450-1, respectively. The catalytic activity of P-450ac was greatly affected by cytochrome b5 which decreased the Km values of these reactions by a factor of 10 and increased the Vmax values. Cytochrome b5 appeared to interact with P-450 at a molar ratio of 1:1 and an intact cytochrome b5 structure was required for such interaction. Among the substrates studied, the demethylation of NDMA was affected the most by cytochrome b5 and showed the highest rate. P-450ac also catalyzed the oxygenation of N-nitrosomethylethylamine and aniline and the activity was enhanced slightly by cytochrome b5. Cytochrome b5 did not enhance the P-450ac-catalyzed metabolism of other drug substrates such as benzphetamine, aminopyrine, and ethylmorphine. P-450ac appeared to be similar in property to the previously studied rat P-450et (ethanol-inducible), rat P-450j (isoniazid-inducible), and rabbit P-450LM3a (ethanol-inducible). These P-450 species represent a new class of P-450 isozymes that are important in the metabolism of many endobiotics and xenobiotics.  相似文献   

17.
The isozymes 2 and 4 of rabbit microsomal cytochrome P-450 (LM2, LM4) have been studied by resonance Raman spectroscopy. Based on high quality spectra, a vibrational assignment of the porphyrin modes in the frequency range between 100-1700 cm-1 is presented for different ferric states of cytochrome P-450 LM2 and LM4. The resonance Raman spectra are interpreted in terms of the spin and ligation state of the heme iron and of heme-protein interactions. While in cytochrome P-450 LM2 the six-coordinated low-spin configuration is predominantly occupied, in the isozyme LM4 the five-coordinated high-spin form is the most stable state. The different stability of these two spin configurations in LM2 and LM4 can be attributed to the structures of the active sites. In the low-spin form of the isozymes LM4 the protein matrix forces the heme into a more rigid conformation than in LM2. These steric constraints are removed upon dissociation of the sixth ligand leading to a more flexible structure of the active site in the high-spin form of the isozyme LM4. The vibrational modes of the vinyl groups were found to be characteristic markers for the specific structures of the heme pockets in both isozymes. They also respond sensitively to type-I substrate binding. While in cytochrome P-450 LM4 the occupation of the substrate-binding pocket induces conformational changes of the vinyl groups, as reflected by frequency shifts of the vinyl modes, in the LM2 isozyme the ground-state conformation of these substituents remain unaffected, suggesting that the more flexible heme pocket can accommodate substrates without imposing steric constraints on the porphyrin. The resonance Raman technique makes structural changes visible which are induced by substrate binding in addition and independent of the changes associated with the shift of the spin state equilibrium: the high-spin states in the substrate-bound and substrate-free enzyme are structurally different. The formation of the inactive form, P-420, involves a severe structural rearrangement in the heme binding pocket leading to drastic changes of the vinyl group conformations. The conformational differences of the active sites in cytochromes P-450 LM2 and LM4 observed in this work contribute to the understanding of the structural basis accounting for substrate and product specificity of cytochrome P-450 isozymes.  相似文献   

18.
Spin state transitions of membrane-bound cytochrome P-450 were investigated by difference spectrophotometry using the 'D'-charge transfer absorbance band at 645 nm as a measure of the amount of hemin iron present in the 5-coordinated state. The magnitude of the 'D'-absorbance band in the absence of exogenous substrates, e.g., the concentration of native high spin cytochrome P-450, was evaluated from the difference in absorbance at 645 nm between ferric cytochrome P-450 and the carbon monoxide derivative of the pigment in its ferrous state. The contribution of the native high spin species to the total cytochrome P-450 content of microsomes was calculated to be between 40% and 65% after induction with phenobarbital and polycyclic hydrocarbons, respectively. Up to 80% of the cytochrome P-450 was found to be present in the high spin state after the addition of exogenous substrates. Further, the steady state concentrations of high spin cytochrome P-450, observed in the presence of reduced pyridine nucleotides, suggest that the rate limiting step for microsomal mixed function oxidation reactions is variable and dependent on the substrate under investigation.  相似文献   

19.
Inactivation of cytochrome P-450 LM2 induced by hydrogen peroxide formed in the active site of the enzyme was studied. Catalase did not protect cytochrome P-450 LM2 from inactivation during its operation in a soluble reconstituted system. The hemoprotein inactivation in this system was found to depend on the ratio of hemo- to flavoproteins. It was demonstrated that cytochrome P-450 LM2 inactivation during catalysis is accompanied by cleavage of the hemoprotein molecule. It is probable that this fact plays a key role in regulation of enzyme decay.  相似文献   

20.
Highly specific antibodies against hemeprotein were obtained by immunizing rabbits with a highly purified cholesterol-hydroxylating cytochrome P-450scc from adrenocortical mitochondria. The antibodies do not specifically interact with other components of the adrenocortical electron transport chain, e. g., adrenodoxin reductase and adrenodoxin. Using double immunodiffusion technique (Ouchterlony method), it was shown that the antibodies did not precipitate the microsomal cytochromes P-450 LM2 and LM4, cytochrome b5 and 11 beta-hydroxylating cytochrome P-450 from adrenocortical mitochondria. Antibodies against cytochrome P-450scc inhibited the cholesterol side chain cleavage activity of cytochrome P-450scc in a reconstituted system. Limited proteolysis with trypsin and immunoelectrophoresis in the presence of specific antibodies revealed that antigenic determinants are present of the heme-containing catalytic domain of cytochrome P-450scc (F1) as well as on the domain responsible for the interaction with the phospholipid membrane (F2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号