首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
“Ghosts” have been isolated from Spirillum serpens that are free of murein, are surrounded by a unit membrane (derived from the outer membrane of the cell envelope), have lost all intracellular material (except for some poly-β-hydroxybutyrate), and still maintain Spirillum's shape.The ghost membrane contains about 50% protein which is resolved by sodium dodecyl sulphate-polyacrylamide gel electrophoresis into three bands corresponding to apparent molecular weights between 21,000 and 40,000, and the major protein band I (40,000) consists of at least two (Ia and Ib) but not many more polypeptide chains. HP-layer protein (hexagonally packed surface protein) is absent. At least one of the latter polypeptide chains is required for the establishment of the long-range order apparent in ghosts since proteases degrade band I proteins and concomitantly destroy the ghost. The other polypeptides (II and III) do not appear to be required for maintenance of shape of the Spirillum ghost since their amounts can vary widely from preparation to preparation. Ghosts as well as cells can be cross-linked with dimethyl diimidoesters. Such ghosts proved to be cross-linked over their entire surface, and a covalently closed macromolecule of the size of the cell had been created. Under certain conditions of cross-linking these ghosts upon extraction with hot sodium dodecyl sulphate were pure protein. Ammonolysis of this material liberated band I protein.These findings strongly suggest that there is a rather dense packing of the protein in the ghost membrane, and proteins Ia and Ib may be arranged as repeating subunits in the sense that protein-protein interaction exists along the whole membrane. Several observations also suggest that the ghost membrane concerning the arrangement of these proteins does not represent a gross artifact regarding the outer cell envelope membrane. The possibility exists that the assembly of polypeptides Ia and Ib participates in the determination of cellular shape.  相似文献   

2.
When unsealed erythrocyte ghosts in 6 mm phosphate buffer (pH 8.0, 4 °C) were incubated with bilirubin in excess of 0.1 mm and washed with buffer, a single polypeptide component (band 6 in sodium dodecyl sulfate-polyacrylamide-gel electrophoresis) diminished and was recovered in the supernatant fraction. Release of this component was virtually complete at 1 mm initial bile pigment. Since band 6 was believed to be the protomer of membrane-bound glyceraldehyde-3-phosphate dehydrogenase (G3PD), assays for this enzyme in bilirubin-treated ghosts were carried out. These revealed that enzymatic activity decreased concurrently with the disappearance of band 6. The molecular weight of the eluted polypeptide was found to be 36,000, in agreement with the known value for the G3PD protomer. When Mg2+-resealed ghosts were washed after exposure to 1 mm bilirubin, less than 20% of the G3PD was eluted, which is consistent with the fact that the enzyme is attached to the cytoplasmic face of the membrane. NAD+ in concentrations up to 2 mm displaced no more than 15% of the G3PD from unsealed ghosts. However, after preincubation with NAD+ (1 mm) followed by bilirubin (1 Mm) and washing, loss of G3PD was similar to that observed in the absence of cofactor. Since NAD+ did not attenuate release of the enzyme, it appears unlikely that such release is attributable to binding of bilirubin at the active site. Protoporphyrin acted similarly to bilirubin on unsealed ghosts, whereas rose bengal had a more pronounced effect, removing all enzymatic activity when the dye concentration reached 0.2 mm. Electrophoretic analysis of ghosts after rose bengal treatment, however, revealed a diminution not only of band 6 but bands 1, 2, and 5 as well.  相似文献   

3.
Using the method of electrophoresis in SDS-PAAG the authors showed a diminution of proteins of bands I + II (spectrins) and III (major integral protein) after irradiation of erythrocyte ghosts with doses of 50 to 1000 Gy. We failed to ascertain that radiation-induced lipid peroxidation is involved into membrane protein aggregation. Among the radiolysis products, OH-radicals were shown to contribute markedly to the radiation effect observed.  相似文献   

4.
Bilirubin in the presence of O2 and light catalyzes the photodynamic modification of the proteins of the inner mitochondrial membrane as monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Numerous polypeptide bands become streaked towards higher apparent molecular weight and decrease in staining intensity while other bands remain largely unchanged. The loss in staining intensity which occurs is at least partially due to apparent cross-linking of the polypeptides to produce aggregates which cannot penetrate into the gel. The α and β bands of the mitochondrial ATPase differ markedly in their susceptibility to modification. The β subunit is rapidly modified while the α subunit is largely inert. This differential susceptibility is a consequence of the binding of the soluble F1 ATPase to the membrane. When submitochondrial particles with their normal complement of bound F1 are mixed with free F1 and are photolyzed together in the presence of bilirubin and O2, it is found that the β subunit of the membrane-bound F1, but not the α subunit, has been modified while neither subunit of the free F1 has been modified. This increased susceptibility of the β subunit in the membrane state may represent cross-linking to membrane components and is consistent with the β subunit making more extensive contacts with membrane components than does the α subunit.  相似文献   

5.
erocyanine 540 (MC540) is a membrane-directed photosensitizing dye with antileukemic and antiviral properties. In this study, biophysical and biochemical techniques have been used to examine MC540-sensitized photooxidative damage in the lipid and protein compartments of a test membrane, the human erythrocyte ghost. Irradiation of MC540-sensitized ghosts with white light resulted in oxidative damage to proteins, as manifested by (i) loss of sulfhydryl groups; (ii) intermolecular cross-linking of major polypeptides; and (iii) loss of Mg(2+)-ATPase and Na+,K(+)-ATPase activities. Photooxidation also produced a rapid and progressive increase in general protein motion, as measured by electron paramagnetic resonance spectrometry (EPR) with the sulfhydryl spin label MAL-6. In addition to these effects, ghosts exposed to MC540 and light underwent lipid peroxidation. EPR with two lipophilic spin probes, 5-doxylstearate and 16-doxylstearate, showed that lipid peroxidation is accompanied by a progressive decrease in bilayer fluidity (motional freedom). At a given dye concentration, structural perturbations of proteins were detected at much lower light fluences than those of lipids. When photoreactions were carried out in the presence of ascorbate and iron, there was a strong stimulation of lipid peroxidation (attributed to free radical chain reactions), with a concomitant greater decrease in lipid mobility. Thus, the deleterious effects of photoperoxidation on lipid structure and motional freedom were greatly exacerbated by ascorbate and iron. Membrane damage similar to that described here may play a role in the phototherapeutic activity of MC540.  相似文献   

6.
1. Erythrocyte ghosts exhibit resonance-enhanced Raman bands at 1530 cm(-1) and 1165 cm(-1) attributable to v(-C=C-) and v(=C-C=), respectively, of the conjugated polyene chains in carotenoids. In lipid extract of ghosts, these resonance-enhanced bands lie at 1527 and 1158 cm(-1). The spectra indicate the presence of membrane-bound beta-carotene. 2. The resonance-enhanced Raman spectrum of beta-carotene in lecithin liposomes is identical to that obtained with hexane or chloroform solutions. 3. Increasing proportions of cholesterol in cholesterol-lecithin liposomes up to a cholesterol: phospholipid molar ratio of 0.8-0.9 drastically decreases the intensity of both resonance-enhanced bands. 4. In ghosts the carotenoid bands respond to membrane perturbations. Trypsinization, lysolecithin treatment and reduction of pH increase the intensities of the 1530 and 1165 cm(-1) bands. In contrast, a decrease in the intensity of both bands follows equilibration of ghosts for 15 min at approx. 50 degrees C or addition of (0.1%) sodium dodecyl sulfate. 5. We suggest that perturbants known to change lipid-protein interactions in erythrocyte membranes modify the microenvironment and/or configuration of the membrane-bound carotenoid.  相似文献   

7.
Photodestruction of erythrocyte membranes sensitized by water soluble chlorophyll derivative chlorine e6 (Chl e6) was studied. It has been determined that light irradiation of erythrocyte ghosts with wave length lambda-660 nm in the presence of Chl e6 caused in protein and lipid components of the membrane deep destructive changes which were expressed in cross-linking of the membrane polypeptides and accumulating in the membrane products of peroxidation of unsaturated fatty acids residues, in phospholipids mainly. It has been shown that these processes were realized only in the presence of molecular oxygen and consequently possess pure photodynamic character.  相似文献   

8.
chlorpromazine interacted preferentially with membrane proteins rather than membrane lipids in the initial incorporation into human erythrocyte ghosts, as demonstrated by means of the fluorescence quenching and a maleimide spin label. In this state the membrane fluidity increased. At higher concentrations of chlorpromazine, the membrane fluidity decreased and a motionally restricted signal from fatty acid spin labels appeared predominantly. However, no such signal appeared in protein-free vesicles. The temperature and pH dependences of the outer hyperfine splitting of this restricted signal were very similar to those of bovine serum albumin. On the basis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of chlorpromazine-treated and -untreated ghosts, it was found that there was no significant difference in membrane proteins between both samples except for the changes of a few bands which were not directly concerned with the occurrence of this restricted signal. These results suggest that the fatty acid spin labels bind preferably to membrane proteins as the lipid domain becomes packed with chlorpromazine.  相似文献   

9.
Chlorpromazine interacted preferentially with membrane proteins rather than membrane lipids in the initial incorporation into human erythrocyte ghosts, as demonstrated by means of the fluorescence quenching and a maleimide spin label. In this state the membrane fluidity increased. At higher concentrations of chlorpromazine, the membrane fluidity decreased and a motionally restricted signal from fatty acid spin labels appeared predominantly. However, no such signal appeared in protein-free vesicles. The temperature and pH dependences of the outer hyperfine splitting of this restricted signal were very similar to those of bovine serum albumin. On the basis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of chlorpromazine-treated and -untreated ghosts, it was found that there was no significant difference in membrane proteins between both samples except for the changes of a few bands which were not directly concerned with the occurrence of this restricted signal. These results suggest that the fatty acid spin labels bind preferably to membrane proteins as the lipid domain becomes packed with chlorpromazine.  相似文献   

10.
A strongly immobilized signal from fatty acid spin labels was observed in human erythrocytes treated with oxidizing agents such as glutaraldehyde, hydrogen peroxide, phenylhydrazine and copper-ortho-phenanthroline. This signal was also observed in freshly prepared ghosts treated with potassium superoxide and in old erythrocyte ghosts. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of these samples demonstrated the diffuse, nondiscrete bands of high molecular weight due to the cross-linking of membrane proteins. The temperature and pH dependences of the outer hyperfine splitting of this signal were very similar to those of bovine serum albumin. We propose that the strongly immobilized signal reflects the interaction of the lipids with the cross-linked products of membrane proteins.  相似文献   

11.
A strongly immobilized signal from fatty acid spin labels was observed in human erythrocytes treated with oxidizing agents such as glutaraldehyde, hydrogen peroxide, phenylhydrazine and copper-ortho-phenanthroline. This signal was also observed in freshly prepared ghosts treated with potassium superoxide and in old erythrocyte ghosts. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of these samples demonstrated the diffuse, nondiscrete bands of high molecular weight due to the cross-linking of membrane proteins. The temperature and pH dependences of the outer hyperfine splitting of this signal were very similar to those of bovine serum albumin. We propose that the strongly immobilized signal reflects the interaction of the lipids with the cross-linked products of membrane proteins.  相似文献   

12.
Human erythrocyte ghosts treated with tert-butyl hydroperoxide or ADP-Fe3+ incorporated radioactivity on reduction with tritiated borohydride. The tritium incorporation closely correlated with membrane lipid oxidation as assessed by the formation of thiobarbituric acid-reactive substances and fluorescent substances. Treatment of ghosts with the inducers in the presence of butylated hydroxytoluene, thiourea, or desferrioxamine suppressed the tritium incorporation in the subsequent reduction. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the tritiated ghost proteins showed that the label was incorporated into the intermolecularly cross-linked and the uncross-linked proteins of bands 1, 2, 3, 4.1, 4.2, 5 and 6, and into the noncross-linked glycophorin A (PAS-1). Glycophorin A was hardly cross-linkable but modified during membrane lipid oxidation. Possible candidates for producing borohydride-reducible functions in the proteins are various mono- and bifunctional aldehydes, as well as those for producing fluorescence and cross-links. A part of thiobarbituric acid-reactive or fluorescent substances may be involved in borohydride reduction and tritium labeling.  相似文献   

13.
Spectrin strengthens the red cell membrane through its direct association with membrane lipids and through protein-protein interactions. Spectrin loss reduces the membrane stability and results in various types of hereditary spherocytosis. However, less is known about acquired spectrin damage. Here, we showed that α- and β-spectrin in human red cells are the primary targets of the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) by immunoblotting and mass spectrometry analyses. The level of HNE adducts in spectrin (particularly α-spectrin) and several other membrane proteins was increased following the HNE treatment of red cell membrane ghosts prepared in the absence of MgATP. In contrast, ghost preparation in the presence of MgATP reduced HNE adduct formation, with preferential β-spectrin modification and increased cross-linking of the HNE-modified spectrins. Exposure of intact red cells to HNE resulted in selective HNE-spectrin adduct formation with a similar preponderance of HNE-β-spectrin modifications. These findings indicate that HNE adduction occurs preferentially in spectrin at the interface between the skeletal proteins and lipid bilayer in red cells and suggest that HNE-spectrin adduct aggregation results in the extrusion of damaged spectrin and membrane lipids under physiological and disease conditions.  相似文献   

14.
The healthy intact polymorphonuclear leukocytes (PMNs) were labeled with 4-maleimide-TEMPO spin labeling compound (MAL) to study the effects of oxygen radicals produced by phorbol myristate acetate (PMA)-stimulated PMNs on the conformation of sulfhydryl (SH) groups of PMN membrane proteins. The lipid peroxidation induced by PMA-stimulated PMNs was detected by evaluating the formation of malonaldehyde (MDA) with the thiobarbituric acid (TBA) test. From the experiments of luminol-dependent chemiluminescence (CL) and fluorometry, it was found that Chinese herbs schizandrin B (Sin B) and quercetin (Q) possessed scavenging properties for oxygen radicals produced during the PMN respiratory burst. These two herbs can also inhibit the conformation changes in SH binding sites on the PMN membrane proteins caused by oxygen radicals produced by the PMNs themselves. They also decreased the amount of MDA, which was a final product formed during lipid peroxidation.  相似文献   

15.
Membrane fusion in vitro between Golgi apparatus- and plasma-membrane-rich fractions isolated from maize (Zea mays) roots was found to be dependent on Ca2+ and the membrane proteins. Trypsin treatment of mixed membrane fractions before the addition of Ca2+ inhibited their ability to fuse. It resulted also in a selective and progressive elimination of a characteristic intense polypeptide band (B1) on gel electrophoresis. This polypeptide was not removed by chymotrypsin or thermolysin. B1 is an integral membrane protein with an exposed portion to the outside. Sodium deoxycholate was used to solubilize the proteins of mixed membrane fractions. Extracted proteins analysed by non-SDS (sodium dodecyl sulphate) polyacrylamide-gel electrophoresis revealed the presence of four isolated bands. When re-electrophoresed in the presence of SDS, one of these bands exhibited the same mobility as polypeptide B1. Enzymic staining of non-SDS-polyacrylamide gels showed that this protein has Ca2+- and Mg2+-dependent ATPase activity. Its possible role in membrane fusion is discussed.  相似文献   

16.
A method for preparing large membrane fragments and cell ghosts was developed for uninfected and Rous sarcoma virus-transformed chicken embryo fibroblasts in culture. Membrane proteins were analyzed by electrophoresis in acrylamide gels containing sodium dodecyl sulfate. A major amino-acid-containing component of uninfected cell membranes was greatly diminished in amount or absent in membranes of virus-transformed cells. This component, called MP-1, had an electrophoretic mobility in sodium dodecyl sulfate-containing gels similar to that of a protein of a mol wt of 1.42 x 10(5). MP-1 was not altered by changes in cell growth rate or in cells infected with the nontransforming virus RAV-1.  相似文献   

17.
Band 3 is the predominant approximately 90,000-dalton polypeptide component of the human erythrocyte membrane. It was solubilized selectively, along with the other major glycoproteins, by extracting membrane ghosts with Triton X-100 under nondenaturing conditions. Two major polypeptides remained associated with Band 3 under these conditions; however one (Band 6) could be dissociated at an ionic strength of 0.15 and the other (Band 4.2) by treatment with p-chloromercuribenzoate. Band 3 was then purified (greater than or equal to 97%) by aminoethyl cellulose ion exchange chromatography. The isolated protein was free of phospholipid and was moderately enriched in apolar amino acid residues; it contained galactose and glucosamine but very little sialic acid and galactosamine. When Band 3 was labeled by treatment of ghosts with galactose oxidase plus KB3H4 and then purified, the electrophoretic mobility of its radioactivity lagged slightly behing that of its Coomassie blue staining profile. Variation in glycosylation could therefore cause the diffuse trailing zone characteristically observed for Band 3 on polyacrylamide gel electrophoresis in sodium dodecyl sulfate. The ultraviolet circular dichroism of Band 3 was stable in nonionic detergent and suggested an alpha helix content of 43%, a value close to that estimated for this polypeptide in the membrane.  相似文献   

18.
In an attempt to determine which membrane proteins are essential to the stereospecific uptake of D-glucose, isolated human erythrocyte membranes were exposed to a variety of reagents capable of selectively extracting various membrane proteins. These reagents included EDTA, lithium 3,5-diiodosalicylate, sodium iodide, and 2,3-dimethylmaleic anhydride. Selective elution of spectrin and Components 2.1, 2.2, 2.3, 4.1, 4.2, 5, and 6 representing 65% of the ghost protein has no effect on the uptake of D-glucose. All of the sugar transport proteins are associated with a membrane residue consisting of the proteins of Bands 3, 4.5, and 7, the periodic acid-Schiff-sensitive glycoproteins, and ghost phospholipids. Specific cross-linking of the proteins of Band 3 of ghosts by the catalyzed oxidation of intrinsic sulfhydryl groups with the o-phenanthroline-cupric ion complex inhibits D-glucose uptake and alters the relative electrophoretic mobility of Band 3 proteins in sodium dodecyl sulfate-polyacrylamide-agarose gels. This uptake activity and the relative mobility of Band 3 proteins are recovered upon reversal of the cross-linking reaction by reduction with 2-mercaptoethanol. These results and other observations indicate that the D-glucose transport protein is an intrinsic component of the hydrophobic structure of the erythrocyte membrane and may be associated with the proteins of Band 3 which are glycoproteins spanning the membrane bilayer. It is proposed that D-glucose transport occurs through a water-filled channel formed by specific subunit aggregates of the transport proteins in the erythrocyte membrane rather than by rotation of the protein within the plane of the membrane.  相似文献   

19.
Red cell membrane alterations in human chronic fluoride toxicity.   总被引:2,自引:0,他引:2  
Red cells from humans exposed chronically to toxic levels of fluoride through drinking water showed significant increase in lipid peroxidation and membranous cholesterol and phospholipids. Additionally, electrophoretic patterns of ghost membrane proteins revealed the presence of a new band in the range of congruent to 66 Kd and increase in the high molecular weight protein and predominance of bands with a molecular weight of congruent to 93 Kd and congruent to 20 Kd. The activities of total, Na(+)-K(+)-, Mg(2+)- and Ca(2+)-ATPases were significantly decreased in the red cell ghosts of fluorotic patients.  相似文献   

20.
Human red blood cells (RBCs) adhere to and are lysed by schistosomula of Schistosoma mansoni. We have investigated the mechanism of RBC lysis by comparing the dynamic properties of transmembrane protein and lipid probes in adherent ghost membranes with those in control RBCs and in RBCs treated with various membrane perturbants. Fluorescence photobleaching recovery was used to measure the lateral mobility of two integral membrane proteins, glycophorin and band 3, and two lipid analogues, fluorescein phosphatidylethanolamine (Fl-PE) and carbocyanine dyes, in RBCs and ghosts adherent to schistosomula. Adherent ghosts manifested 95-100% immobilization of both membrane proteins and 45-55% immobilization of both lipid probes. In separate experiments, diamide-induced cross-linking of RBC cytoskeletal proteins slowed transmembrane protein diffusion by 30-40%, without affecting either transmembrane protein fractional mobility or lipid probe lateral mobility. Wheat germ agglutinin- and polylysine-induced cross-linking of glycophorin at the extracellular surface caused 80-95% immobilization of the transmembrane proteins, without affecting the fractional mobility of the lipid probe. Egg lysophosphatidylcholine (lysoPC) induced both lysis of RBCs and a concentration-dependent decrease in the lateral mobility of glycophorin, band 3, and Fl-PE in ghost membranes. At a concentration of 8.4 micrograms/ml, lysoPC caused a pattern of protein and lipid immobilization in RBC ghosts identical to that in ghosts adherent to schistosomula. Schistosomula incubated with labeled palmitate released lysoPC into the culture medium at a rate of 1.5 fmol/h per 10(3) organisms. These data suggest that lysoPC is transferred from schistosomula to adherent RBCs, causing their lysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号