首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Recently, larvae of Ostrinia were found feeding on the leopard plant Farfugium japonicum (Asteraceae), previously unrecorded as a host plant of this genus. The adult moths that developed from these borers were morphologically similar to, but distinct from, Ostrinia zaguliaevi, a monophagous species specialized for feeding on another Asteraceae plant, the butterbur Petasites japonicus. Although the taxonomical status of the moth feeding on F. japonicum is to be determined, distinct morphological differences in the adults strongly suggest this to be a new species (hereafter referred to as O. sp.). To gain an insight into the reproductive isolation between O. sp. and other members of the genus Ostrinia, the female sex pheromone and the males’ response to it were investigated using samples collected from F. japonicum. (Z)‐9‐tetradecenyl acetate (Z9‐14:OAc), (Z)‐11‐tetradecenyl acetate (Z11‐14:OAc), (E)‐11‐tetradecenyl acetate (E11‐14:OAc), tetradecyl acetate, and (Z)‐11‐hexadecenyl acetate were identified as candidates for sex pheromone components by analyses using gas chromatographs coupled to a mass spectrometer (GC‐MS) and electroantennographic detector (GC‐EAD). A series of bioassays of male responses in a wind‐tunnel and a field cage indicated that the former three compounds are essential for attracting males, and the latter two have no synergistic effect on the attraction. We therefore concluded that Z9‐14:OAc, Z11‐14:OAc and E11‐14:OAc are the sex pheromone components of O. sp. Although the same three compounds are used as the sex pheromone components of O. zaguliaevi and another congener, Ostrinia zealis, the blend proportions differed greatly among the three (Z9‐14:OAc/Z11‐14:OAc/E11‐14:OAc = 18/76/6 in O. sp., 45/50/5 in O. zaguliaevi and 70/6/24 in O. zealis). Differences in sex pheromones could contribute to the reproductive isolation between O. sp. and the other two Ostrinia species if males of each species exhibit a narrow window of response to their own blend ratio.  相似文献   

2.
Traps baited with the sex pheromone blend of (Z7)‐ and (Z5)‐tetradecenyl acetate captured significant numbers of male spotted cutworm moths, Xestia c‐nigrum (L.) compared to unbaited traps. Nearly no males were captured in traps baited with (Z7)‐tetradecenyl acetate, the major pheromone component. Antennae of spotted cutworm males responded to (Z7)‐, (E7)‐, (Z5)‐ and (E5)‐tetradecenyl acetate in the laboratory; however there was no response by moths in the field to the E isomers when presented in traps as major and minor components respectively of a binary blend or to the (E7) isomer as a single component. These findings clarify the makeup of a sex attractant that can be used for monitoring X. c‐nigrum on agricultural crops in Washington. However, multi‐year season‐long monitoring of spotted cutworm moths in Yakima Valley apple orchards revealed differential responses to pheromone and blacklight traps. A spring flight period showed a strong moth response to the pheromone compared to blacklight, while a later summer flight period showed a weak moth response to the pheromone relative to blacklight. At this time, we do not know which trap type might best indicate spotted cutworm abundance and risk to crops.  相似文献   

3.
Patterns of mating for the European corn borer (Ostrinia nubilalis) moth depend in part on variation in sex‐pheromone blend. The ratio of (E)‐11‐ and (Z)‐11‐tetradecenyl acetate (E11‐ and Z11‐14:OAc) in the pheromone blend that females produce and males respond to differs between strains of O. nubilalis. Populations also vary in female oviposition preference for and larval performance on maize (C4) and nonmaize (C3) host plants. The relative contributions of sexual and ecological trait variation to the genetic structure of O. nubilalis remains unknown. Host‐plant use (13C/14C ratios) and genetic differentiation were estimated among sympatric E and Z pheromone strain O. nubilalis males collected in sex‐pheromone baited traps at 12 locations in Pennsylvania and New York between 2007 and 2010. Among genotypes at 65 single nucleotide polymorphism marker loci, variance at a position in the pheromone gland fatty acyl‐reductase (pgfar) gene at the locus responsible for determining female pheromone ratio (Pher) explained 64% of the total genetic differentiation between males attracted to different pheromones (male response, Resp), providing evidence of sexual inter‐selection at these unlinked loci. Principal coordinate, Bayesian clustering, and distance‐based redundancy analysis (dbRDA) demonstrate that host plant history or geography does not significantly contribute to population variation or differentiation among males. In contrast, these analyses indicate that pheromone response and pgfar‐defined strain contribute significantly to population genetic differentiation. This study suggests that behavioural divergence probably plays a larger role in driving genetic variation compared to host plant‐defined ecological adaptation.  相似文献   

4.
In two races of European corn-borer moths (ECB), the E-race females emit and males respond to 99:1 sex pheromone blend of (E)/(Z)-11-tetradecenyl acetates, whereas the Z-race females and males produce and respond to the opposite 3:97 pheromone blend of (E)/(Z)-11-tetradecenyl acetates, respectively. We previously have shown that female production of the final blend ratio is under control of a major autosomal locus but that the sequence of male upwind flight responses to the blend is controlled by a sex-linked (Z-linked) locus. This sex-linked control of behavioral responses in crosses of E and Z ECB now is confirmed by use of sex-linked TPI (triose phosphate isomerase) allozyme phenotypes to determine the origin of the sex chromosomes in F2 populations. F1 males from reciprocal E × Z crosses generate similar behavioral-response profiles in wind-tunnel studies, with moderate numbers responding to the Z pheromone and intermediate blends (35%–65% Z), but very few responding to the E pheromone. The F2 behavioral-response profiles indicate that they are composed of 1:1 mixtures of hybrids and paternal profiles. Analysis of TPI allozyme differences allowed us to separate male F2 populations into individuals whose Z chromosomes both originated from their grandfathers, and individuals who had one Z chromosome originating from each grandparent. With these partitioned F2s, the TPI homozygotes exhibited behavioral-response profiles very much like their grandfathers, whereas the TPI hybrids produced response profiles similar to their heterozygous F1 fathers. These results demonstrate incontrovertibly that the response to sex pheromone in male ECB is controlled by a sex-linked gene that is tightly linked to the TPI locus and therefore is independent of the locus controlling pheromone blend production in females.  相似文献   

5.
Bioassays using gravid females of the adzuki bean borer, Ostrinia scapulalis (Walker), and the Asian corn borer, O. furnacalis (Guenée) (Lepidoptera: Crambidae), showed that the presence of an egg mass of a conspecific deters oviposition. Volatile chemicals emanating from the egg mass were responsible for the deterrence, and these deterrents could be extracted from the egg mass with hexane. When fractionated using a Sep‐Pak® Plus NH2 cartridge, the deterrents were eluted with a 98 : 2 mixture of diethyl ether and acetic acid (polar lipid fraction). The polar lipid fraction contained free fatty acids with 14–20 carbons, and palmitic acid, palmitoleic acid, and oleic acid were predominant. A blend of all identified fatty acids, a blend of six major fatty acids (palmitic, palmitoleic, stearic, oleic, linoleic, and linolenic acids), a blend of the two Z‐9‐alkenoic acids (palmitoleic and oleic acids), palmitoleic acid alone, and oleic acid alone showed deterrence against O. scapulalis which was comparable to that provoked by the full egg extract. The dose‐dependency of the deterrent effects of palmitoleic acid and oleic acid was verified in O. scapulalis. The binary blend of palmitoleic acid and oleic acid was also confirmed to deter oviposition in O. furnacalis.  相似文献   

6.
Female European corn borer, Ostrinia nubilalis, produce and males respond to sex pheromone blends with either E‐ or Z‐Δ11‐tetradecenyl acetate as the major component. E‐ and Z‐race populations are sympatric in the Eastern United States, Southeastern Canada, and the Mediterranean region of Europe. The E‐ and Z‐pheromone races of O. nubilalis are models for incipient species formation, but hybridization frequencies within natural populations remain obscure due to lack of a high‐throughput phenotyping method. Lassance et al. previously identified a pheromone gland‐expressed fatty‐acyl reductase gene (pgfar) that controls the ratio of Δ11‐tetradecenyl acetate stereoisomers. We identified three single nucleotide polymorphism (SNP) markers within pgfar that are differentially fixed between E‐ and Z‐race females, and that are ≥98.2% correlated with female pheromone ratios measured by gas chromatography. Genotypic data from locations in the United States demonstrated that pgfar‐z alleles were fixed within historically allopatric Z‐pheromone race populations in the Midwest, and that hybrid frequency ranged from 0.00 to 0.42 within 11 sympatric sites where the two races co‐occur in the Eastern United States (mean hybridization frequency or heterozygosity (HO) = 0.226 ± 0.279). Estimates of hybridization between the E‐ and Z‐races are important for understanding the dynamics involved in maintaining race integrity, and are consistent with previous estimates of low levels of genetic divergence between E‐ and Z‐races and the presence of weak prezygotic mating barriers.  相似文献   

7.
8.
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae), is a worldwide pest of cruciferous crops. We examined the female pheromone production and male response to various pheromone blends in two Korean populations. Gas chromatography (GC) and GC‐mass spectrometry (MS) analyses of pheromone gland extracts revealed that females produce (Z)‐11‐hexadecenal (Z11‐16:Ald), (Z)‐11‐hexadecenyl acetate (Z11‐16:OAc), and (Z)‐11‐hexadecen‐1‐ol (Z11‐16:OH) in a ratio of 8:100:18. However, (Z)‐9‐tetradecenyl acetate (Z9‐14:OAc), a previously reported component of the sex attractant of a Canadian P. xylostella population was not detected in gland extracts of the Korean one. Field tests showed that Z11‐16:Ald and Z11‐16:OAc are essential for attraction of male moths, and the highest attraction is obtained with a 10:90 blend mimicking the blend found in gland extracts. Addition of 1 or 10% of Z11‐16:OH to the 10:90 blend of Z11‐16:Ald and Z11‐16:OAc significantly increased attraction. However, attraction was strongly antagonized by the addition of as little as 0.1% of Z9‐14:OAc to the most attractive ternary blend. The ternary blend of Z11‐16:Ald, Z11‐16:OAc, and Z11‐16:OH at a ratio of 10:90:1 was more effective at catching P. xylostella males than the Japanese three‐component blend or the Canadian four‐component blend in Korea. These results suggest that there is geographical variation in the pheromone systems of this species.  相似文献   

9.
J. Zhu  C. Lofstedt    B. O. Bengtsson 《Genetics》1996,144(2):757-766
The major difference in pheromone production between the so-called E and Z strains of the European corn borer Ostrinia nubilalis is controlled by two alleles at a single autosomal locus. E-strain females produce an (E)-11-tetradecenyl acetate pheromone with 1-3% of the Z isomer, whereas Z-strain females produce the opposite blend. In laboratory-reared insects we found that F(1) females produced, on average, a 71:29 E/Z ratio, but the distribution was clearly bimodal. The variability in pheromone blend produced by heterozygous females could be explained by the existence of two different alleles in the Z strain which in combination with the E-strain allele for the major production locus cause the production of a component mixture either high or low in the E isomer. In addition, evidence was found for an independently inherited factor, existing in the E strain, with a dominant effect on the amount of E isomer produced by females homozygous for Z-alleles at the major production locus. Thus, the low variability normally found in the pheromone mixture produced by O. nubilalis and other moth females may, by canalization, hide a considerable amount of underlying genetic variation.  相似文献   

10.
Athetis lepigone has been recorded in many countries in Europe and Asia, but it had never been documented as an agricultural pest until 2005. For the purpose of using the sex pheromone to control this pest, we conducted a study to identify the sex pheromone of A. lepigone by gas chromatography with an electroantennographic detector (GC‐EAD) and GC coupled with mass spectrometry (GC/MS) analyses. Three pheromone candidates were detected by GC‐EAD analysis in the extracts of the female sex pheromone gland, and two candidates were identified as (Z)‐7‐dodecenyl acetate (Z7‐12:OAc) and (Z)‐9‐tetradecenyl acetate (Z9‐14:OAc) in a ratio of 1:5 by mass spectral analysis of natural pheromone components and dimethyl disulphide adducts. In the field male trapping test, the traps baited with the binary blend captured high number of males, while traps with single component hardly caught males, indicating that the two components are essential for the male attractiveness. In addition, the optimum ratios of Z7‐12:OAc and Z9‐14:OAc were determined as 3:7–7:3, and the best doses for the binary blend (at ratio of 3:7 between Z7‐12:OAc and Z9‐14:OAc) were 0.25–0.5 mg/trap, based on the number of male catches. The identification of a highly attractive sex pheromone will help in developing efficient strategies for monitoring and control of A. lepigone.  相似文献   

11.
Abstract 1 Chemical analyses of solvent extracts of pheromone glands of female western yellowstriped armyworm moths Spodoptera praefica (Grote) indicated the presence of (Z)‐7‐dodecenol (Z)‐7‐dodecenyl acetate (Z)‐9‐dodecenyl acetate (Z)‐9‐tetradecenyl acetate and (Z)‐11‐hexadecenyl acetate. 2 In field tests of combinations of these chemicals, small numbers of male S. praefica were captured in traps baited with (Z)‐7‐dodecenyl acetate. Numbers of males captured in traps were greatly increased in response to blends that included both (Z)‐7‐dodecenyl acetate with either (Z)‐9‐tetradecenyl acetate (Z)‐9‐dodecenyl acetate. The combination of (Z)‐7‐dodecenyl acetate and (Z)‐9‐tetradecenyl acetate provided the strongest sex attractant for use in trapping male S. praefica. 3 Males of the cabbage looper Trichoplusia ni (Hübner) were captured in traps baited with blends possessing (Z)‐7‐dodecenyl acetate, and were greatly reduced in traps baited with blends that included (Z)‐7‐dodecenol. 4 Multi‐component blends that included (Z)‐7‐dodecenol attracted males of the alfalfa looper Autographa californica (Speyer). 5 Males of Peridroma saucia (Hübner) and Mamestra configurata Walker were captured in traps that included (Z)‐9‐tetradecenyl acetate with (Z)‐11‐hexadecenyl acetate. 6 These responses by other species of moths to S. praefica pheromone components and blends may still complicate the use of any lure for S. praefica.  相似文献   

12.
Monema flavescens Walker (Lepidoptera: Limacodidae) is a multivoltine, generalist moth whose larvae cause serious damage to many types of trees. Pheromone lures prepared according to a study of a Japanese population were found to be ineffective at attracting M. flavescens nettle caterpillars in China, and some studies have shown intraspecific geographical differences in the composition of sex pheromones. We therefore reexamined the sex pheromone composition of M. flavescens in a Chinese population. In this study, the electroantennographically (EAG) active compounds in an extract from Chinese virgin females of M. flavescens were identified as (E)‐8‐decen‐1‐ol (E8‐10:OH), (Z)‐7,9‐decadien‐1‐ol (Z7,9‐10:OH), (Z)‐9,11‐dodecadien‐1‐ol (Z9,11‐12:OH), and (Z)‐9,11‐dodecadienal (Z9,11‐12:Ald) via coupled gas chromatographic‐electroantennographic detection (GC‐EAD) and coupled GC‐mass spectrometry (MS). Pheromone dimorphism might occur in this species, as this mixture of compounds in Chinese females was different from that of E8‐10:OH and E7,9‐10:OH extracted from Japanese females in previous research. In wind tunnel and field tests, the males were significantly attracted to a blend of the pheromone components E8‐10:OH, Z7,9‐10:OH, and Z9,11‐12:OH in a 100:5:4 ratio. The addition of Z9,11‐12:Ald did not change the male response. The optimized three‐component lure blend may provide a useful tool for monitoring and controlling Chinese populations of M. flavescens.  相似文献   

13.
14.
The antennal and behavioural response of three tortricid species (Lepidoptera: Tortricidae) to their corresponding sex pheromones and known or putative behavioural antagonists was tested by electroantennography and in field trials. The species and their pheromones and known or proposed behavioural antagonist were lightbrown apple moth, Epiphyas postvittana (Walker) [pheromone: 95% (E)‐11‐tetradecenyl acetate (E11‐14Ac) and 5% (E,E)‐9,11‐tetradecadienyl acetate (E9E11‐14Ac); antagonist: (Z)‐11‐tetradecenyl acetate (Z11‐14Ac)], codling moth, Cydia pomonella (L.) [pheromone: (E,E)‐8,10‐dodecadien‐1‐ol (codlemone); antagonist: (E,E)‐8,10‐dodecadienyl acetate (codlemone acetate)], and gorse pod moth, Cydia ulicetana (Haworth) [pheromone: (E,E)‐8,10‐dodecadienyl acetate (codlemone acetate); putative antagonist: (E,E)‐8,10‐dodecadien‐1‐ol (codlemone)]. In all three species, the antennal response to the antagonists was not significantly different from the antennal response to con‐specific sex pheromone compounds. In the field trapping experiments, significantly fewer males of all three species were attracted to the respective pheromone when blended with the behavioural antagonist compound. However, this response varied between the species, with lightbrown apple moth and codling moth showing stronger responses to the antagonist compounds than gorse pod moth. Both lightbrown apple moth and codling moth males were able to discriminate between pure pheromone and pheromone blended with the antagonist when placed in traps side‐by‐side separated by ca. 10 cm. The presence of the behavioural antagonist not only affected the catch of males of both species within their own traps but also affected the catch in the neighbouring trap that contained con‐specific sex pheromone; the catch of gorse pod moth was not reduced by the presence of codlemone in the neighbouring trap. These results suggest that strong behavioural antagonists such as codlemone acetate for codling moth and Z11‐14Ac for lightbrown apple moth induce their inhibition effect at a substantial distance downwind from the odour source; however, most of those males that were able to overcome this inhibition effect at the early stage of orientation to odour source, were able to discriminate between the pheromone source and the pheromone source admixed with behavioural antagonist. Moderate behavioural antagonists such as codlemone for gorse pod moth did not elicit a discrimination effect.  相似文献   

15.
Responses from pheromone‐specific receptor neurones in male Agrotis segetum (Denis & Schiffermüller) (Lepidoptera: Noctuidae) were recorded in a laboratory wind tunnel. Stimuli were: (1) rubber septum dispensers loaded with single components or a four‐component pheromone blend, (2) excised glands from female A. segetum, (3) constrained A. segetum females with extruded glands. Dose–response curves for three neurone‐types with different specificity were established. The neurones were specifically tuned to respond to either one of the two pheromone components (Z)‐5‐decenyl acetate and (Z)‐7‐dodecenyl acetate, or to the behavioural antagonist (Z)‐5‐decenol. In parallel, a behavioural dose–response curve with males flying upwind to a four‐component pheromone blend was established. There was a clear correlation between behavioural arrestment of upwind flight and maximum spiking activity in Z5–10:OAc‐specific neurones. The pheromone release rates of individual females and synthetic dispensers were compared. A load of 50–200 ng of Z5–10:OAc on a rubber septum elicited approximately the same neural response as one female gland.  相似文献   

16.
The sex pheromone blend of the butterbur borer, Ostrinia zaguliaevi (Lepidoptera: Pyralidae) was analyzed by means of gas chromatography-electroantennographic detection (GC-EAD), GC-mass spectrometry and a series of wind-tunnel bioassays. Four EAD-active compounds were detected in the female sex pheromone gland extract, and these were identified as tetradecyl acetate (14:OAc), (Z)-9-tetradecenyl acetate (Z9-14:OAc), (E)-11-tetradecenyl acetate (E11-14:OAc) and (Z)-11-tetradecenyl acetate (Z11-14:OAc). The average amounts ± s.d. of the four compounds in a single sex pheromone gland were 7.9±3.7 ng, 10.1±3.2 ng, 1.1±0.5 ng and 11.6±5.1 ng, respectively. In a wind-tunnel bioassay, the ternary blend of Z9-, E11- and Z11-14:OAc at a ratio found in the sex pheromone gland (45:5:50) elicited the same behavioral responses from the males as did virgin females and pheromone gland extract. Removal of any single compound from the ternary blend significantly diminished the pheromonal activity, whereas addition of 14:OAc to the ternary blend had no effect on the males' behavioral responses. Therefore, it was concluded that the sex pheromone blend of O. zaguliaevi is composed of Z9-14:OAc, E11-14:OAc and Z11-14:OAc at a ratio of 45:5:50.  相似文献   

17.
Olfactory receptor neuron (ORN) response was measured to assess why some males ("rare males") of the Asian corn borer (ACB), Ostrinia furnacalis, have a broad behavioral response to fly upwind to both the ACB and the European corn borer (ECB), Ostrinia nubilalis, pheromone blends. We performed single-sensillum electrophysiological recordings on ACB males that had been behaviorally assessed for upwind flight response to the ACB blend [60:40 (Z)-12-tetradecenyl acetate (Z12-14:OAc) to (E)-12-tetradecenyl acetate (E12-14:OAc)], as well as to ECB (Z-strain) and ECB (E-strain) blends [3:97 and 99:1 (Z)-11-tetradecenyl acetate (Z11-14:OAc) to (E)-11-tetradecenyl acetate (E11-14:OAc)]. Sensilla from all types of males had large- and small-spike-sized ORNs responding strongly to Z12- or E12-14:OAc, but weakly to Z11- and E11-14:OAc. In the majority of males ("normal males") that flew upwind only to the ACB blend, Z11-14:OAc elicited responses in an intermediate spike-sized ORN associated with behavioral antagonism that is mainly tuned to (Z)-9-tetradecenyl acetate (Z9-14:OAc). In the rare-type ACB males that flew to both the ACB and ECB pheromone blends, Z11-14:OAc did not stimulate this ORN. Increased responsiveness to ancestral pheromone components by ORNs associated with behavioral antagonism could be instrumental in reproductive character displacement, or in reinforcement and reproductive isolation during speciation by helping to increase assortative mating between males and females in derived populations that use novel sex pheromone blends.  相似文献   

18.
The cocoa pod borer (CPB), Conopomorpha cramerella (Snellen), sex pheromone was previously identified as a blend of (E,Z,Z)‐ and (E,E,Z)‐4,6,10‐hexadecatrienyl acetates and corresponding alcohols. These pheromone components were synthesized by modification of an existing method and the relative attractiveness of synthetic blends that included different levels of non‐target pheromone components and chemical purities was tested in a cocoa field using Delta traps. Male captures were not significantly different among traps baited with pheromone blends containing 5% to 47% (based on four identified pheromone components) of other geometric acetates [(E,Z,E)‐, (Z,Z,Z)‐, (Z,E,Z)‐ and (Z,E,E)‐4,6,10‐hexadecatrienyl acetates], indicating that C. cramerella males did not discriminate among the pheromone components and other geometric isomers in the blends. Therefore, neither antagonistic nor synergistic effects from other pheromone geometric isomers were observed. The modified synthetic pathway offers the prospect of more economical production of CPB sex pheromone. During 17 weeks when C. cramerella monitoring coincided with the main cocoa pod harvest period in 2013–2014, CPB trap catch data from some blends showed a good correlation with the number of pods with C. cramerella infestation symptoms.  相似文献   

19.
Extracts of the female sex pheromone gland of the carpenterworm moth, Holcocerus vicarius (Walker) (Lepidoptera: Cossidae), a pest of Ulmus pumila L. (Ulmaceae), were found to contain Z7‐tetradecenyl acetate (Z7‐14Ac), E3‐tetradecenyl acetate (E3‐14Ac), (Z3,E5)‐tetradecenyl acetate (Z3,E5‐14Ac), and Z7‐tetradecenyl alcohol (Z7‐14OH) by coupled gas chromatographic‐electroantennographic detection (GC‐EAD) and coupled gas chromatography‐mass spectrometry (GC‐MS). Field trapping studies with impregnated rubber septa indicated that Z7‐14Ac was essential for attraction of males of H. vicarius. However, the most attractive blend contained Z7‐14Ac, E3‐14Ac, Z3,E5‐14Ac, and Z7‐14OH in a 50:22:17:10 ratio. Our results demonstrated that a blend of Z7‐14Ac, E3‐14Ac, Z3,E5‐14Ac, and Z7‐14OH represented the sex pheromone of H. vicarius. The optimized four‐component lure blend may be useful for monitoring H. vicarius infestations and mating disruption.  相似文献   

20.
The sex pheromone of Phyllonorycter ringoniella (Matsumura) (Lepidoptera: Gracillariidae) has been identified to be a blend of (Z)‐10‐tetradecenyl acetate (Z10‐14:OAc) and E4,Z10‐tetradecadienyl acetate (E4,Z10‐14:OAc) in Japan, Korea, and China. However, the commercial product based on previous results is not attractive enough to be used for monitoring and controlling apple leafminer populations in the field. We re‐investigated the attractiveness of the two pheromone components, singly and in blends, in apple orchards in Shangdong and Shaanxi, the main apple‐growing provinces in China. Our results revealed that Z10‐14:OAc alone was not attractive to Pringoniella male moths in the field, but E4,Z10‐14:OAc alone not only was strongly attractive but caught more males than any of the blends of Z10‐14:OAc and E4,Z10‐14:OAc tested. The most attractive blend ratios differed slightly for the two locations. No clear dose–response relationship was obtained for the 2:8 blend of Z10‐14:OAc and E4,Z10‐14:OAc. However, the dose–response field study of E4,Z10‐14:OAc alone showed that 1 mg per lure achieved the highest moth catch. These findings differ from the previous report of the best pheromone blend in China. Our data showed that E4,Z10‐14:OAc is the major component of the pheromone of Pringoniella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号