首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment with dibutyryl cyclic AMP (dBcAMP) of the human, premonocytic U937 cell line results in differentiation toward a monocyte/granulocyte-like cell. This differentiation enables the cell to activate cytosolic phospholipase A2 (cPLA2) to release arachidonate upon stimulation. In contrast, undifferentiated cells are unable to release arachidonate even when stimulated with calcium ionophores. In the present research, a role for phospholipase D (PLD) in the regulation of cPLA2 was shown based on a number of observations. First, the ionomycin- and fMLP-stimulated production of arachidonate in differentiated cells was sensitive to ethanol (2% (v/v)). Ethanol acts as an alternate substrate in place of water for PLD producing phosphatidylethanol (PEt) instead of phosphatidic acid. Indeed, ionomycin stimulation of differentiated cells produced a 14-fold increase in PEt levels. Further evidence for the involvement of PLD in the regulation of cPLA2 came from the observation that the stimulated production of diacylglycerol (for which phosphatidic acid is a major source) was greatly diminished in undifferentiated cells as compared to differentiated cells. Moreover, the normally deficient activation of cPLA2 in undifferentiated cells could be stimulated to release arachidonate if the cells were electroporated in the presence of GTP[gamma]S and MgATP. This treatment stimulates phosphatidylinositol-4,5-bisphosphate (PIP2) production which appears to activate PLD and cPLA2 in subsequent steps. The phosphatidic acid (and diacylglycerol derived from phosphatidic acid) appears to greatly regulate the action of cPLA2 by an unknown mechanism, and undifferentiated cells lack the ability to stimulate PLD activity due to a dysfunction of PIP2 production.  相似文献   

2.
We have investigated the possible involvement of two intracellular phospholipases A(2), namely group VIA calcium-independent phospholipase A(2) (iPLA(2)-VIA) and group IVA cytosolic phospholipase A(2) (cPLA(2)alpha), in the regulation of human promonocytic U937 cell proliferation. Inhibition of iPLA(2)-VIA activity by either pharmacological inhibitors such as bromoenol lactone or methyl arachidonyl fluorophosphonate or using specific antisense technology strongly blunted U937 cell proliferation. In contrast, inhibition of cPLA(2)alpha had no significant effect on U937 proliferation. Evaluation of iPLA(2)-VIA activity in cell cycle-synchronized cells revealed highest activity at G(2)/M and late S phases, and lowest at G(1). Phosphatidylcholine levels showed the opposite trend, peaking at G(1) and lowest at G(2)/M and late S phase. Reduction of U937 cell proliferation by inhibition of iPLA(2)-VIA activity was associated with arrest in G(2)/M and S phases. The iPLA(2)-VIA effects were found to be independent of the generation of free arachidonic acid or one of its oxygenated metabolites, and may work through regulation of the cellular level of phosphatidylcholine, a structural lipid that is required for cell growth/membrane expansion.  相似文献   

3.
Hypoxia--reoxygenation (H/R) occurs in both inflammatory spots and tumor tissues, sites in which damage is amplified either acutely or chronically through the infiltration of inflammatory cells. Interleukin-8 (IL-8) is a cytokine with chemotactic and angiogenic properties. This study was designed to investigate the effects of H/R on IL-8 production in the U937 human monocytic cell line. Two hours of hypoxia followed by 4 h of reoxygenation induced a significant increase in IL-8 protein production and IL-8 mRNA expression in U937 cells. Pretreatment with proteasome inhibitor (PSI), a peptide aldehyde known to inhibit the chymotrypsin-like activity of the 26S proteasome specifically, suppressed IL-8 protein production and IL-8 mRNA expression induced by H/R. The production of IL-8 protein induced by H/R was decreased by pioglitazone and 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), which have been identified as peroxisome proliferator-activated receptorgamma (PPAR-gamma) ligands. Moreover, transfection of U937 cells with a dominant negative IkappaBalphaexpression vector (IkappaBalphaM) decreased IL-8 protein production induced by H/R. These results suggest that NF-kappaB and PPAR-gamma regulate H/R-stimulated IL-8 production in U937 cells.  相似文献   

4.
Lee EO  Kwon BM  Song GY  Chae CH  Kim HM  Shim IS  Ahn KS  Kim SH 《Life sciences》2004,74(18):2313-2326
Heyneanol A, a tetramer of resveratrol, is isolated from the roots of Vitis amurensis by cytotoxicity based fractionation. In this study, the mechanism of apoptosis by heyneanol A was evaluated in human leukemic U937 cells. Heyneanol A (IC(50) = 6.6 microM at 24 h) exhibited stronger cytotoxic effect than resveratrol (IC(50) = 100 microM at 24 h) by 15-fold on human leukemic U937 cells by XTT assay. Apoptotic bodies were observed in U937 cells treated with 6 microM of heyneanol A by TUNEL assay. Heyneanol A effectively increased the portion of sub-G(1) DNA content in a time- and concentration-dependent manner by flow cytometric analysis. Heyneanol A also induced cytochrome c release from mitochondria into the cytosol and subsequent caspase activation involving caspase 9 and 3 to cleave PARP. However, it did not affect the expressions of Bax and Bcl-2 by western blotting. It was confirmed that the activation of caspase 8, 9 and 3 and the cleavage of PARP by heyneanol A were completely blocked by adding Z-VAD-FMK, a caspase inhibitor. These findings suggest that heyneanol A has anti-tumor activity, which may be mediated by apoptosis caused by cytochrome c release and caspase activation in human leukemic U937 cells.  相似文献   

5.
Human leukotriene C4 (LTC4) synthase was purified > 10000-fold from dimethylsulfoxide-differentiated U937 cells. Steps included: (a) solubilization of membrane-bound LTC4 synthase from microsomal membranes by the anionic detergent taurocholate; (b) successive anion-exchange chromatography steps in the presence of taurocholate plus Triton X-100 (primary anion exchange) then taurocholate plus n-octyl glucoside (secondary anion exchange); and (c) LTC2-affinity chromatography on a matrix that was constructed by first biotinylating synthetic LTC2 then immobilizing the biotinylated LTC2 on streptavidin agarose. The purification of human LTC4 synthase was enabled by the finding that LTC4 synthase activity in preparations enriched > 500-fold was absolutely dependent on the presence in LTC4 synthase incubation mixtures of divalent cations (specifically Mg2+) and phospholipids (specifically phosphatidylcholine), and that reduced glutathione, which was required at 2-4 mM for stabilization of LTC4 synthase, irreversibly inactivated the enzyme when present at > or = 5 mM during freeze/thaw cycles. The > 10000-fold purified LTC4 synthase preparation was comprised of three polypeptides having molecular masses of 37.1, 24.5 and 18.0 kDa. An 18-kDa polypeptide in both microsomal membranes and in the LTC2-affinity purified fraction was specifically labelled by a radioiodinated LTC4 photoaffinity probe (azido 125I-LTC4). The Km values in the LTC2-affinity purified preparation for reduced glutathione and LTA4 were 1.83 mM and 19.6 microM (respectively), closely resembling the Km values in isolated human blood monocytes. The Vmax of LTC2-affinity purified LTC4 synthase was 2-4 mumol LTC4 formed .min-1 x mg-1.  相似文献   

6.
7.
Han YH  Xia L  Song LP  Zheng Y  Chen WL  Zhang L  Huang Y  Chen GQ  Wang LS 《Proteomics》2006,6(11):3262-3274
We reported recently that moderate hypoxia and hypoxia-mimetic agents could induce growth arrest and differentiation of leukemic cells via the mediation of hypoxia-inducible factor 1 alpha (HIF-1alpha), but the exact molecular mechanisms remain largely unknown. In this study, human acute promonocytic leukemic U937 cells were incubated under 2% O2 or in 50 microM of the hypoxia mimetic agent cobalt chloride (CoCl2) and normal oxygen for 24 h, and their protein expression profiles were compared by 2-DE coupled with MALDI-TOF/TOF MS/MS. We identified 62 and 16 proteins that were significantly deregulated by hypoxia and CoCl2 treatment, respectively. These proteins were mainly involved in metabolism, gene expression regulation, signal transduction, cell proliferation, differentiation and apoptosis. As an example, N-myc downstream regulated gene 1 (NDRG1), a putative differentiation-related gene, was up-regulated in both 2% O2- and CoCl2-treated U937 cells. Moreover, enforced HIF-1alpha expression also elevated NDRG1 mRNA and protein in U937 cells. These data will provide some clues for understanding mechanisms by which leukemic cells response to hypoxia.  相似文献   

8.
We have studied the cytosolic phospholipase A2 (cPLA2) of human U937 cells by radiation inactivation in order to characterize the functional form of the native enzyme by a method that was independent of the discrepancies observed by SDS-PAGE and cDNA cloning. The Radiation Inactivation Size of cPLA2 was reproducible and gave a value of 76,800-80,100 daltons. We eluted the active enzyme from polyacrylamide-gradient gel electrophoresis at a molecular weight of 77,000, confirming the irradiation result. We conclude that cPLA2 is active as the monomeric enzyme and is composed of a single major functional domain that is sensitive to irradiation.  相似文献   

9.
Human monoblast U937 cells contain a soluble phospholipase A2 (PLA2) that is activated over the range of 150-600 nM Ca2+ and is stable only at neutral pH. We have purified this PLA2 over 34,000-fold to near homogeneity using sequential ion exchange, hydrophobic interaction, and gel filtration chromatography steps. The protein has a Mr of approximately 100,000 (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and an isoelectric point of 5.1. Four lines of evidence indicate that this 100-kDa polypeptide represents the PLA2. (i) The intensity of staining of the 100-kDa protein was proportional to the degree of purification of PLA2 activity, (ii) the relative staining intensity of the 100-kDa protein precisely paralleled the elution profile of PLA2 activity during chromatography steps, (iii) the PLA2 activity recovered from a nondenaturing gel (greater than 60% of the total activity applied) coincided exactly with the major high molecular weight protein detected by silver staining, and (iv) monoclonal antibodies against the 100-kDa protein immunoprecipitated the PLA2. We conclude that the cytosolic PLA2 isolated from U937 cells represents a novel, high molecular weight PLA2 responding to physiological (intracellular) changes in Ca2+ concentration and therefore may play a critical role in cellular signal transduction processes and the biosynthesis of lipid mediators.  相似文献   

10.
MiR-424 plays an important role via promoting the monocytic differentiation in many human leukemia cell lines. Here, we report that miR-424 decreased miR-125b expression to 36 % by directly targeting caudal type homeobox 2. However, miR-424 also decreased expression of Fes, PU.1 and colony-stimulating factor receptor (MCSFR). As Fes, PU.1 and MCSFR were down-regulated by over-expression of miR-125b (unpublished work), a similar effect of miR-424 and Fes siRNA on CD64, Egr-1, Egr-2 and CEBPA indicates that Fes may be an important downstream target of miR-424. We hypothesize that miR-424 promotes monocytic differentiation by regulating other critical factors and miR-424 has high affinity for these factors. For the first time, the molecular mechanism of miR-424 during monocytic differentiation of U937 cells has been elucidated in this study.  相似文献   

11.
We investigated the effect of cellular cholesterol content on platelet activating factor (PAF)-stimulated Ca2+ mobilization in the human monocytic cell line U937. When cholesterol auxotroph U937 cells were depleted of cellular cholesterol by a 48-h incubation in delipidated medium, a 40% reduction in the PAF (100 nM)-stimulated increase in cytosolic Ca2+ concentration was seen. Ca2+ mobilization following stimulation with LTD4 (10 nM) or ATP (10 microM) was not affected. Addition of LDL (100 micrograms/ml, 24 h) to the delipidated medium completely recovered cellular cholesterol content and PAF-induced Ca2+ mobilization. These two LDL effects had very similar time- and dose-dependences. Partial recoveries of PAF-induced Ca2+ mobilization, seen after addition of pure cholesterol dissolved in ethanol (30 micrograms/ml, 24 h) or acetyl-LDL (100 micrograms/ml, 24 h), were associated with partial recoveries of cellular cholesterol content. Our results indicate that cellular cholesterol influences PAF-stimulated events in monocytic cells.  相似文献   

12.
The effect of ethanol (ETOH) on the incorporation of [14C]oleic acid (18:1) into lipid in human monocyte-like U937 cells was investigated. With increasing time of exposure to ETOH, the percentage of the label distributed into neutral lipid (NL) declined from 35 per cent (3 h) to 10 per cent (24 h) accompanied by increased incorporation into phospholipid (PL). [14C] 18 : 1 was preferentially incorporated into triglyceride (TG) and phosphatidylcholine (PC), comprising over 65 per cent and 50 per cent of the label associated with NL and PL, respectively. Low concentrations of ETOH (⩽ 1·0 per cent; v/v) had no effect. At concentrations greater than 1·5 per cent, there was enhanced incorporation into TG and diacylglycerol (DAG) in a 24-h incubation period, while at 16 h the label in phosphatidylethanolamine (PE) was decreased. The effect of ETOH on the CDP-choline or ethanolamine pathway was examined by monitoring the incorporation of [3H]choline or [14C]ethanolamine into PC or PE, respectively. At low concentrations ETOH had no effect on either choline uptake or the incorporation into PC. Higher concentrations (≥ 1·5 per cent) for 3 and 6 h resulted in a slightly decreased choline uptake, and the reduction (40–50 per cent) of incorporation into PC suggests that the CDP-choline pathway was inhibited. There was a similar inhibition of the incorporation of [14C]ethanolamine into PE. When the cells were incubated for 3 h in the presence of 2 per cent ETOH and with labelled 18 : 1 and PL-base, the ratios of incorporation (base/18 : 1) into PC and PE fractions decreased, indicating that the major inhibition lay in blockage of the availability of the base moiety for PL formation. Analysis of the distribution of the label into metabolites revealed that ETOH inhibited the conversion of [14C] ethanolamine into [14C]phosphorylethanolamine. The reduction in incorporation was not due to the enhanced breakdown of base-labelled PL. Our results indicate that ETOH has an inhibitory effect on the CDP-choline or ethanolamine pathway.  相似文献   

13.
Leukemic cell lines, such as U937, THP-1, and HL60 cells, can differentiate into macrophages following exposure to various agents including 12-O-tetradecanoylphorbol-13-acetate (TPA) in vitro. It is well known that TPA enhances reactive oxygen species (ROS) generation through the activation of NADPH oxidase (NOX), and ROS act as mediators in TPA signaling. Extracellular-superoxide dismutase (EC-SOD) is a major anti-oxidative enzyme that protects the cells from damaging effects of superoxide. Recently, the reduction of Cu/Zn-SOD and the induction of Mn-SOD by TPA in leukemic cells have been reported; however, the regulation of EC-SOD by TPA remains poorly understood. Here, we explored the regulation of EC-SOD during the monocytic differentiation of U937 cells by TPA. We observed the reduction of EC-SOD and Cu/Zn-SOD, whereas the induction of Mn-SOD during the differentiation of U937 cells. The reduction of EC-SOD and Cu/Zn-SOD was attenuated by pretreatments with GF109203X (an inhibitor of protein kinase C, PKC), diphenyleneiodonium (an inhibitor of NOX), and U0126 (an inhibitor of mitogen-activated protein kinase kinase, MEK/extracellular-signal regulated kinase, ERK). Interestingly, pretreatment with BAY11-7082 (an inhibitor of nuclear factor-κB, NF-κB) suppressed the reduction of Cu/Zn-SOD, but not of EC-SOD. Furthermore, we also determined the involvement of newly synthesized protein and the instability of mRNA in the reduction of EC-SOD. Overall, our results suggest that the expression of EC-SOD is decreased by TPA through intracellular signaling consisting of PKC, NOX-derived ROS and MEK/ERK, but not of NF-κB signaling.  相似文献   

14.
15.
The effect of lidocaine on [3H]choline uptake and the incorporation of label into phosphatidylcholine (PC) in human monocyte-like U937 cells was investigated. Lidocaine inhibited the rate of choline uptake in a dose-dependent manner; at 3·2 mM it resulted in a drastic reduction, by as much as 65 per cent (n = 10; p < 0·0005) or 55 per cent (n = 10; p < 0·0006) in a 3- or 6-h incubation, respectively. Lidocaine also decreased the rate of choline incorporation into PC in a dose-dependent manner. At the highest dose, nearly 70 per cent or 45 per cent reduction was seen in a 3- or 6-h incubation, respectively. Analysis of choline-containing metabolites showed that the major label association with phosphocholine and PC was reduced to a similar extent which was also parallel to the inhibition of choline uptake. At 3·2 mM lidocaine, the reduction of choline uptake was shown to follow a competitive inhibition. In the case of [3H] choline incorporation into PC, the inhibitory pattern was shown to be of a mixed type. The pulse-chase study dissecting the effect on choline metabolism from that on total choline uptake indicated that lidocaine exerted an additionally inhibitory effect on intracellular choline metabolism into PC. In a separate protocol in which the labelled cells were first allowed to be chased until 3H-incorporation into PC reached a steady state, lidocaine no longer showed any effect. These results seem to exclude the possibility of enhanced PC breakdown and further suggest that the main inhibitory effect is on the CDP-choline pathway for PC biosynthesis. After a 3-h treatment, CTP: cholinephosphate cytidylyltransferase (CYT) in both the cytosolic and microsomal fractions was inhibited by approximately 20 per cent, while choline kinase (CK) and choline phosphotransferase (CPT) remain relatively unchanged. There was no evidence for translocation of CYT between cytosol and microsomes. Taken together, we have demonstrated a dual inhibitory function of lidocaine which inhibits PC biosynthesis in addition to its ability to block choline uptake profoundly in U937 cells.  相似文献   

16.
U937 cells were differentiated into macrophages after being treated with 12-o-tetradecanoyl-phorbol-13-acetate (TPA) for the first two days and dedifferentiated with daily medium renewal for 10 days. Cell proliferation slowed down and the number of cells reached the maximum level on day 2. By day 4, all of the cells had spread and attached firmly to the culture dish, and more than 90% of the cells expressed the Fc-receptor and produced superoxide anion. From there on, the number of adherent, living cells decreased gradually to about half the initial count. Most of the cells eliminated from the culture by cell death were in the S phase at the time of TPA treatment. After day 8, the number of cells expressing macrophage-specific phenotypes gradually decreased, cell adhesion was weakened, and at the same time, DNA synthesis was initiated anew. The cells became round and began to proliferate as floating cells on days 9 to 10, and thereafter they became sensitive to the second round of TPA treatment. On the basis of all the results taken together, it is suggested that fully differentiated U937 cells were dedifferentiated after being cultured with frequent medium renewal.  相似文献   

17.
Previous studies have demonstrated that U937 cells are able to mobilize arachidonic acid (AA) and synthesize prostaglandins in response to receptor-directed and soluble stimuli by a mechanism that involves the activation of Group IV cytosolic phospholipase A(2)alpha. In this paper we show that these cells also mobilize AA in response to an oxidative stress induced by H(2)O(2) through a mechanism that appears not to be mediated by cytosolic phospholipase A(2)alpha but by the calcium-independent Group VI phospholipase A(2) (iPLA(2)). This is supported by the following lines of evidence: (i) the response is essentially calcium-independent, (ii) it is inhibited by bromoenol lactone, and (iii) it is inhibited by an iPLA(2) antisense oligonucleotide. Enzyme assays conducted under a variety of conditions reveal that the specific activity of the iPLA(2) does not change as a result of H(2)O(2) exposure, which argues against the activation of a specific signaling cascade ending in the iPLA(2). Rather, the oxidant acts to perturb membrane homeostasis in a way that the enzyme susceptibility/accessibility to its substrate increases, and this results in altered fatty acid release. In support of this view, not only AA, but also other fatty acids, were found to be liberated in an iPLA(2)-dependent manner in the H(2)O(2)-treated cells. Collectively, these studies underscore the importance of the iPLA(2) in modulating homeostatic fatty acid deacylation reactions and document a potentially important route under pathophysiological conditions for increasing free fatty acid levels during oxidative stress.  相似文献   

18.
Serglycin is the major proteoglycan in most hematopoietic cells, including monocytes and macrophages. The monoblastic cell line U937-1 was used to study the expression of serglycin during proliferation and differentiation. In unstimulated proliferating U937-1 cells serglycin mRNA is nonconstitutively expressed. The level of serglycin mRNA was found to correlate with the synthesis of chondroitin sulfate proteoglycan (CSPG). The U937-1 cells were induced to differentiate into different types of macrophage-like cells by exposing the cells to PMA, RA, or VitD3. These inducers of differentiation affected the expression of serglycin mRNA in three different ways. The initial upregulation seen in the normally proliferating cells was not observed in PMA treated cells. In contrast, RA increased the initial upregulation, giving a reproducible six times increase in serglycin mRNA level from 4 to 24 h of incubation, compared to a four times increase in the control cells. VitD3 had no effect on the expression of serglycin mRNA. The incorporation of (35S)sulfate into CSPG decreased approximately 50% in all three differentiated cell types. Further, the (35S)CSPGs expressed were of larger size in PMA treated cells than controls, but smaller after RA treatment. This was due to the expression of CSPGs, with CS-chains of 25 and 5 kDa in PMA and RA treated cells, respectively, compared to 11 kDa in the controls. VitD3 had no significant effect on the size of CSPG produced. PMA treated cells secreted 75% of the (35S)PGs expressed, but the major portion was retained in cells treated with VitD3 or RA. The differences seen in serglycin mRNA levels, the macromolecular properties of serglycin and in the PG secretion patterns, suggest that serglycin may have different functions in different types of macrophages.   相似文献   

19.
The transformation of macrophages into foam cells is a critical event in the development of atherosclerosis. The most studied aspect of this process is the uptake of modified LDL through the scavenger receptors. Another salient aspect is the effect of modified LDL immune complexes on macrophages activation and foam cell formation. Macrophages internalize oxidized LDL immune complexes (oxLDL-IC) via the Fc-gamma receptor and transform into activated foam cells. In this study we examined the effect of oxLDL-IC on sphingosine kinase 1 (SK1), an enzyme implicated in mediating pro-survival and inflammatory responses through the generation of the signaling molecule sphingosine-1-phosphate (S1P). Intriguingly, oxLDL-IC, but not oxLDL alone, induced an immediate translocation and release of SK1 into the conditioned medium as evidenced by fluorescence confocal microscopy. Immunoblot analysis of cell lysates and conditioned medium revealed a decrease in intracellular SK1 protein levels accompanied by a concomitant increase in extracellular SK1 levels. Furthermore, measurement of S1P formation showed that the activity of cell-associated SK decreased in response to oxLDL-IC compared to oxLDL alone, whereas the activity of SK increased extracellularly. Blocking oxLDL-IC binding to Fc-gamma receptors resulted in decreased levels of extracellular S1P. The data also show that cell survival of human U937 cells exposed to oxLDL-IC increased compared to oxLDL alone. Exogenously added S1P further increased cell survival induced by oxLDL-IC. Taken together, these findings indicate that S1P may be generated extracellularly in response to modified LDL immune complexes and may therefore promote cell survival and prolong cytokine release by activated macrophages.  相似文献   

20.
We present here a morphological, cytochemical and biochemical study of the macrophagic differentiation of human pro-monocytic U937 cells exposed to moderate intensity (6 mT) static magnetic fields (MF). It was found that the following substances induced differentiation in U937 cells to a progressively lower degree: 50 ng/mL 12-0-tetradecanoyl-13-phorbol acetate (TPA), low concentration of glutamine (0,05 mM/L), 10% dimethyl sulfoxide (DMSO) and 100 mM/L Zn++. Differentiated U937 cells shift from a round shape to a macrophage-like morphology, from suspension to adhesion growth and acquire phagocytotic activity, the cytoskeleton adapting accordingly. Exposure to static MF at 6 mT of intensity decreases the degree of differentiation for all differentiating molecules with a consequent fall in cell adhesion and increased polarization of pseudopodia and cytoplasmic protrusions. Differentiation alone, or in combination with exposure to static MFs, affects the distribution and quantity of cell surface sugar residues, the surface expression of markers of macrophage differentiation, and phagocytotic capability. Our results indicate that moderate-intensity static MFs exert a considerable effect on the process of macrophage differentiation of pro-monocytic U937 cells and suggest the need for further studies to investigate the in vivo possible harmful consequences of this.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号