首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NMDA receptors are allosterically inhibited by Zn2+ ions in a voltage-independent manner. The apparent affinity for Zn2+ of the heteromeric NMDA receptors is determined by the subtype of NR2 subunit expressed, with NR2A-containing receptors being the most sensitive (IC50, approximately 20 nM) and NR2C-containing receptors being the least sensitive (IC50, approximately 30 microM). Using chimeras constructed from these two NR2 subtypes, we show that the N-terminal LIVBP-like domain of the NR2A subunit controls the high-affinity Zn2+ inhibition. Mutations at four residues in this domain markedly reduce Zn2+ affinity (by up to >500-fold) without affecting either receptor activation by glutamate and glycine or inhibition by extracellular protons and Ni2+ ions, indicating that these residues most likely participate in high-affinity Zn2+ binding.  相似文献   

2.
Lead (Pb2+) is a potent neurotoxin that acts as a non-competitive, voltage-independent antagonist of the NMDA receptor (NR) channel. Pb2+ action partially overlaps with that of zinc (Zn2+), but precise coincidence with Zn2+ binding site is debated. We investigated the site of Pb2+ interaction in NR channels expressed in Xenopus laevis oocytes from the clones zeta1, epsilon1 or epsilon2 and mutated epsilon1 or epsilon2 forms. For each epsilon subunit we chose two mutations that have been identified as 'strong mutations' for Zn2+ binding and examined the effect of Pb2+ on channels that contained those mutations. In epsilon1-containing channels, mutations D102A and H128A caused a decrease of Pb2+ inhibition with a 10-fold (D102A) and four-fold (H128A) shift of IC50. In epsilon2-containing channels, the most effective mutation in removing Pb2+ inhibition was H127A, with a five-fold increase of IC50, while D101A was virtually ineffective. Other mutations, D104A, T103A, and T233A, were less effective. The double mutation D101AH127A, while reducing Zn2+ inhibition by nearly nine-fold, caused a minor (less than two-fold) shift in Pb2+ IC50. Competition experiments showed that increasing doses of Zn2+ reduced the apparent affinity for Pb2+ in epsilon1-containing receptors, but not in epsilon2-containing receptors. In addition the effect of Pb2+ on epsilon2-containing channels was additive with that of ifenprodil, with no competition for the site. Although none of the mutations that we have tested abolished the block by Pb2+, our results indicate that the action of this toxic metal on NR channels is more dependent on the receptor composition than previously thought, because Zn2+ is able to displace Pb2+ from its binding site in epsilon1-containing channels, but not in epsilon2-containing channels.  相似文献   

3.
The effects of cyclophanes (CPCn, CPPy and TGDMAP) and acyclic cyclophane (ATGDMAP) on various glutamate receptors were studied with these receptors expressed in Xenopus oocytes using voltage-clamp recording. CPCn, CPPy, TGDMAP and ATGDMAP were found to inhibit macroscopic currents at heteromeric NMDA receptors (NR1/NR2), but not Ca(2+)-permeable AMPA receptors (GluR1), Ca(2+)-nonpermeable AMPA receptors (GluR1/GluR2) and metabotropic glutamate receptors (mGluR1alpha). The inhibition of NR1/NR2A receptors by these compounds was more potent than those of the other NMDA receptor subtypes. At a resting potential (-70 mV), the IC(50) values of CPCn, CPPy, TGDMAP and ATGDMAP for NR1/NR2A receptors were 0.5+/-0.1, 1.0+/-0.2, 8.0+/-0.8 and 4.9+/-0.5 microM, respectively. The inhibition by these compounds was voltage-dependent, that is, the degree of inhibition was in the order of negative holding potentials, -100 mV>-70 mV>-20 mV. Results of experiments using mutant NR1 and NR2 subunits identified residues that influence block by CPCn. The inhibition by CPCn was not altered significantly in the mutants at the critical asparagines in the M2 loop, NR1 N616, NR2B N615 and NR2B N616, these residues are known to form the narrowest region of the channel and the binding site of Mg(2+). However, mutations at NR1 N650, located in the vestibule of channel pore, and NR1 D669, located in the extracellular region, reduced the inhibition by CPCn, suggesting that these amino acid residues interact with CPCn. These results suggest that CPCn interacts directly with the mouth or vestibule of the ion channel, like a lid.  相似文献   

4.
The channel activity of NMDA receptors is regulated by phosphorylation by protein kinases and by interaction with other proteins. Recombinant NR1/NR2A subtype NMDA receptor channels are potentiated by the protein tyrosine kinase Src, an effect which is mediated by a reduction in the high-affinity, voltage-independent Zn(2+) inhibition. However, it has been reported that Src-induced potentiation of NMDA receptor currents in hippocampus neurons is not mediated by a reduction in Zn(2+) inhibition. The post-synaptic density protein PSD-95 interacts with the C-terminus of NR2 subunits of the NMDA receptor. Here we demonstrate that PSD-95 eliminates the Src-induced potentiation of NR1/NR2A channels expressed in oocytes and reduces the sensitivity of the channels to Zn(2+). Our results reveal that the absence of Src-induced potentiation of PSD-95-coupled NR1/NR2A channels is not to due to the reduced sensitivity of these channels to Zn(2+). These results indicate that PSD-95 functionally modulates NR1/NR2A channels and explain why Src-induced potentiation of NMDA receptor currents in hippocampus neurons is not mediated by a reduction in Zn(2+) inhibition.  相似文献   

5.
N-methyl-d-aspartate receptor (NMDAR) stimulation activates many downstream mechanisms involved in both cell survival and cell death. The manner in which the NMDAR regulates one of these pathways, the p38 mitogen-activated protein kinase (p38) pathway, is currently unknown. In the present study, we have defined a developmental-, concentration-, and time-dependent phosphorylation and subsequent dephosphorylation of p38. In cultured hippocampal neurons 7-8 days in vitro (DIV7-8), NMDAR stimulation leads to a concentration-dependent increase in p38 phosphorylation (phospho-p38). However, in more mature neurons (>DIV17) application of NMDA produces concentration-dependent effects, such that low concentrations result in sustained increases in phospho-p38 levels, and high concentrations dephosphorylate p38 within 5 min. Conantokin G, an antagonist of NR1/2A/2B and NR1/2B receptors, inhibits p38 phosphorylation, while NR1/2B-specific antagonists prevent the rapid dephosphorylation of p38 without affecting p38 activation. Furthermore, inhibition of calcineurin prevents the activation of p38, whereas inhibition of phosphoinositide 3-kinase (PI3K) prevents the rapid dephosphorylation of p38. Our results support the presence of subtype-dependent pathways regulating p38 activation and deactivation: one involves NR1/2A/2B receptors activating calcineurin and resulting in p38 phosphorylation, and the other utilizes NR1/2B receptors binding to and activating PI3K and leading to the dephosphorylation of p38 in a manner involving both NR1/2A/2B receptor activation and tyrosine phosphorylation of NR2B. The ability of NMDAR subtype-specific mechanisms to regulate p38 has implications for NMDAR-mediated synaptic plasticity, gene regulation, and excitotoxicity.  相似文献   

6.
Activation of N-methyl-D-aspartate receptors (NMDARs) has been implicated in various forms of synaptic plasticity depending on the receptor subtypes involved. However, the contribution of NR2A and NR2B subunits in the induction of long-term depression (LTD) of excitatory postsynaptic currents (EPSCs) in layer II/III pyramidal neurons of the young rat visual cortex remains unclear. The present study used whole-cell patch-clamp recordings in vitro to investigate the role of NR2A- and NR2B-containing NMDARs in the induction of LTD in visual cortical slices from 12- to 15-day old rats. We found that LTD was readily induced in layer II/III pyramidal neurons of the rat visual cortex with 10-min 1-Hz stimulation paired with postsynaptic depolarization. D-APV, a selective NMDAR antagonist, blocked the induction of LTD. Moreover, the selective NR2B-containing NMDAR antagonists (Ro 25-6981 and ifenprodil) also prevented the induction of LTD. However, Zn2+, a voltage-independent NR2A-containing NMDAR antagonist, displayed no influence on the induction of LTD. These results suggest that the induction of LTD in layer II/III pyramidal neurons of the young rat visual cortex is NMDAR-dependent and requires NR2B-containing NMDARs, not NR2A-containing NMDARs.  相似文献   

7.
NMDA receptors (NMDARs), fundamental to learning and memory and implicated in certain neurological disorders, are heterotetrameric complexes composed of two NR1 and two NR2 subunits. The function of synaptic NMDARs in postnatal principal forebrain neurons is typically attributed to diheteromeric NR1/NR2A and NR1/NR2B receptors, despite compelling evidence for triheteromeric NR1/NR2A/NR2B receptors. In synapses, the properties of triheteromeric NMDARs could thus far not be distinguished from those of mixtures of diheteromeric NMDARs. To find a signature of NR1/NR2A/NR2B receptors, we have employed two gene-targeted mouse lines, expressing either NR1/NR2A or NR1/NR2B receptors without NR1/NR2A/NR2B receptors, and compared their synaptic properties with those of wild type. In acute hippocampal slices of mutants older than 4 weeks we found a distinct voltage dependence of NMDA R-mediated excitatory postsynaptic current (NMDA EPSC) decay time for the two diheteromeric NMDARs. In wild-type mice, NMDA EPSCs unveiled the NR1/NR2A characteristic for this voltage-dependent deactivation exclusively, indicating that the contribution of NR1/NR2B receptors to evoked NMDA EPSCs is negligible in adult CA3-to-CA1 synapses. The presence of NR1/NR2A/NR2B receptors was obvious from properties that could not be explained by a mixture of diheteromeric NR1/NR2A and NR1/NR2B receptors or by the presence of NR1/NR2A receptors alone. The decay time for NMDA EPSCs in wild type was slower than that for NR1/NR2A receptors, and the sensitivity of NMDA EPSCs to NR2B-directed NMDAR antagonists was 50%. Thus, NR2B is prominent in adult hippocampal synapses as an integral part of NR1/NR2A/NR2B receptors.  相似文献   

8.
In ionotropic glutamate receptors, many channel properties (e.g., selectivity, ion permeation, and ion block) depend on the residue (glutamine, arginine, or asparagine) located at the tip of the pore loop (the Q/R/N site). We substituted a cysteine for the asparagine present at that position in both NR1 and NR2 N-methyl-D-aspartate (NMDA) receptor subunits. Under control conditions, receptors containing mutated NR1 and NR2 subunits show much smaller glutamate responses than wild-type receptors. However, this difference disappears upon addition of heavy metal chelators in the extracellular bath. The presence of cysteines at the Q/R/N site in both subunits of NR1/NR2C receptors results in a 220,000-fold increase in sensitivity of the inhibition by extracellular Zn. In contrast with the high-affinity Zn inhibition of wild-type NR1/NR2A receptors, the high-affinity Zn inhibition of mutated NR1/NR2C receptors shows a voltage dependence, which resembles very much that of the block by extracellular Mg. This indicates that the Zn inhibition of the mutated receptors results from a channel block involving Zn binding to the thiol groups introduced into the selectivity filter. Taking advantage of the slow kinetics of the Zn block, we show that both blocking and unblocking reactions require prior opening of the channel.  相似文献   

9.
The trisomy 16 (Ts16) mouse is an animal model for human trisomy 21 (Down's syndrome). The gene encoding the NR2A subunit of the NMDA receptor has been localized to mouse chromosome 16. In the present study, western blot analysis revealed a 2.5-fold increase of NR2A expression in cultured Ts16 embryonic hippocampal neurons. However, this increase did not affect the properties of NMDA-evoked currents in response to various modulators. The sensitivity of NMDA receptors to transient applications of NMDA, spermine, and Zn(2+) was investigated in murine Ts16 and control diploid cultured embryonic hippocampal neurons. Peak and steady-state currents evoked by NMDA were potentiated by spermine at concentrations < 1 mM, and inhibited by Zn(2+) in a dose-dependent and voltage-independent manner. No marked difference was observed between Ts16 and control diploid neurons for any of these modulators with regard to IC(50) and EC(50) values or voltage dependency. Additionally, inhibition by the NR2B selective inhibitor, ifenprodil, was similar. These results demonstrate that NMDA-evoked currents are not altered in cultured embryonic Ts16 neurons and suggest that Ts16 neurons contain similar functional properties of NMDA receptors as diploid control neurons despite an increased level of NR2A expression.  相似文献   

10.
NMDA receptor (NMDAR)-mediated excitatory synaptic transmission plays a critical role in synaptic plasticity and memory formation, whereas its dysfunction may underlie neuropsychiatric and neurodegenerative diseases. The neuroactive steroid pregnenolone sulfate (PS) acts as a cognitive enhancer in impaired animals, augments LTP in hippocampal slices by enhancing NMDAR activity, and may participate in the reduction of schizophrenia's negative symptoms by systemic pregnenolone. We report that the effects of PS on NMDAR function are diverse, varying with subunit composition and NR1 splice variant. While PS potentiates NR1-1a/NR2B receptors through a critical steroid modulatory domain in NR2B that also modulates tonic proton inhibition, potentiation of the NMDA response is not dependent upon relief of such inhibition, a finding that distinguishes it from spermine. In contrast, the presence of an NR2A subunit confers enhanced PS-potentiation at reduced pH, suggesting that it may indeed act like spermine does at NR2B-containing receptors. Additional tuning of the NMDAR response by PS comes via the N-terminal exon-5 splicing insert of NR1-1b, which regulates the magnitude of proton-dependent PS potentiation. For NR2C- and NR2D-containing receptors, negative modulation at NR2C receptors is pH-independent (like NR2B) while negative modulation at NR2D receptors is pH-dependent (like NR2A). Taken together, PS displays a rich modulatory repertoire that takes advantage of the structural diversity of NMDARs in the CNS. The differential pH sensitivity of NMDAR isoforms to PS modulation may be especially important given the emerging role of proton sensors to both learning and memory, as well as brain injury.  相似文献   

11.
N-Methyl-D-aspartate (NMDA) receptors (NRs) are glutamate-gated channels critical for the functioning of the nervous system. They are assembled from two types of subunits, the essential GluN1 and at least one type of GluN2 (A, B, C, D) subunit. Nickel (Ni) modulates the NR current in a way dependent on the GluN2 subunit present. Besides voltage-dependent and voltage-independent inhibition, in GluN2B-containing channels Ni enhances channel activity. We have recently identified several domains of the channel involved in Ni interaction, but many aspects of this modulation remain elusive. The purpose of the present work is to investigate the role of calcium (Ca) in the effect of Ni on the NR current measured by voltage- and patch-clamp in RNA-injected Xenopus laevis oocytes or in transiently transfected mammalian HEK293 cells expressing GluN1/GluN2B recombinant receptors. In both expression systems, in the presence of a physiological concentration of Ca (1.8 mM), Ni increased the NR current with EC(50) in the μM range, but this potentiation was reduced by decreasing Ca concentration or when Ca was substituted with Ba. In injected oocytes, the effect of Ni in 0.3 mM external Ba was only inhibitory (IC(50) = 65 μM). Increasing the internal calcium buffering by EGTA and BAPTA application, as well as incubation with cytoskeleton perturbing agents, colchicine and cytochalasin-D, did not produce major modifications in the Ni effect. These observations indicate that Ni-mediated potentiation is not dependent on Ca influx and internal Ca concentration, but it is dependent on external Ca, which possibly interacts with the extracellular portion of the protein through a modulatory binding site.  相似文献   

12.
Using both ZnAF-2F (a Zn2+ specific fluorophore) and 65Zn2+, we determined the rate of transporter mediated Zn2+ influx (presumably mediated by the SLC39A1 gene product, protein name hZIP1) under steady state conditions and studied the effects of extracellular acidification. When K562 erythroleukemia cells were placed in Zn2+ containing buffers (1-60 microM), the initial rate of 65Zn2+ accumulation mirrored the apparent rise in free intracellular Zn2+ concentrations sensed by ZnAF-2F. Therefore, newly transported Zn2+ equilibrated with the free intracellular Zn2+ pool sensed by ZnAF-2F. A new steady state with elevated free intracellular Zn2+ was established after about 30 min. An estimate of 11 microM for the Km and 0.203 nmol/mg/s for the Vmax were obtained for Zn2+ influx. 65Zn2+ uptake and ZnAF-2F fluorescent changes were inhibited by extracellular acidification (range tested: pH 8-6, IC50 = pH 6.34). The IC50 for proton effects was close to the pKa for histidine, suggesting conserved histidine residues present in SLC39A1 play a critical role in Zn2+ influx and are involved in the pH effect.  相似文献   

13.
Abstract: A 45Ca2+ influx assay has been used to investigate the pharmacology of stably expressed recombinant human NR1a/NR2A and NR1a/NR2B N -methyl- d -aspartate (NMDA) receptors. Inhibition of glutamate-stimulated 45Ca2+ influx by six glycine-site antagonists and inhibition of glycine-stimulated 45Ca2+ influx by five glutamate-site antagonists revealed no significant differences between affinity values obtained for NR1a/NR2A and NR1a/NR2B receptors. The polyamine site agonist spermine showed differential modulation of glutamate- and glycine-stimulated 45Ca2+ influx for recombinant NMDA receptors, inhibiting and stimulating 45Ca2+ influx into cells expressing NR1a/NR2A receptors (IC50 = 408 µ M ) and NR1a/NR2B receptors (EC50 = 37.3 µ M ), respectively. The antagonist ifenprodil was selective for NR1a/NR2B receptors (IC50 = 0.099 µ M ) compared with NR1a/NR2A receptors (IC50 = 164 µ M ). The effects of putative polyamine site antagonists, redox agents, ethanol, and Mg2+ and Zn2+ ions were also compared between NR1a/NR2A and NR1a/NR2B receptors. This study demonstrates the use of 45Ca2+ influx as a method for investigating the pharmacology of the numerous modulatory sites that regulate the function of recombinant human NMDA receptors stably expressed in L(tk-) cells.  相似文献   

14.
Protein kinase CK2 (CK2) is highly expressed in rat forebrain where its function is not well understood. Subcellular distribution studies showed that the catalytic subunit of CK2 (CK2alpha) was enriched in postsynaptic densities (PSDs) by 68%. We studied the putative role of CK2 activity on N-methyl-D-aspartate receptor (NMDAR) function using isolated, patch-clamped PSDs in the presence of 2 mM extracellular Mg(2+). The usual activation by phosphorylation of the NMDARs in the presence of ATP was inhibited by the selective CK2 inhibitor 5,6-dichloro-1-beta-ribofuranosyl benzimidazole (DRB). This inhibition was voltage-dependent, i.e., 100% at positive membrane potentials, while at negative potentials, inhibition was incomplete. Endogenous CK2 substrates were characterized by their ability to use GTP as a phosphoryl donor and susceptibility to inhibition by DRB. Immunoprecipitation assays and 2D gels indicated that PSD-95/SAP90, the NMDAR scaffolding protein, was a CK2 substrate, while the NR2A/B and NR1 NMDAR subunits were not. These results suggest that postsynaptic NMDAR regulation by CK2 is mediated by indirect mechanisms possibly involving PSD-95/SAP90.  相似文献   

15.
Hippocampal noradrenergic and cerebellar glutamatergic granule cell axon terminals possess GABA(A) receptors mediating enhancement of noradrenaline and glutamate release, respectively. The hippocampal receptor is benzodiazepine-sensitive, whereas the cerebellar one is not affected by benzodiazepine agonists, indicating the presence of an alpha6 subunit. We tested here the effects of Zn2+ on these two native GABA(A) receptor subtypes using superfused rat hippocampal and cerebellar synaptosomes. In the cerebellum, zinc ions strongly inhibited (IC50 approximately 1 microM) the potentiation of the K(+)-evoked [3H]D-aspartate release induced by GABA. In contrast, the GABA-evoked release of [3H]noradrenaline from hippocampal synaptosomes was much less sensitive to Zn2+ (IC50 > 30 microM). The effects of Zn2+ were then studied in two rat lines selected for high (ANT) and low (AT) alcohol sensitivity because granule cell GABA(A) receptors in ANT, but not AT, rats respond to benzodiazepine agonists due to a critical mutation in the alpha6 subunit. GABA increased the K(+)-evoked release of [3H]DCNS REGIONS-aspartate from cerebellar synaptosomes of AT and ANT rats, an effect prevented by the GABAA selective antagonist bicuculline. In AT rat cerebellum, the effect of GABA was strongly inhibited by Zn2+ (IC50 < or = 1 microM), whereas in ANT rats, the divalent cation was about 100-fold less potent. Thus, native benzodiazepine-sensitive GABAA receptors appear largely insensitive to functional inhibition by Zn2+ and vice versa. Changes in sensitivity to Zn2+ inhibition consequent to mutations in cerebellar granule cell GABA(A) receptor subunits may lead to changes in glutamate release from parallel fibers onto Purkinje cells and may play important roles in cerebellar dysfunctions.  相似文献   

16.
(-)-6-[2-[4-(3-Fluorophenyl)-4-hydroxy-1-piperidinyl]-1-hydroxyethyl]-3,4-dihydro-2(1H)-quinolinone was identified as an orally active NR2B-subunit selective N-methyl-d-aspartate (NMDA) receptor antagonist. It has very high selectivity for NR2B subunits containing NMDA receptors versus the HERG-channel inhibition (therapeutic index=4200 vs NR2B binding IC(50)). This compound has improved pharmacokinetic properties compared to the prototype CP-101,606.  相似文献   

17.
N-methyl D-aspartate receptors (NMDARs), a subclass of glutamate receptors have broad actions in neural transmission for major brain functions. Overactivation of NMDARs leading to “excitotoxicity” is the underlying mechanism of neuronal death in a number of neurological diseases, especially stroke. Much research effort has been directed toward developing pharmacological agents to modulate NMDAR actions for treating neurological diseases, in particular stroke. Here, we report that Alliin, a sulfoxide in fresh garlic, exhibits affinity toward NR2A as well as NR2B receptors based on virtual screening. Biological activities of Alliin on these two receptors were confirmed in electrophysiological studies. Ligand-binding site closure, a structural change precluding ion channel opening, was observed with Alliin during 100?ns molecular dynamics simulation. Alliin interactions with NR2A and NR2B suggest that residues E/A413, H485, T690, and Y730 may play important roles in the conformation shift. Activation of NR2A and NR2B by Alliin can be differentiated from that caused by glutamate, the endogenous neurotransmitter. These characteristic molecular features in NR2A and NR2B activation provide insight into structural requirements for future development of novel drugs with selective interaction with NR2A and NR2B for treating neurological diseases, particularly stroke.  相似文献   

18.
Ionotropic glutamate receptors (iGluRs) bind agonists in a domain that has been crystallized and shown to have a bilobed structure. Eukaryotic iGluRs also possess a second extracellular N-terminal domain related to the bacterial periplasmic binding protein LIVBP. In NMDA receptors, the high-affinity Zn inhibition is eliminated by mutations in the LIVBP-like domain of the NR2A subunit. Using LIVBP structure, we have modeled this domain as two lobes connected by a hinge and show that six residues controlling Zn inhibition form two clusters facing each other across a central cleft. Upon Zn binding the two lobes close tightly around the divalent cation. Thus, the extracellular region of NR2A consists of a tandem of Venus flytrap domains, one binding the agonist and the other a modulatory ligand. Such a functional organization may apply to other eukaryotic iGluRs.  相似文献   

19.
We have investigated the role of N-methyl-d-aspartate receptors (NMDARs) and γ-aminobutyric acid receptors type A (GABAARs) at an early stage of P19 neuronal differentiation. The subunit expression was profiled in 24-hour intervals with RT-PCR and functionality of the receptors was verified via fluo-3 imaging of Ca2+ dynamics in the immature P19 neurons showing that both NMDA and GABA excite neuronal bodies, but only polyamine-site sensitive NMDAR stimulation leads to enhanced Ca2+ signaling in the growth cones. Inhibition of NR1/NR2B NMDARs by 1 μM ifenprodil severely impaired P19 neurite extension and fasciculation, and this negative effect was fully reversible by polyamine addition. In contrast, GABAAR antagonism by a high dose of 200 μM bicuculline had no observable effect on P19 neuronal differentiation and fasciculation. Except for the differential NMDAR and GABAAR profiles of Ca2+ signaling within the immature P19 neurons, we have also shown that inhibition of NR1/NR2B NMDARs strongly decreased mRNA level of NCAM-180, which has been previously implicated as a regulator of neuronal growth cone protrusion and neurite extension. Our data thus suggest a critical role of NR1/NR2B NMDARs during the process of neuritogenesis and fasciculation of P19 neurons via differential control of local growth cone Ca2+ surges and NCAM-180 signaling.  相似文献   

20.
Zinc ions in the micromolar range exhibited a strong inhibitory activity toward platelet activating factor (PAF)-induced human washed platelet activation, if added prior to this lipid chemical mediator. The concentration of Zn2+ required for 50% inhibition of aggregation (IC50) was inversely proportional to the concentration of PAF present. The IC50 values (in microM) for Zn2+ were 8.8 +/- 3.9, 27 +/- 5.8, and 34 +/- 1.7 against 2, 5, and 10 nM PAF, respectively (n = 3-6). Zn2+ exhibited comparable inhibitory effects on [3H]serotonin secretion and the IC50 values (in microM) were 10 +/- 1.2, 18 +/- 3.5, and 35 +/- 0.0 against 2, 5, and 10 nM PAF, respectively (n = 3). Under the same experimental conditions, aggregation and serotonin secretion induced by ADP (5 microM), arachidonic acid (3.3 microM), or thrombin (0.05 U/ml) were not inhibited. Introduction of Zn2+ within 0-2 min after PAF addition not only blocked further platelet aggregation and [3H]serotonin secretion but also caused reversal of aggregation. Analysis of [3H]PAF binding to platelets showed that Zn2+ as well as unlabeled PAF prevented the specific binding of [3H]PAF. The inhibition of [3H]PAF specific binding was proportional to the concentration of Zn2+ and the IC50 value was 18 +/- 2 microM against 1 nM [3H]PAF (n = 3). Other cations, such as Cd2+, Cu2+, and La3+, were ineffective as inhibitors of PAF at concentrations where Zn2+ showed its maximal effects. However, Cd2+ and Cu2+ at high concentrations exhibited a significant inhibition of the aggregation induced by 10 nM PAF with IC50 values being five- and sevenfold higher, respectively, than the IC50 for Zn2+, and with the IC50 values for inhibition of binding of 1 nM [3H]PAF being 5 and 19 times higher, respectively, than the IC50 for Zn2+. The specific inhibition of PAF-induced platelet activation and PAF binding to platelets suggested strongly that Zn2+ interacted with the functional receptor site of PAF or at a contiguous site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号