首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports a new phenomenon connected with the influence of green light (GL) on biological systems. Our experiments have revealed an antioxidant effect of GL on cells subjected to lethal doses of UV at the cellular level and a protective effect of GL on DNA denatured by UV, coupled with a structural modification of DNA macromolecules under GL irradiation, at the molecular level. Mouse melanocyte cultures are subjected to UV irradiations with L50 fluxes of 16.0 J m − 2 s − 1. GL is obtained from a strontium aluminate pigment, which emits GL under UV activation. Cells grown in GL, prior to UV irradiation, present a clear surprising protective effect with surviving values close to the controls. A GL antioxidant effect is suggested to be mediated through GL influence on cellular water cluster dynamics. To test this hypothesis, reactive oxygen species (ROS) are determined in cell cultures. The results revealed a decrease of cellular ROS generation in the UV-irradiated samples protected by a previous 24 h of GL irradiation. At the DNA level, the same type of GL protection against UV damage is recorded by gel electrophoresis and by UV spectroscopy of the irradiated DNA molecules. Two physical methods, impedance spectroscopy and chronoamperometry, have revealed at the level of GL-irradiated DNA molecules spectral modifications that correlate with the UV spectroscopy results. The interaction between the chargeless photons and the field of water molecules from the cellular compartments is discussed in relation with the new field of macroscopic quantum coherence phenomena.  相似文献   

2.
本文研究了光敏氧化前后甲素与DNA的结合以及这种结合对DNA-EB复合物荧光强度、DNA融解温度和圆二色谱的影响。利用Sephadex G-150凝胶过滤和同位素技术分离甲素-DNA复合物,测得光照前后甲素与DNA的结合率分别为15.2%和27.8%。荧光测定和琼脂糖凝胶电泳结果显示:甲素可阻碍DNA-EB复合物的形成、使DNA-EB复合物的荧光强度减弱,光照甲素对DNA-EB复合物的荧光淬灭作用较未光照者为强。甲素敏化DNA光氧化后的荧光淬灭、DNA融解温度降低和CD谱变化提示:甲素敏化DNA光氧化涉及碱基破坏及DNA双螺旋结构改变。  相似文献   

3.
Photosystem II (PSII) is a multisubunit chlorophyll-binding enzyme that absorbs light to catalyze water oxidation and plastoquinone reduction. Chlorophyll excitonic interaction changes in PSII were studied by absorption and circular dichroism spectra from 25 degrees C to 80 degrees C, and protein subunit denaturation was monitored by differential scanning calorimetry. A four-stage process of chlorophyll excitonic interaction change was observed being correlated with the denaturation of protein subunits.  相似文献   

4.
The effect of chemical (urea) and physical (temperature and high pressure) denaturation on the structural properties of soybean lipoxygenase-1 (LOX1) was analyzed through dynamic fluorescence spectroscopy and circular dichroism. We show that the fluorescence decay of the native protein could be fitted by two lorentzian distributions of lifetimes, centered at 1 and 4 ns. The analysis of the urea-denatured protein suggested that the shorter distribution is mostly due to the tryptophan residues located in the N-terminal domain of LOX1. We also show that a pressure of 2400 bar and a temperature of 55 degrees C brought LOX-1 to a state similar to a recently described stable intermediate "I." Analysis of circular dichroism spectra indicated a substantial decrease of alpha-helix compared with beta-structure under denaturing conditions, suggesting a higher stability of the N-terminal compared with the C-terminal domain in the denaturation process.  相似文献   

5.
The aspartate (Asp)-induced unfolding and the salt-induced folding of creatine kinase (CK) have been studied by measuring enzyme activity, fluorescence emission spectra, circular dichroism (CD) spectra, native polyacrylamide gel electrophoresis and ultraviolet difference spectra. The results showed that Asp caused inactivation and unfolding of CK, with no aggregation during CK denaturation. The kinetics of CK unfolding followed a one phase process. At higher concentrations of Asp (>2.5mM), the CK dimers were partially dissociated. Inactivation occurred before noticeable conformational change during CK denaturation. Asp denatured CK was mostly reactivated and refolded by dilution. KCl induced the molten globule state with compact structure after CK was denatured with 10mM Asp. These results suggest that the effect of Asp differed from that of other denaturants such as guanidine, HCl or urea during CK unfolding. Asp is a reversible protein denaturant and the molten globule state indicates that intermediates exist during CK folding.  相似文献   

6.
The structural changes of human serum albumin (HSA) induced by the addition of cadmium acetate were systematically investigated using UV–vis absorption, circular dichroism (CD), synchronous, and three‐dimentional (3D) fluorescence methods. The fluorescence spectra suggested the formation of cadmium acetate–HSA complex. UV absorption result indicated that the interaction between cadmium acetate and HSA could lead to the alteration of the protein skeleton. The structural analysis according to CD method showed that the cadmium acetate binding altered HSA conformation with a major reduction of α‐helix, inducing a partial protein unfolding. Synchronous fluorescence spectra suggested that cadmium acetate was situated closer to tryptophan residue compared to tyrosine residues, making tryptophan residue locate in a more hydrophobic environment. 3D fluorescence demonstrated that cadmium acetate could induce the HSA aggregation and cause a slight unfolding of the polypeptide backbone of the protein.  相似文献   

7.
Vibrational circular dichroism (VCD) spectroscopy has been used for the first time to investigate the thermal denaturation of proteins in H(2)O solutions. Films prepared from heated aqueous solutions were used for these investigations. A well-known alpha-helical protein, bovine serum albumin (BSA), is used for this first study. Both VCD and infrared absorption results obtained for BSA films indicate that the heat treatment of BSA induces significant amounts of beta-sheet structure and that the denaturation process is irreversible. To verify the irreversible nature of thermal denaturation, optical rotation was also measured as a function of temperature in both heating and cooling cycles. These results also indicate that thermal denaturation of BSA in solution is irreversible. This study establishes the usefulness of films for VCD investigations and offers new avenues for VCD studies on biologically important systems.  相似文献   

8.
The effect of low pH on the molecular properties of mustard 12S protein has been studied by the techniques of ultracentrifugation, viscometry, electrophoresis, turbidimetry, u.v. difference spectroscopy, fluorescence spectroscopy and circular dichroism. Ultracentrifugation and electrophoresis experiments indicated dissociation of the protein in the pH range 5.0 to 3.0 and below this pH reaggregation was indicated. Viscosity, turbidimetry, u.v. difference spectroscopy, fluorescence spectroscopy and circular dichroism studies showed that denaturation of the protein occurred between pH 5.0 and 3.0 and refolding at pH values below 3.0.  相似文献   

9.
The effect of anion binding to ceruloplasmin has been studied using absorption and cirbular dichroism spectral data. At anion to ceruloplasmin molar ratios approaching infinite, OCN-, N3- and SCN- bind to ceruloplasmin giving rise to similar alterations in circular dichroism and absorption spectra. The positive bands at 610 and 520 nm in circular dichroism spectra disappear, a negative one apperars at 600 nm and the peak at 450 nm is only slightly modified. There is a new negative band at 410 nm well-defined in OCN- ceruloplasmin spectra. The decrease in absorption at 610 nm is ascribed to the disruption of one type I Cu-S(cysteine) bond owing presumably to the changes induced by anions in the protein secondary structure. The new band at 410 nm is assigned to a charge transfer transition from the ligand replacing cysteine at its binding site. Both absorption and circular dichroism spectra show isobestic points indicating that anion binding to the enzyme, disruption of one of the two type I Cu-S bonds and coordination of this Cu to another protein residue take place simultaneously.  相似文献   

10.
Thermal denaturation of Escherichia coli maltodextrin glucosidase was studied by differential scanning calorimetry, circular dichroism (230 nm), and UV-absorption measurements (340 nm), which were respectively used to monitor heat absorption, conformational unfolding, and the production of solution turbidity. The denaturation was irreversible, and the thermal transition recorded at scan rates of 0.5–1.5 K/min was significantly scan-rate dependent, indicating that the thermal denaturation was kinetically controlled. The absence of a protein-concentration effect on the thermal transition indicated that the denaturation was rate-limited by a mono-molecular process. From the analysis of the calorimetric thermograms, a one-step irreversible model well represented the thermal denaturation of the protein. The calorimetrically observed thermal transitions showed excellent coincidence with the turbidity transitions monitored by UV-absorption as well as with the unfolding transitions monitored by circular dichroism. The thermal denaturation of the protein was thus rate-limited by conformational unfolding, which was followed by a rapid irreversible formation of aggregates that produced the solution turbidity. It is thus important to note that the absence of the protein-concentration effect on the irreversible thermal denaturation does not necessarily means the absence of protein aggregation itself. The turbidity measurements together with differential scanning calorimetry in the irreversible thermal denaturation of the protein provided a very effective approach for understanding the mechanisms of the irreversible denaturation. The Arrhenius-equation parameters obtained from analysis of the thermal denaturation were compared with those of other proteins that have been reported to show the one-step irreversible thermal denaturation. Maltodextrin glucosidase had sufficiently high kinetic stability with a half-life of 68 days at a physiological temperature (37°C).  相似文献   

11.
We investigated the effect of acrolein, a byproduct of lipid oxidation, on the structure and gel properties of myofibrillar proteins (MPs) isolated from rabbit meat. As the acrolein concentration increased, the protein carbonyl compounds significantly accumulated (p?<?0.05), and the total sulfhydryl content was significantly lost (p?<?0.05). The results of circular dichroism spectra, surface hydrophobicity, UV absorption spectra and intrinsic fluorescence spectra evidenced that acrolein caused the disruption of α-helix structure, the exposure of hydrophobic sites and the unfolding of MPs. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis suggested that medium (0–1 mM) and high (5–10 mM) concentrations of acrolein could induce protein cross-linkage and protein aggregation, respectively. These structural changes could affect gelling properties of MPs involving gel strength and water holding capacity (WHC). The results of Raman spectroscopy indicated that moderate oxidative modification caused protein unfolding as well as the decline of α-helix structure and the increase of β-sheets structure in gels, thereby influencing the gel properties. Moderate oxidative modification (0–1 mM) improved gel strength and WHC, while excessive oxidative modification (5–10 mM) resulted in decreased gel properties.  相似文献   

12.
Simonyi M  Bikádi Z  Zsila F  Deli J 《Chirality》2003,15(8):680-698
The conventional organic chemistry concept of chirality relates to single molecules. This article deals with cases in which exciton chirality is generated by the interaction of associated carotenoids. The handed property responsible for exciton signals in these systems is due to the alignment of neighboring molecules held together by secondary chemical forces. Their mutual positions are characterized by the overlay angle. Experimental manifestation is obtained by spectroscopic studies on carotenoid aggregates. Compared to molecular spectra, both UV/visible and circular dichroism spectroscopic observations reveal modified absorption bands and induced Cotton effects of opposite sign (exciton couplets), respectively. A new term, "supramolecular exciton chirality," is suggested for these phenomena, allowing the detection of weak chemical interactions not readily accessible for experimental studies, although highly important in the mechanism of biological processes.  相似文献   

13.
Ultraviolet absorption (UV) and electronic circular dichroism (ECD) spectra of enantiopure (Z)-8-methoxy-4-cyclooctenone (MCO) were measured in hexane to give a normal single UV absorption band at 298 nm, which is assigned to the carbonyl's pi*<--n transition. Unexpectedly, the ECD spectrum exhibited an apparent couplet pattern with vibrational fine structures. Obviously, the conventional CD exciton coupling mechanism cannot be applied to this bisignate CD signal observed for single-chromophoric MCO. Variable temperature-ECD and vibrational circular dichroism (VCD) spectral measurements, simultaneous UV and ECD spectral band resolution, and density functional theory (DFT) calculations of energy and structure revealed that this apparent CD couplet originates from a rather complicated spectral overlap of more than three conformers of MCO, two of which exhibit mirror-imaged ECD spectra at appreciably deviated wavelengths. In the simultaneous band-resolution analysis, the observed UV and ECD spectra were best fitted to four overlapping bands. Two major conformers were identified by comparing the experimental IR and VCD spectra with the simulated ones, and the other two by comparing the observed UV and ECD spectra with the theoretical ones obtained by time-dependent DFT calculations. It was shown that the combined use of experimental ECD and VCD spectra and theoretical DFT calculations can give a reasonable interpretation for the Cotton effects of the conformationally flexible molecule MCO.  相似文献   

14.
Several authors have reported that many sperm whale apomyoglobin mutants show anomalous circular dichroism spectra. These mutants have a low molar ellipticity compared to the wild-type protein but in several cases have the same stability of unfolding. A model in which native apomyoglobin is not folded in the same manner as that in other proteins and in which mutants show progressive reductions in their degree of folding has been suggested to explain this phenomenon. However, nuclear magnetic resonance of the native apomyoglobin conformation has shown that this state is folded and compact, raising the possibility that the anomalous circular dichroism spectra could have another explanation. We studied several mutants with anomalous circular dichroism spectra and found that these proteins were all contaminated with nucleic acid that contributed to the ultraviolet absorption and caused uncertainty in the determination of protein concentration. The resulting overestimation of the concentration of apomyoglobin explains the phenomenon of anomalous circular dichroism spectra. We describe a procedure to remove the contaminant nucleic acid which yields accurate protein concentration measurements and provides the normal circular dichroism spectra. Our findings support a well-structured native conformation for apomyoglobin and may also be of the interest to scientists working with the purification of recombinant proteins.  相似文献   

15.
W Thumm  A Seidl    H J Hinz 《Nucleic acids research》1988,16(24):11737-11757
Differential scanning microcalorimetry (DSC), UV absorption and circular dichroism (CD) have been used to study structure and stability of linear (lin), open circular (oc), supercoiled (cd) and relaxed circular duplex (rd) DNA and calf thymus (CT) DNA. Investigations were made in low salt buffer and in the presence of 7.2 M NaClO4. The chaotropic action of perchlorate promotes a reduction of the overall stability of DNA, which permits a direct determination of the transition enthalpies of all four DNA configurations. The stabilities against thermal denaturation have been found to increase in the series lin approximately oc less than cd less than rd. These relative stabilities can be rationalized on the basis of the linkage between supercoiling and secondary structural changes in topologically constrained duplex DNA. On the basis of these studies, a model of the melting process could be suggested that is consistent with the energetic and spectroscopic data.  相似文献   

16.
Jávorfi T  Hussain R  Myatt D  Siligardi G 《Chirality》2010,22(Z1):E149-E153
Synchrotron radiation circular dichroism (SRCD) is a well-established method in structural biology. The first UV-VIS beamline dedicated to circular dichroism at Diamond Light Source, a third generation synchrotron facility in South Oxfordshire, has recently become operational and it is now available for the user community. Herein we present an important application of SRCD: the CD measurement of protein solutions in fused silica rectangular capillary cells. This was achieved without the use of any lens between the photoelastic modulator and the photomultiplier tube detectors by exploiting the high photon flux of the collimated beam that can be as little as half a millimeter squared. Measures to minimize or eliminate vacuum-UV protein denaturation effects are discussed. The CD spectra measured in capillaries is a proof of principle to address CD measurements in microdevice systems using the new B23 SRCD beamline.  相似文献   

17.
The fluorescence detected circular dichroism (FDCD) spectra of dansyl-leucine are reported. These spectra were obtained with the use of an unique device. FDCD, circular dichroism (CD) and absorption spectra of dansyl-leucine are combined to calculate CD spectra of the dansyl group in the given environment. A new method for determination of the secondary protein structure from the CD spectra taking into account the contribution of tryptophan residues is proposed. This contribution is defined from FDCD. The secondary structure of glucagon and human serum albumin, all containing a single, fluorescent tryptophan, were analysed. A good correspondence between these results and those reported for glucagon structure were found, while the usual method (without determination on tryptophan contribution) leads to unsatisfactory results.  相似文献   

18.
The effect of trifluoroethanol (TFE) on horseradish peroxidase (HRP) was determined using activity assay and spectral analysis including optical absorption, circular dichroism (CD), and intrinsic fluorescence. The enzyme activity increased nearly twofold after incubation with 5-25% (v/v) concentrations of TFE. At these TFE concentrations, the tertiary structure of the protein changed little, while small changes occurred at the active site. Further increases in the TFE concentration (25-40%) decreased the enzyme activity until at 40% TFE the enzyme was completely inactivated. The alpha-helix content of the protein increased at high TFE concentrations, while near-UV CD, Soret CD, and intrinsic fluorescence indicated that the tertiary structure was destroyed. Polyacrylamide gel electrophoresis results indicated that the surface charge of the enzyme was changed at TFE concentrations greater than 20%, and increasing concentrations of TFE reduced the enzyme molecular compactness. A scheme for the unfolding of HRP in TFE was suggested based on these results. The kinetics of absorption change at 403 nm in 40% TFE followed a two-phase course. Finally, HRP incubated with TFE was more sensitive to urea denaturation, which suggested that the main effect of TFE on HRP was the disruption of hydrophobic interactions.  相似文献   

19.
The fungicide dodine combines the cooperative denaturation properties of guanidine with the mM denaturation activity of SDS. It was previously tested only on two small model proteins. Here we show that it can be used as a chemical denaturant for phosphoglycerate kinase (PGK), a much larger two‐domain enzyme. In addition to its properties as a chemical denaturant, dodine facilitates thermal denaturation of PGK, and we show for the first time that it also facilitates pressure denaturation of a protein. Much higher quality circular dichroism and amide I′ infrared spectra of PGK can be obtained in dodine than in guanidine, opening the possibility for use of dodine as a denaturant when UV or IR detection is desirable. One caution is that dodine denaturation, like other detergent‐based denaturants, is less reversible than guanidine denaturation.  相似文献   

20.
Four chiral analogues of the surfactant Aerosol-OT (AOT) have been synthesized and characterized. All of them form reverse micelles in apolar solvents in the w0 range 0–30 (w0 = [water]/[tenside]). Reverse micellar solutions have been investigated by UV absorption and circular dichroism spectroscopies with the aim of clarifying whether the formation of the macromolecular micellar structure induces the appearance of new chromophoric bands or perturbs the existing ones. Methanolic solutions of the surfactants, in which no micellar aggregates are formed, were taken as references. One of the products 1(S),1′(S)-dimethylbisheptylsulphosuccinate sodium salt (MH-AOT) was capable of forming reverse micelles of relatively high water content (w0 up to 40) and this process was accompanied by a specific increase in the intensity of the circular dichroism band associated with the ester absorbance of the molecule. As no concomitant changes were seen in the UV absorbance spectrum, it was concluded that this observation reflected conformational events occurring within the surfactant rather than chromophoric perturbation. These results are qualitatively similar to those found recently for lecithin reverse micelles which, however, form gels at sufficiently high water contents. The chiroptical properties of these supramolecular aggregates are compared with those of covalent macromolecular systems such as polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号