共查询到20条相似文献,搜索用时 0 毫秒
1.
John Y.L. Chiang 《Archives of biochemistry and biophysics》1981,211(2):662-673
The interactions between purified microsomal cytochrome P-450 and cytochrome b5 has been demonstrated by aqueous two-phase partition technique. Major forms of cytochrome P-450 induced by phenobarbital (P-450LM2) and β-naphthoflavone (P-450LM4) are almost exclusively distributed in the dextran-rich bottom phase (partition coefficient, K = 0.06), whereas NADPH-cytochrome P-450 reductase and cytochrome b5 are mainly distributed in the polyethylene glycol-rich top phase (K = 3.5 and 2.5, respectively), when these enzymes were partitioned separately in the dextran-polyethylene glycol two-phase system. The mixing of P-450LM with cytochrome b5 changes the partition coefficients of both P-450LM and cytochrome b5 indicating that molecular interaction between P-450LM and cytochrome b5 occurred. Complex formation was also confirmed by optical absorbance difference spectral titration, and the stimulation of the P-450LM-dependent 7-ethoxycoumarin and p-nitrophenetole O-deethylase activities by equal molar quantity of detergent-solubilized cytochrome b5, but not trypsin-solubilized enzyme, in the reconstituted system. Cytochrome b5 decreases the Km's of both substrates for P-450LM2-dependent O-deethylations and increases the V's of both reactions by two- to three-fold. This stimulatory effect requires the presence of phospholipid in the reconstituted enzyme system. These results suggest that cytochrome b5 plays a role in some reconstituted drug oxidation enzyme systems and that molecular interactions among cytochrome P-450, reductase, and cytochrome b5 are catalytically competent in the electron transport reactions. 相似文献
2.
Hydroxylation of prostaglandins by inducible isozymes of rabbit liver microsomal cytochrome P-450. Participation of cytochrome b5 总被引:4,自引:0,他引:4
K P Vatsis A D Theoharides D Kupfer M J Coon 《The Journal of biological chemistry》1982,257(19):11221-11229
The hydroxylation of prostaglandin (PG) E1, PGE2, and PGA1 was investigated in a reconstituted rabbit liver microsomal enzyme system containing phenobarbital-inducible isozyme 2 or 5,6-benzoflavone-inducible isoenzyme 4 of P-450, NADPH-cytochrome P-450 reductase, phosphatidylcholine, and NADPH. Significant metabolism of prostaglandins by isozyme 2 occurred only in the presence of cytochrome b5. Under these conditions, PGE1 hydroxylation was linear with time (up to 45 min) and protein concentration, and maximal rates were obtained with a 1:1:2 molar ratio of reductase: cytochrome b5:P-450LM2. Moreover, P-450LM2 catalyzed the conversion of PGE1, PGE2, and PGA1 to the respective 19- and 20-hydroxy metabolites in a ratio of about 5:1, and displayed comparable activities toward the three prostaglandins based on the total products formed in 60 min. Apocytochrome b5 or ferriheme could not substitute for intact cytochrome b5, while reconstitution of apocytochrome b5 with ferriheme led to activities similar to those obtained with the native cytochrome. Isozyme 4 of P-450 differed markedly from isozyme 2 in that it catalyzed prostaglandin hydroxylation at substantial rates in the absence of cytochrome b5, was regiospecific for position 19 of all three prostaglandins, and had an order of activity of PGA1 greater than PGE1 greater than PGE2. P-450LM4 preparations from untreated and induced animals had similar activities with PGE1 and PGE2, respectively. Addition of cytochrome b5 resulted in a 20 to 30% increase in the rate of PGE1 hydroxylation and an appreciably greater enhancement in the extent of all the P-450LM4-catalyzed reactions, the stimulation being greatest with PGE2 (3-fold) and least with PGA1 (1.6-fold). Cytochrome b5 was thus required for maximal metabolism of all three prostaglandins, but did not alter the regiospecificity or the order of activity of P-450 isozyme 4 with the individual substrates. In the presence of cytochrome b5, the prostaglandin hydroxylase activities of isozyme 4 were two to six times higher than those of isozyme 2. 相似文献
3.
Studies on the mechanism of reduction of azo dye carcinogens by rat liver microsomal cytochrome P-450 总被引:1,自引:0,他引:1
This laboratory has described the azoreduction of p-dimethylaminoazobenzene (1c) by rat liver microsomal cytochrome P-450. To elucidate the mechanisms involved, the reduction of structurally related azobenzenes by hepatic microsomes was investigated. High substrate reactivity was observed for 1c, its corresponding secondary (1a) and primary (1b) amines and p-hydroxyazobenzene (1d). In contrast, only negligible rates were obtained for unsubstituted azobenzene (1g), hydrazobenzene (2g), p-isopropylazobenzene (1e) and 1f, the benzoylamide derivative of 1b. These results clearly indicate that electron-donating groups, such as hydroxyl or primary, secondary and tertiary amines, are essential for binding of azo dye carcinogens to liver microsomal cytochrome P-450 and, by implication, their enzymic reduction. No inhibition of azoreduction of 1c or 1d was obtained by addition of 1e, 1g, or 2g to the reaction mixture. In the presence of hepatic microsomes, a type I binding spectrum was obtained for 1d and type II binding spectra for 1a, 1b and 1c, the reactive azo dyes. In contrast, very weak binding was observed for the unreactive compounds 1e, 1f, 1g and 2g. Thus, there is good correlation between binding and substrate reactivity. The apparent lack of binding may explain the inability of the non-reactive compounds to inhibit azoreduction. The difference in the reduction rate observed for 1g vs. 1d suggested that hydroxylation would facilitate the reduction of an otherwise non-reactive azo dye. Support for such a mechanism was obtained in two experiments. In the first, marked facilitation of azoreduction of both the inactive compounds, 2g and 2f, was seen when they were incubated with microsomes under aerobic conditions where preliminary hydroxylation can occur. In the second, azobenzene was initially incubated aerobically with microsomes from phenobarbital- or beta-naphthoflavone-induced rats. The hydroxyazobenzene formed was then readily reduced anaerobically by microsomes from untreated rats. 相似文献
4.
Rabbit liver microsomal cytochrome P-450 was immobilized by entrapment in calcium alginate gel. Aminopyrine demethylation experiments showed that the immobilized enzyme system is highly active and exhibits an unimpaired functional stability as compared with crude microsomes. The alginate entrapped microsomes were employed in a fixed bed recirculation reactor, where aminopyrine was continuously demethylated. Such model enzyme reactor can be a useful tool for studying extracorporeal drug detoxification or preparative substrate conversion with microsomal enzyme systems. 相似文献
5.
6.
On the stoichiometry of the oxidase and monooxygenase reactions catalyzed by liver microsomal cytochrome P-450. Products of oxygen reduction 总被引:8,自引:0,他引:8
This laboratory has recently reported that, in a reconstituted enzyme system containing alcohol-induced isozyme 3a of liver microsomal cytochrome P-450, the sum of acetaldehyde generated by the monooxygenation of ethanol and of hydrogen peroxide produced by the NADPH oxidase activity is inadequate to account for the O2 and NADPH consumed. Studies on the stoichiometry have revealed the occurrence of an additional reaction involving an overall 4-electron transfer to molecular oxygen which is presumed to yield water: O2 + 2 NADPH + 2H+----2 H2O + 2 NADP+. The occurrence of a peroxidase reaction in which free H2O2 is reduced to water by NADPH was ruled out. When the 4-electron oxidase activity is taken into account, measurements of NADPH oxidation and O2 consumption are in accord with the amounts of products formed in the presence of various P-450 isozymes, either in the absence or presence of typical substrates, including those which undergo hydroxylation, N- or O-demethylation, or oxidation of hydroxymethyl to aldehyde groups. Of the substrates examined, some had no effect on the oxidase reaction yielding hydrogen peroxide or the 4-electron oxidase reaction, some were inhibitory, and some were stimulatory, but the same substrate did not necessarily have the same effect on the two reactions. 相似文献
7.
V L Tsuprun K N Myasoedova P Berndt O N Sograf E V Orlova A I Chernyak VYaArchakov V P Skulachev 《FEBS letters》1986,205(1):35-40
Cytochrome P-450LM2 was isolated from rabbit liver microsomes in a form which was shown to be homogeneous in AcA-22 Ultrogel and ultracentrifugation studies. The molecular mass determined by sedimentation equilibrium roughly corresponded to hexamer composed of 56 kDa monomers. Hexamer structure of the cytochrome was directly demonstrated by electron microscopic study. In the cytochrome P-450LM2 hexamer, monomers seem to be arranged in two layers (three monomers in the layer) in such a way that each monomer occupies a position at the vertices of a triangular antiprism with a 32 point group symmetry. 相似文献
8.
Spin state transitions of membrane-bound cytochrome P-450 were investigated by difference spectrophotometry using the 'D'-charge transfer absorbance band at 645 nm as a measure of the amount of hemin iron present in the 5-coordinated state. The magnitude of the 'D'-absorbance band in the absence of exogenous substrates, e.g., the concentration of native high spin cytochrome P-450, was evaluated from the difference in absorbance at 645 nm between ferric cytochrome P-450 and the carbon monoxide derivative of the pigment in its ferrous state. The contribution of the native high spin species to the total cytochrome P-450 content of microsomes was calculated to be between 40% and 65% after induction with phenobarbital and polycyclic hydrocarbons, respectively. Up to 80% of the cytochrome P-450 was found to be present in the high spin state after the addition of exogenous substrates. Further, the steady state concentrations of high spin cytochrome P-450, observed in the presence of reduced pyridine nucleotides, suggest that the rate limiting step for microsomal mixed function oxidation reactions is variable and dependent on the substrate under investigation. 相似文献
9.
V L Borovyagin I P Tarachovsky YuSKanaeva A V Karyakin G I Bachmanova A I Archakov 《Journal of ultrastructure research》1985,93(1-2):50-60
Thin sectioning and freeze-fracture electron microscopy have been used to show that it is possible to obtain topologically closed vesicles by means of reconstitution of rat liver microsomal membrane "ghosts." The reconstitution by 15 hr dialysis resulted in the formation of vesicles with intramembrane particles (IMP) while after 40 hr dialysis no IMP were observed in the membranes. The protein/lipid ratio and functional activity of NADPH- and NADH-linked enzyme systems were similar in both cases. Cytochrome P-450 (LM2) was incorporated into liposomes of different composition (protein: lipid ratio--1:200). IMP were observed only when the incorporation of cytochrome P-450 was performed in the presence of detergent Emulgen 913 as specific additive to the initial protein-lipid-sodium cholate mixture or in the course of incubation of proteoliposomal suspensions at 37 degrees C. After the incorporation of cytochrome b5 into azolectin liposomes vesicular membranes contain IMP if the incorporated membrane protein: lipid ratio is at least 1:50. Pronase-induced splitting off of a 11 kDa heme-containing fragment of cytochrome b5 did not affect IMP content. The conditions of IMP formation in reconstituted membranes and in microsomal ghosts are discussed. 相似文献
10.
The aerobic metabolism of benzphetamine by liver microsomes, during a cytochrome P-450-catalyzed mixed-function oxidation reaction, results in the formation of an easily detected spectral complex with an absorption band maximum at 456 nm. Electron paramagnetic resonance studies, as well as studies with the chemical reductant, sodium dithionite, or the oxidant, potassium ferricyanide, indicate that the spectral complex results from the formation of a product adduct with reduced cytochrome P-450. The spectral properties of this product complex of cytochrome P-450 have been compared to those observed with carbon monoxide, metyrapone, and ethylisocyanide. The reaction of these reagents to specific pools of microsomal cytochrome P-450 permits the identification of at least two major and two minor types of cytochrome P-450 in liver microsomes prepared from phenobarbital-treated rats. 相似文献
11.
12.
13.
Brenda Walker Griffin Charles Marth Yukio Yasukochi Bettie Sue Siler Masters 《Archives of biochemistry and biophysics》1980,205(2):543-553
Under identical experimental conditions, purified preparations of rabbit liver microsomal cytochrome P-450 and beef heart metmyoglobin were equally effective at stimulating the oxidation of aminopyrine to a free radical species by cumene hydroperoxide. Mannitol had no effect on radical levels produced with either hemeprotein-hydroperoxide system; however, specific ligands of the two hemeproteins, substrates of cytochrome P-450, and phospholipid affected the two systems quite differently. Only the metmyo-globindependent oxidation of aminopyrine was significantly inhibited by fluoride and cyanide. Metyrapone, a specific ligand of cytochrome P-450, and benzphetamine, which was N-demethylated by cumene hydroperoxide only in the presence of cytochrome P-450, inhibited only the cytochrome P-450-stimulated oxidation of aminopyrine. Moreover, only with the solubilized liver hemeprotein was aminopyrine radical generation markedly stimulated by phospholipid. Similar properties of aminopyrine N-demethylation and radical formation by the cytochrome P-450-cumene hydroperoxide system have strongly implicated the radical as a requisite intermediate in product formation. Micromolar concentrations of metyrapone caused parallel inhibition, by at least 50%, of both radical generation and formaldehyde production. These results support a radical pathway of N-demethylation proposed for other hemeprotein-hydroperoxide systems (B. W. Griffin and P. L. Ting, 1978, Biochemistry, 17, 2206–2211), in which the substrate undergoes two successive one-electron abstractions, followed by hydrolysis of the iminium cation intermediate. Thus, for this class of substrates, the experimental data are consistent with the oxygen atom of the product arising from H2O and not directly from the hydroperoxide, which has been previously proposed as a general mechanism for cytochrome P-450 peroxidatic activities. 相似文献
14.
For a set of 10 para-substituted toluene derivatives, three enzymatic constants were determined describing their interaction with purified rabbit liver microsomal P-450LM2. The three constants were the catalytic rate constant (Kcat) for hydroxylation, the apparent dissociation constant (Kd) for the enzyme-substrate complex, and the interaction energy (delta Gint) between the substrate-binding and spin-state equilibria. The para-substituents of the toluene substrates were: hydrogen, fluoro, bromo, chloro, iodo, nitro, methyl, cyano, isopropyl, and t-butyl. Linear free energy correlations were sought between the enzymatic constants and several physical constants of the individual substrate molecules. These correlations would be useful both for empirical prediction purposes and for insight into active site chemistry and mechanics. Catalytic rates were correlated by a linear combination of the Hansch pi hydrophobic constant and the Hammett sigma value. A deuterium isotope effect (DV) of 2.6 for d8-toluene compared to d0-toluene confirmed that hydrogen abstraction was partially rate-limiting with this series of substrates. Apparent dissociation constants were predicted by a linear combination of the molar volume and pi, while the spin-state interaction energies were best predicted by a linear combination of the Hansch pi hydrophobic constant and the reciprocal of the dielectric constant. 相似文献
15.
Oxidation of uroporphyrinogen by methylcholanthrene-induced cytochrome P-450. Essential role of cytochrome P-450d.
下载免费PDF全文

J M Jacobs P R Sinclair W J Bement R W Lambrecht J F Sinclair J A Goldstein 《The Biochemical journal》1989,258(1):247-253
We have previously shown that uroporphyrinogen is oxidized to uroporphyrin by microsomes (microsomal fractions) from 3-methylcholanthrene-pretreated chick embryo liver [Sinclair, Lambrecht & Sinclair (1987) Biochem. Biophys. Res. Commun. 146, 1324-1329]. We report here that a specific antibody to chick liver methylcholanthrene-induced cytochrome P-450 (P-450) inhibited both uroporphyrinogen oxidation and ethoxyresorufin O-de-ethylation in chick-embryo liver microsomes. 3-Methylcholanthrene-pretreatment of rats and mice markedly increased uroporphyrinogen oxidation in hepatic microsomes as well as P-450-mediated ethoxyresorufin de-ethylation. In rodent microsomes, uroporphyrinogen oxidation required the addition of NADPH, whereas chick liver microsomes required both NADPH and 3,3',4,4'-tetrachlorobiphenyl. Treatment of rats with methylcholanthrene, hexachlorobenzene and o-aminoazotoluene increased uroporphyrinogen oxidation and P-450d, whereas phenobarbital did not increase either. The contribution of hepatic P-450c and P-450d to uroporphyrinogen oxidation and ethoxyresorufin O-de-ethylation in methylcholanthrene-induced microsomes was assessed by using specific antibodies to P-450c and P-450d. Uroporphyrinogen oxidation by methylcholanthrene-induced rat liver microsomes was inhibited up to 75% by specific antibodies to P-450d, but not by specific antibodies to P-450c. In contrast, ethoxyresorufin de-ethylation was inhibited only 20% by anti-P450d but 70% by anti-P450c. Methylcholanthrene-induced kidney microsomes which contain P-450c but non P-450d did not oxidize uroporphyrinogen. These data indicate that hepatic P-450d catalyses uroporphyrinogen oxidation. We suggest that the P-450d-catalysed oxidation of uroporphyrinogen has a role in the uroporphyria caused by hexachlorobenzene and other compounds. 相似文献
16.
17.
The reduction of highly purified cytochrome P-450 from rabbit liver microsomes under anaerobic conditions requires 2 electrons per molecule. Similar results were obtained with dithionite, NADPH in the presence of NADPH-cytochrome P-450 reductase, or a photochemical system as the electron donor, with CO or other ligands, with substrate or phosphatidylcholine present, after denaturation to form cytochrome P-420, or with cytochrome P-450 partially purified from rat or mouse liver microsomes. The reduced cytochrome P-450 donates 2 electrons to dichlorophenolindophenol or to cytochrome c. Reoxidation of reduced cytochrome P-450 by molecular oxygen restores a state where 2 electrons from dithionite are required for re-reduction. Although these unexpected findings indicate the presence of an electron acceptor in addition to the heme iron atom, significant amounts of non-heme iron, other metals or cofactors, or disulfide bonds were not found, and free radicals were not detected by electron paramagnetic resonance spectrometry. Resolution of the cytochrome with acetone and acid yielded the apoenzyme, which did not accept electrons, and ferriprotoporphyrin IX, which accepted a single electron. A reconstituted hemoprotein preparation with the spectral characteristics of cytochrome P-420 accepted as much as 0.7 extra electron equivalent per heme. The midpoint oxidation-reduction potential of purified cytochrome P-450 from rabbit liver microsomes at pH 7.0 is -330 mv, and with CO present this value is changed to about -150 mv. The oxidation-reduction potential is unaffected by the presence of phosphatidylcholine or benzphetamine, a typical substrate. Laurate, aminopyrine, and benzphetamine undergo hydroxylation in the presence of chemically reduced cytochrome P-450 and molecular oxygen. Neither NADPH nor the reductase is required for substrate hydroxylation under these conditions. 相似文献
18.
19.
Spectrophotometric, affinity chromatography and cross-linking experiments provided evidence that cytochrome P-450scc from bovine adrenocortical mitochondria forms a tight complex with cytochrome b5 from rabbit liver microsomes. In the reconstituted system cholesterol side chain activity of cytochrome P-450scc was enhanced by the addition of cytochrome b5. 相似文献
20.
Evidence of binary complex formations between cytochrome P-450, cytochrome b5, and NADPH-cytochrome P-450 reductase of hepatic microsomes 总被引:2,自引:0,他引:2
P P Tamburini S MacFarquhar J B Schenkman 《Biochemical and biophysical research communications》1986,134(2):519-526
Water-soluble carbodiimide-catalyzed cross-linking of purified cytochrome P-450 LM2, cytochrome b5, and NADPH-cytochrome P-450 reductase was used to identify stable complexes formed between these proteins. High yields of P-450-b5 and P-450 reductase-b5 dimers, and lower yields of P-450 reductase-LM2 dimers were obtained. Substitution of native b5 and P-450 reductase with fully amidinated derivatives showed that LM2 and b5 were cross-linked exclusively through their respective amino and carboxyl groups. However, there appeared to be two complexation sites on the reductase which cross-link to b5 through amino groups and to LM2 through carboxyl groups respectively. A heterotrimer could not be identified following incubation of all three proteins together with EDC. 相似文献