首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A simple, sensitive and robust liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method was developed and validated for quantification of chlorpromazine in rat plasma and brain tissue. Chlorpromazine was extracted from rat plasma and brain homogenate using liquid-liquid extraction. The compounds were separated on a Waters Atlantis dC-18 (30 mm x 2.1 mm i.d., 3 microm) column using a mobile phase of acetonitrile/20 mM ammonium formate (pH 4.25 adjusted with formic acid) with gradient elution. Chlorpromazine was detected in positive ion mode using multiple reaction monitoring (MRM). The method was validated and the specificity, linearity, lower limit of quantitation (LLOQ), precision, accuracy, recoveries and stability were determined. The LLOQ was 0.2 ng/ml for plasma and 0.833 ng/g for brain tissue. The method was linear over the concentration range from 0.2 to 200.0 ng/ml for plasma and from 0.833 to 833.3 ng/g for brain tissue. The correlation coefficient (R(2)) values were more than 0.998 for both plasma and brain homogenate. The precision and accuracy for intra-day and inter-day were better than 7.54%. The relative and absolute recovery was above 84.9% and matrix effects were lower than 5.6%. This validated method has been successfully used to quantify the rat plasma and brain tissue concentration of chlorpromazine after chronic treatment.  相似文献   

2.
A sensitive and specific liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) method has been developed and validated for the quantification of metacavir in rat plasma using tinidazole as an internal standard (I.S.). Following ethyl acetate extraction, the analytes were separated on a Shim-pack ODS (4.6 microm, 150 mm x 2.0 mm I.D.) column and analyzed in selected ion monitoring (SIM) mode with a positive ESI interface using the respective [M+H](+) ions, 266 for metacavir and 248 for tinidazole. The method was validated over the concentration range of 1-600 ng/mL for metacavir. Between and within-batch precisions (R.S.D.%) were all within 15% and accuracy (%) ranged from 92.2 to 105.8%. The lower limit of quantification (LLOQ) was 1 ng/mL. The extraction recovery was on average 89.8%. The validated method was used for the pharmacokinetic study of metacavir in rats.  相似文献   

3.
One prerequisite for therapeutic effects of psychiatric drugs is the ability to pass the blood brain barrier. Hence, it is important to know the concentration of antipsychotic drugs in brain tissue. In general, determinations of lipophilic compounds from lipophilic matricies such as the brain are a challenge. Here we have adapted a plasma assay for antipsychotics for the target organ the brain. Using modified sample preparation and chromatographic strategies, the analytes were extracted from rat brain homogenate and analyzed by LC-MS/MS. The method used a Waters Atlantis dC-18 (30 mm x 2.1 mm i.d., 3 microm) column with a mobile phase of acetonitrile/5 mM ammonium formate (pH 6.1 adjusted with formic acid) and gradient elution. All analytes were detected in positive ion mode using multiple-reaction monitoring. The method was validated and the linearity, lower limit of quantitation, precision, accuracy, recoveries, specificity and stability were determined. This method was then successfully used to quantify the rat brain tissue concentration of the analytes after chronic treatment with these antipsychotic drugs.  相似文献   

4.
In the present studies, to give momentum to traditionally low throughput pharmacokinetic screening, a bioanalytical method based on the concept of sample pooling for simultaneous bioanalysis of multiple compounds is discussed. A sensitive, selective, specific and rapid HPLC/ESI-MS/MS assay method was developed and validated for the simultaneous quantitation of three novel trioxane antimalarials (99-357, 99-408 and 99-411) in rat plasma using trioxane analogue as internal standard. The suitably validated bioanalytical method was then further extrapolated to rabbit and monkey plasma by performing partial validation. Extraction from the plasma involves a simple two-step liquid-liquid extraction with n-hexane. The analytes were chromatographed on a cyano column by isocratic elution with acetonitrile:ammonium acetate buffer (pH 6) (85:15, v/v) and analyzed by mass spectrometry in multiple reaction-monitoring (MRM) mode. The chromatographic run time was 5.5 min and the weighted (1/x(2)) calibration curves were linear over a range of 1.56-200 ng/ml. The limit of detection (LOD) and lower limit of quantification (LLOQ) in rat plasma, rabbit plasma and monkey plasma were 0.78 and 1.56 ng/ml, respectively, for all three analytes. The intra- and inter-batch accuracy and precision in terms of % bias and % relative standard deviation were found to be well within the acceptable limits (< 15%). The average absolute recoveries of 99-357, 99-408 and 99-411 from spiked plasma samples were > 90%, > 70% and > 60%, respectively. The assay method described here could be applied to study the pharmacokinetics of 99-357, 99-408 and 99-411 using sample-pooling technique.  相似文献   

5.
A rapid, sensitive, selective and specific HPLC/ESI-MS/MS assay method was developed and validated for the simultaneous quantitation of alpha-/beta-diastereomers of arteether (AE), sulphadoxine (SDX) and pyrimethamine (PYR) in rat blood plasma using propyl ether analogue of beta-arteether as internal standard. The method involved a single-step, liquid-liquid extraction with ethyl acetate and the analytes were chromatographed on a C18 chromatographic column by isocratic elution with methanol:ammonium acetate buffer (10 mM, pH 4) (90:10%, v/v) and analyzed by tandem mass spectrometry. The run time was 4.5 min and the weighted (1/x2) calibration curves were linear over a range of 0.78-400 ng ml-1. The method was validated fully and the lower limit of quantification (LLOQ) in plasma was 0.78 ng ml-1 for all the analytes. The intra- and inter-day precision and accuracy were found to be well within the acceptable limits (<15%) and the analytes were stable after three freeze-thaw (f-t) cycles. The absolute recoveries were consistent and reproducible. The assay method was applied to pre-clinical pharmacokinetic interaction studies of alpha-/beta-AE, SDX and PYR in rats.  相似文献   

6.
To study the pharmacokinetics of Chan Su, a sensitive and selective method was developed and validated for the determination of five main bufadienolides (cinobufagin, resibufogenin, bufalin, bufotalin and arenobufagin) in rat plasma. The analytes were extracted by liquid-liquid extraction with ethyl acetate after internal standard (IS, caudatin) spiked. The separation was performed by a ZORBAX SB-C18 column (3.5 microm, 2.1 mmx100 mm) and a C18 guard column (5 microm, 4.0 mmx2.0 mm) with an isocratic mobile phase consisted of acetonitrile-water-formic acid (50:50:0.05, v/v/v) at a flow rate of 0.3 mL/min. The Agilent G6410A triple quadrupole LC/MS system was operated under the multiple reaction monitoring mode (MRM) using the electrospray ionization technique in positive mode. The nominal retention times for cinobufagin, resibufogenin, bufalin, bufotalin, arenobufagin and caudatin were 3.07, 3.55, 2.30, 1.62, 1.22 and 3.43 min, respectively. All analytes showed good linearity in a wide concentration range (r>0.995) and their lower limits of quantification (LLOQ) were all 1.0 ng/mL. The method was linear for all analytes with correlation coefficients>0.995 for all analytes. The average extract recoveries of the five analytes from rat plasma were all over 85%, the precisions and accuracies determined were all within 15%. This method has been successfully applied to pharmacokinetic study of Chan Su in rats following oral administration.  相似文献   

7.
A sensitive and specific liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) method has been developed and validated for the identification and quantification of salidroside, a major active constituent from Rhodiola rosea L., in rat plasma using helicid as an internal standard. The method involves a simple single-step liquid-liquid extraction with n-butanol. The analytes were separated by isocratic gradient elution on a Shim-pack ODS (4.6 microm, 250 mmx2.0 mm i.d.) column and analyzed in selected ion monitoring (SIM) mode with a negative electrospray ionization (ESI) interface using the respective [M+Cl]- ions, m/z 335 for salidroside, m/z 319 for internal standard. The method was validated over the concentration range of 5-2000 ng/mL for salidroside. Within- and between-batch precision (R.S.D.%) were all within 6% and accuracy ranged from 96 to 112%. The lower limits of quantification was 5 ng/mL. The extraction recovery was on average 86.6% for salidroside. The validated method was used to study the pharmacokinetic profile of salidroside in rat plasma after intravenous and oral administration of salidroside. The bioavailability of salidroside in rats is 32.1%.  相似文献   

8.
An original HPLC-UV method has been developed for the simultaneous determination of the atypical antipsychotic quetiapine and the geometric isomers of the second-generation antidepressant fluvoxamine. The analytes were separated on a reversed-phase C8 column (150 mm x 4.6mm i.d., 5 microm) using a mobile phase composed of acetonitrile (30%) and a 10.5mM, pH 3.5 phosphate buffer containing 0.12% triethylamine (70%). The flow rate was 1.2 mL min(-1) and the detection wavelength was 245 nm. Sample pretreatment was carried out by an original solid-phase extraction procedure using mixed-mode cation exchange (DSC-MCAX) cartridges; only 300 microL of plasma were needed for one analysis. Citalopram was used as the internal standard. The method was validated in terms of linearity, extraction yield, precision and accuracy. Good linearity was obtained in plasma over the 5.0-160.0 ng mL(-1) concentration range for each fluvoxamine isomer and over the 2.5-400.0 ng mL(-1) concentration range for quetiapine. Extraction yield values were always higher than 93%, with precision (expressed as relative standard deviation values) better than 4.0%. The method was successfully applied to human plasma samples drawn from patients undergoing polypharmacy with the two drugs. Satisfactory accuracy values were obtained, with mean recovery higher than 94%.  相似文献   

9.
A sensitive, specific and rapid HPLC-MS/MS method has been developed and validated for the simultaneous determination of cytarabine and valcytarabine (valyl prodrug of cytarabine) in rat plasma in the present study. The analytes were separated on a C18 column (50 mm x 2.1 mm, 1.7 microm) and a triple-quadrupole mass spectrometry equipped with an electrospray ionization (ESI) source was applied for detection. Cation exchange solid-phase extraction cartridge was employed to extract the analytes from rat plasma, with high recovery of cytarabine (>85%). The method was linear over the concentration ranges of 10-20,000 ng/mL for cytarabine and 25-1000 ng/mL for valcytarabine. The lower limit of quantitation (LLOQ) of cytarabine and valcytarabine was 10 and 25 ng/mL, respectively. The intra-day and inter-day relative standard deviation (RSD) were less than 15% and the relative error (RE) were all within 15%. Finally, the method was successfully applied to support the prodrug pharmacokinetic study after valcytarabine and cytarabine were orally administrated to the Sprague-Dawley rat, respectively.  相似文献   

10.
An accurate, sensitive, reproducible, and selective liquid chromatography/tandem mass spectrometry (LC-MS/MS) method for determination of aripiprazole and its main metabolite, OPC-14857, in human plasma was developed and validated. Chromatographic separation was achieved isocratically on a C18 reversed-phase column within 7.5 min. The calibration curve, ranging from 0.1 to 100 ng/ml, was fitted to a 1/y2-weighted linear regression model. The assay showed no significant interference. Lower limit of quantitation (LLOQ) for both analytes was 0.1 ng/ml using 0.4 ml of plasma. Intra- and inter-assay precision and accuracy values for aripiprazole and OPC-14857 were within regulatory limits.  相似文献   

11.
A rapid, sensitive and selective LC-MS-MS method for the simultaneous quantitation of picroside-I and kutkoside (active constituents of herbal hepatoprotectant picroliv) was developed and validated in rabbit plasma. The analytes and internal standard (Amarogentin) were extracted using Oasis HLB solid phase extraction cartridges. Analysis was performed on Spheri RP-18 column (10 microm, 100 mm x 4.6 mm i.d.) coupled with guard column using acetonitrile:MilliQ water (50:50, %v/v) as mobile phase at a flow rate of 1 ml/min with a retention time of 1.39, 1.33 and 1.42 min for picroside-I, kutkoside and amarogentin, respectively. The quantitation was carried out using an API-4000 LC-MS-MS with negative electro spray ionization in multiple reaction monitoring (MRM) mode. The precursor to product ion transitions for picroside-I, kutkoside and amarogentin were m/z 491 > 147, 199; 511 > 167, 235; 585 > 227, respectively. The method was validated in terms of establishing linearity, specificity, sensitivity, recovery, accuracy and precision (within- and between-assay variation), freeze-thaw (f-t), auto injector and dry residue stability. Linearity in plasma was observed over a concentration range of 1.56-400 ng/ml with a limit of detection (LOD) of 0.5 ng/ml for both analytes. The recoveries from spiked control samples were > 60 and > 70% for picroside-I and kutkoside, respectively. Accuracy and precision of the validated method were within the acceptable limits of < 20% at low and < 15% at other concentrations. The analytes were stable after three freeze-thaw cycles and their dry residues were stable at -60 degrees C for 15 days. The method was successfully applied to determine concentrations of picroside-I and kutkoside post i.v. bolus administration of picroliv in rabbit.  相似文献   

12.
A sensitive, rapid and selective liquid chromatography-positive electrospray ionization tandem mass spectrometry (LC-(ESI+)-MS-MS) method has been developed and validated for the simultaneous quantification of beclomethasone dipropionate (BDP) and its active metabolite, beclomethasone 17-monopropionate (17-BMP) in rat plasma and different tissues using fluticasone propionate (FP) as the internal standard. The method was validated over a linear range from 0.05 to 5 ng/ml for both analytes. A solid-phase extraction procedure was used for plasma samples and a liquid-liquid extraction procedure for tissues samples (lung, liver and kidney). The between-day and within-day coefficients of variation for all compounds were 相似文献   

13.
A specific and sensitive quantitative assay has been developed using high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS) for the simultaneous quantitation of the antitumor drug ifosfamide (IFM) and its two metabolites, N2-deschloroethylifosfamide (N2-DCE-IFM) and N3-deschloroethylifosfamide (N3-DCE-IFM) in microsomal medium. The analytes and the internal standard (cyclophosphamide) were isolated by ethylacetate extraction from rat liver microsomes. They were analysed on a Nucleosil C18 HD column (125 mm x 4 mm, 5 microm) using a step gradient with the mobile phase (2 mM ammonium formate and methanol). The HPLC-ESI-MS method used selected ion monitoring of ions m/z 199.1 Th and m/z 261.1 Th and was validated in the concentrations ranges of 100-5000 ng/mL for IFM and 50-2500 ng/mL for its N-deschloroethylated metabolites (DCE-IFM) with good accuracy and precision (CV less than 15%). The low limits of quantitation (LLOQ) were found at 50 ng/mL for N-deschloroethylated metabolites and at 100 ng/mL for the parent drug (IFM). The method was applied for the determination of ifosfamide and its N-deschloroethylated metabolites in rat microsomal incubations.  相似文献   

14.
A novel, precise, accurate and rapid isocratic reversed-phase high performance liquid chromatographic/ultraviolet (RP-HPLC/UV) method was developed, optimized and validated for simultaneous determination of rosuvastatin and atorvastatin in human serum using naproxen sodium as an internal standard. Effect of different experimental parameters and various particulate columns on the analysis of these analytes was evaluated. The method showed adequate separation for rosuvastatin and atorvastatin and best resolution was achieved with Brownlee analytical C18 column (150×4.6 mm, 5 μm) using methanol-water (68:32, v/v; pH adjusted to 3.0 with trifluoroacetic acid) as a mobile phase at a flow rate of 1.5 ml/min and wavelength of 241 nm. The calibration curves were linear over the concentration ranges of 2.0-256 ng/ml for rosuvastatin and 3.0-384 ng/ml for atorvastatin. The lower limit of detection (LLOD) and lower limit of quantification (LLOQ) for rosuvastatin were 0.6 and 2.0 ng/ml while for atorvastatin were 1.0 and 3.0ng/ml, respectively. All the analytes were separated in less than 7.0 min. The proposed method could be applied for routine laboratory analysis of rosuvastatin and atorvastatin in human serum samples, pharmaceutical formulations, drug-drug interaction studies and pharmacokinetics studies.  相似文献   

15.
A robust and validated liquid-liquid extraction LC-MS/MS method was developed for population pharmacokinetic analysis and therapeutic drug monitoring of risperidone and the enantiomers of its major active metabolite (+)-and (-)9-hydroxyrisperidone in pediatric patients. The method was rapid, sensitive and used a low sample amount (200 microL), which is very desirable for the pediatric population. The assay was validated from 0.2 to 50 ng/mL in plasma for all analytes. LLOQ for all analytes was 0.2 ng/mL. The extracts were analyzed by normal phase LC-MS/MS. The sample run time was 8 min. Intra- and interday precision for all analytes was < or =6%; method accuracy was between 89 and 99%. Additional experiments were performed to analyze matrix effects and identify a proper internal standard for each analyte. The validated method was used to study risperidone and its enantiomer metabolites in plasma as part of a population pharmacokinetic study in pediatric patients with pervasive developmental disorder (PDD).  相似文献   

16.
A selective and high throughput liquid chromatography/tandem mass spectrometry (LC-MS/MS) method has been developed and validated to separate, detect and simultaneously quantify lamivudine (3TC), stavudine (d4T) and nevirapine (NVP) in human plasma using metaxalone as internal standard (IS). After solid phase extraction (SPE), the analytes and the IS were chromatographed on a Symmetry C18 (150 mmx3.9 mm i.d., 5 microm particle size) column using 5 microL injection volume with a run time of 4.5 min. An isocratic mobile phase consisting of 0.5% glacial acetic acid in water:acetonitrile (20:80, v/v) was used to separate all these drugs. The precursor and product ions of these drugs were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring mode (MRM) without polarity switch. The method was validated over the range of 25-3000 ng/mL for 3TC, 20-2000 ng/mL for d4T and 50-5000 ng/mL for NVP. The absolute recoveries for analytes (>or=86%) and IS (98.12%) achieved from spiked plasma samples were consistent and reproducible. Inter-batch and intra-batch precision (%CV) across four validation runs (LLOQ, LQC, MQC and HQC) was less than 10. The accuracy determined at these levels was within +/-8% in terms of relative error. The method was successfully applied to a pivotal bioequivalence study of [60 (3TC)+12 (d4T)+100 (NVP)] mg dispersible tablets in 60 healthy human subjects under fasting condition.  相似文献   

17.
A high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-MS/ESI) method for simultaneous determination of venlafaxine (VEN) and its three metabolites O-desmethylvenlafaxine (ODV), N-desmethylvenlafaxine (NDV) and N,O-didesmethylvenlafaxine (DDV) in human plasma has been developed and validated. Estazolam was used as the internal standard. The compounds and internal standard were extracted from plasma by a liquid-liquid extraction. The HPLC separation of the analytes was performed on a Thermo BDS HYPERSIL C18 (250 mm x 4.6 mm, 5 microm, USA) column, using a gradient elution program with solvents constituted of water (ammonium acetate: 30 mmol/l, formic acid 2.6 mmol/l and trifluoroacetic acid 0.13 mmol/l) and acetonitrile (60:40, V/V) at a flow-rate of 1.0 ml/min. All of the analytes were eluted within 6 min. The compounds were ionized in the electrospray ionization (ESI) ion source of the mass spectrometer and were detected in the selected ion recording (SIR) mode. Calibration curves in spiked whole blood were linear from 4.0-700 ng/ml, 2.0-900 ng/ml, 3.0-800 ng/ml and 2.0-700 ng/ml for VEN, ODV, NDV and DDV, respectively, all of them with coefficients of determination above 0.9991. The average extraction recoveries for all the four analytes were above 77%. The methodology recoveries were higher than 91%. The limits of detection were 0.4, 0.2, 0.3, and 0.2 ng/ml for VEN, ODV, NDV and DDV, respectively. The intra- and inter-day variation coefficients were less than 11%. The method is accurate, sensitive and reliable for the pharmacokinetic study of venlafaxine as well as therapeutic drug monitoring (TDM).  相似文献   

18.
A sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method was developed for the determination of serial chiral novel anticholinergic compounds of phencynonate in rat plasma. After a simple protein-precipitation using methanol, the post-treatment samples were separated on a CAPCELL UG120 column with a mobile phase of a mixture of methanol and water (35:65) containing 0.1% formic acid. The serial chiral analytes and internal standard (IS) were all detected by the use of selected reaction monitoring mode (SRM). The method of all serial chiral analytes developed was validated in rat plasma with a daily working range of 0.5-100 ng/ml with correlation coefficient, R(2) > or = 0.99 and a sensitivity of 0.5 ng/ml as lower limit of quantification, respectively. This method was fully validated for the accuracy, precision and stability studies for all serial chiral analytes. The method proved to be accurate and specific, and was applied to the pharmacokinetic study of serial chiral novel anticholinergic compounds of phencynonate in rat plasma.  相似文献   

19.
Mexiletine (MEX), hydroxymethylmexiletine (HMM) and p-hydroxymexiletine (PHM) were analyzed in rat plasma by LC-MS/MS. The plasma samples were prepared by liquid-liquid extraction using methyl-tert-butyl ether as extracting solvent. MEX, HMM, and PHM enantiomers were resolved on a Chiralpak(R) AD column. Validation of the method showed a relative standard deviation (precision) and relative errors (accuracy) of less than 15% for all analytes studied. Quantification limits were 0.5 ng ml(-1) for the MEX and 0.2 ng ml(-1) for the HMM and PHM enantiomers. The validated method was successfully applied to quantify the enantiomers of MEX and its metabolites in plasma samples of rats (n = 6) treated with a single oral dose of racemic MEX.  相似文献   

20.
A rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous estimation of hydrochlorothiazide, quinapril and its metabolite quinaprilat in human plasma. After solid phase extraction (SPE), the analytes and IS were chromatographed on a hypurity C8 (100mmx2.1mm i.d., 5mum particle size) column using 2muL injection volume with a run time of 2.8min. An isocratic mobile phase consisting of 0.5% (v/v) formic acid:acetonitrile (25:75, v/v) was used to separate all these drugs. The precursor and product ions of these drugs were monitored on a triple quadrupole mass spectrometer, operating in the multiple reaction monitoring mode (MRM) without polarity switch. The proposed method was validated over the range of 5-500ng/mL for hydrochlorothiazide method and 5-1500ng/mL for quinapril and quinaprilat. Inter-batch and intra-batch precision (coefficient of variation - % CV) across five validation runs lower limit of quantitation (LLOQ), lower quality control (LQC), middle quality control (MQC), higher quality control (HQC) and upper limit of quantitation (ULOQ) was less than 15. The accuracy determined at these levels was within +/-13% in terms of relative percentage error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号