首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the study was to trace the cumulative changes in the amplitude-time parameters of the AEP (acoustic evoked potential) components N1, N2, and P300 in the experimental situations of different complexities (counting and listening to sounds) and to compare the differences between young and mature subjects. The AEP was recorded in 12 healthy subjects aged 18 to 22 years and in 12 subjects aged 32 to 59 years. It was revealed that the components N1, N2, and P300 recorded in the situation of listening without any preliminary instruction did not differ in young and mature individuals. In the younger subjects, a higher N1 amplitude was revealed when they counted sounds, compared to listening, whereas the latency values of this component did not differ, irrespective of the complexity of the task. The component N2 was shown to demonstrate latency stability in relation to the age and the experimental situation. The N2 amplitude was higher in the situation of counting sounds in both age groups. The amplitude-time parameters of P300 did not differ in subjects of different ages in the listening task. The features of the components N1, N2, and P300 revealed in young and mature subjects in the experimental situations differing in complexity lead us to suggest that, with age, humans develop adaptive mechanisms contributing to successful task performance.  相似文献   

2.
Averaged evoked potentials (AEP) to verbal (letters) and nonverbal (random shapes) stimuli exposed in the left and right visual fields were registered in healthy subjects with normal vision. Analysis of the later AEP latencies pointed to asymmetry in the temporal parameters of the interhemispheric interaction. The late AEP latency is shorter in the right hemisphere than in the left hemisphere. The difference is more pronounced in responses to nonverbal stimuli. The earlier development of the evoked potential in the right hemisphere (or the later one in the left hemisphere) accounts for the interhemispheric difference in the temporal parameters of the late AEP components. Comparison of the latency of the component P300 to verbal and nonverbal stimuli presented in the ipsilateral or the contralateral visual fields reveals a transfer of the results of the cortical processing of visual information in the course of interhemispheric interaction.  相似文献   

3.
Thierry G  Giraud AL  Price C 《Neuron》2003,38(3):499-506
Patient studies suggest that speech and environmental sounds are differentially processed by the left and right hemispheres. Here, using functional imaging in normal subjects, we compared semantic processing of spoken words to equivalent processing of environmental sounds, after controlling for low-level perceptual differences. Words enhanced activation in left anterior and posterior superior temporal regions, while environmental sounds enhanced activation in a right posterior superior temporal region. This left/right dissociation was unchanged by different attentional/working memory contexts, but it was specific to tasks requiring semantic analysis. While semantic processing involves widely distributed networks in both hemispheres, our results support the hypothesis of a dual access route specific for verbal and nonverbal material, respectively.  相似文献   

4.
The concern of the work was in detection and analysis of P300 component of the acoustic evoked potential in healthy subjects in different experimental situations. During counting the rare sounds, P300 was most pronounced in the frontocentral and parietooccipital areas mainly of the left-hemisphere. The response shape was correlated with characteristics of the basic rhythm of the background EEG. Responses of simple and complex shapes were distinguished. The simplest responses were recorded in subjects with hypersynchronous alpha-rhythm. Analysis of three-dimensional dipole source localization showed that structures of the brainstem, limbic system, and frontal lobes participate in generation of the wave. In all the subjects, the decisive role in response generation was played by the brainstem structures. In persons with hypersynchronous alpha-rhythm, the contribution of the frontal lobes was less pronounced. During "passive" listening of sounds, P300 parameters significantly differed from those observed during counting only in 46% of cases (in persons having no hypersynchronous alpha-rhythm). A simplification of the response shape during "passive" listening was observed in these cases, the area of the maximal response expression was shifted to symmetrical areas of the right-hemisphere, the number of dipole sources reduced due to a decrease in the contribution of the frontal and limbic structures into the response generation.  相似文献   

5.
Li Y  Hu Y  Liu T  Wu D 《Cognitive neurodynamics》2011,5(2):221-229
This paper is to study auditory event-related potential P300 in patients with anxiety and depressive disorders using dipole source analysis. Auditory P300 using 2-stimulus oddball paradigm was collected from 35 patients with anxiety disorder, 32 patients with depressive disorder, and 30 healthy controls. P300 dipole sources and peak amplitude of dipole activities were analyzed. The source analysis resulted in a 4-dipole configuration, where temporal dipoles displayed greater P300 amplitude than that of frontal dipoles. In addition, a right-greater-than-left hemispheric asymmetry of dipole magnitude was found in patients with anxiety disorder, whereas a left-greater-than-right hemispheric asymmetry of dipole magnitude was observed in depressed patients. Results indicated that the asymmetry was more prominent over the temporal dipole than that of frontal dipoles in patients. Patients with anxiety disorder may increase their efforts to enhance temporal dipole activity to compensate for a deficit in frontal cortex processing, while depressed patients show dominating reduction of right temporal activity. The opposite nature of results observed with hemispheric asymmetry in depressive and anxiety disorders could serve to be valuable information for psychiatric studies.  相似文献   

6.
The efficiencies of three clustering methods for independent components of 19-channel baseline EEG in location of pathological cerebral activity sources were compared. The samples comprised 518 healthy subjects and 87 patients with postconcussion syndrome after traumatic brain injury (TBI). Clustering of independent component topographies, the spatial coordinates of equivalent dipole sources corresponding to independent component topographies, and locations of the maximums of the equivalent source current density calculated by standardized low resolution electromagnetic tomography (sLORETA) were compared. A comparison of the power spectra of independent components showed a significant increase in the EEG power in the Δ, θ, and α bands for sources located in the frontal and temporal lobes of TBI patients compared to healthy subjects. The method of clustering of independent component topographies proved to be the most sensitive of the methods compared.  相似文献   

7.
The correlations between the volumes of the caudate nucleus, putamen, amygdala, and hippocampus, on the one hand, and the P300 amplitude and latency of auditory evoked potentials, on the other hand, were studied in 14 schizophrenics. Significant positive correlations were found between the parameters of the late cognitive potential P300 (predominantly in the left hemisphere) and the caudate nucleus and putamen volumes, as well as between the right amygdala volume and the P300 amplitude in the left temporal region. The results testify again to the role of changes in the left hemisphere in the pathogenesis of schizophrenia and pose the question of the structural and functional features of left frontosubcortical communications.Translated from Fiziologiya Cheloveka, Vol. 31, No. 2, 2005, pp. 18–23.Original Russian Text Copyright © 2005 by Voronkova, Lebedeva, Gubsky, Orlova, Voscresenskaya, Kupriyanov, Anisimov, Solokhina.  相似文献   

8.
采用"任务转换"实验范式,以数字、汉字的归类为任务,探究预知和未预知条件下任务转换的ERPs.实验中被试先后完成2个连续的任务,任务序列为重复(AA,BB,……)或转换(AB,BA,……).结果发现,在预知条件下,转换序列的先行任务数/词比重复序列的先行任务数/词、转换序列的后继任务数/词比重复序列的后继任务数/词都产生一个更为负走向的波,在中央区(CZ)差异波为D-N320.而未预知条件下,仅转换序列后继任务数/词比重复序列后继任务数/词产生一个更为负走向的波,中央区差异波为D-N320.对差异波溯源分析发现,内源性准备源于左侧颞区(Left BA20);外源性调节在预知条件下源于右侧顶区(Right BA19),而未预知条件下源于左侧额区(Left BA47)和右侧额区(Right BA10).结果表明,任务转换本质是认知冲突过程,对应的脑电成分为D-N320.在预知条件下任务转换先后单独由颞区和顶区负责,预知准备使得任务转换在低级皮层区完成,而未预知条件下任务转换在更广的高级皮层区完成,同时激活左侧额区和右侧额区,且外源性调节对应的脑区在预知条件和未预知条件下是分离的.  相似文献   

9.
In this paper we aimed at studying brain structures involved in intermodal attention and memory processes. This was accomplished by dipole modeling of the difference waves of event-related potentials recorded during the performance of verbal tasks and in the control condition. The models were constructed independently from each other for six difference waves obtained by subtracting different experimental conditions. The majority of equivalent sources were located in temporal and frontal areas. The differences in the evoked activity observed between task conditions in the interval from 450 to 850 ms are mainly related to variations in the activity of the hippocampus and adjacent structures.  相似文献   

10.
While it is known that some individuals can effectively perform two tasks simultaneously, other individuals cannot. How the brain deals with performing simultaneous tasks remains unclear. In the present study, we aimed to assess which brain areas corresponded to various phenomena in task performance. Nineteen subjects were requested to sequentially perform three blocks of tasks, including two unimodal tasks and one bimodal task. The unimodal tasks measured either visual feature binding or auditory pitch comparison, while the bimodal task required performance of the two tasks simultaneously. The functional magnetic resonance imaging (fMRI) results are compatible with previous studies showing that distinct brain areas, such as the visual cortices, frontal eye field (FEF), lateral parietal lobe (BA7), and medial and inferior frontal lobe, are involved in processing of visual unimodal tasks. In addition, the temporal lobes and Brodmann area 43 (BA43) were involved in processing of auditory unimodal tasks. These results lend support to concepts of modality-specific attention. Compared to the unimodal tasks, bimodal tasks required activation of additional brain areas. Furthermore, while deactivated brain areas were related to good performance in the bimodal task, these areas were not deactivated where the subject performed well in only one of the two simultaneous tasks. These results indicate that efficient information processing does not require some brain areas to be overly active; rather, the specific brain areas need to be relatively deactivated to remain alert and perform well on two tasks simultaneously. Meanwhile, it can also offer a neural basis for biofeedback in training courses, such as courses in how to perform multiple tasks simultaneously.  相似文献   

11.
Monopolar evoked potentials (EPs) in the parietal and temporal leads were recorded in 23 young, healthy subjects in the process of selection of visual stimuli by shape and localization. Two different central stimuli (selection by shape) and two similar right and left stimuli (selection by localization) were presented in the first series. Two simple right and left stimuli were presented in the second series, and a subject had to respond either to their shape or their localization. During spatial attention and shape recognition in both tasks, characteristics of the prestimulus negativity (contingent negative variation (CNV)) and negative–positive N1–P3 complex pointed to the predominant activation of the parietal areas. The greatest differences were observed in the late P3b component, associated with the late selection, rather than in the early EP components. The dominance of parietal activation as compared to temporal activation was associated with attention demands; i.e., the dominance was highest in the case of target stimuli and was least pronounced during passive perception of stimuli. It is suggested that the parietooccipital visual system leads in tasks demanding spatial and nonspatial attention to stimuli in a simple visual environment (without surrounding elements).  相似文献   

12.
Event-related potentials (ERP) in response to complex target stimuli, which consisted of a central recognizable picture and a lateral masked image (analyzed at the unconscious level) were recorded in adult subjects and seven-year-old children. ERP components N200, N300, and P400/N400 had different topography and were differently pronounced in adults and children. In adult subjects, the N200 component that reflects the processing of a sensory stimulus was recorded in the temporo-parieto-occipital and occipital areas. In children, N200 was recorded in the caudal regions and the frontal areas of the cortex. Analysis of different waveforms obtained by subtraction of the ERP to the central stimulus from the ERP to the complex stimulus showed that unconscious stimulus processing in adult subjects is not reflected in the ERP structure. In children, an unconsciously processed image incorporated into a complex stimulus evokes processing negativity in the occipital and frontal cortical areas. Comparison of ERP in groups of children divided by their reflectivity/impulsivity showed that, predominantly, the left frontal area is involved in image analysis at the unconscious level in reflective children and, predominantly, the right frontal area participates in unconscious image analysis in impulsive children. It is suggested that the perfection of the visual recognition of a target stimulus, which contains additional unconsciously processed information, consists in growth of the involvement of the left-hemispheric mechanisms (with respective growth of significance of the left-hemispheric mechanisms) and in a decrease in the role of the frontal areas in analysis of sensory information.  相似文献   

13.
A comparative analysis of the time and amplitude characteristics of the negative N200 and positive P300 components of visual evoked potentials recorded at symmetric points of the frontal, parietal, temporal, and occipital areas of the right and left hemispheres of the cerebral cortex has been performed in subjects with or without the skill of operating a computer. Subjects inexperienced in an operator’s work exhibited an interhemispheric difference in the time and amplitude characteristics of the studied components. In subjects that had the skill of operating a computer, the interhemispheric difference was little, which suggests that the cortex plays only a small role in the cerebral control of this activity.  相似文献   

14.
The aim of this research is to study the impact of extreme prematurity on the cognitive development of the child as assessed at age 5 years 9 months. Our samples include 15 healthy prematures born between 25 and 28 weeks of gestational age carefully matched with 15 full-term controls. In the first experiment, two different auditory stimuli were presented to the subjects who listened passively without instruction. The second experiment consisted of a standard visual oddball task in which the subjects were instructed to `catch' two different animals, by pushing a left or right button for a moose (n=120) or a raccoon (n=40), respectively. In the auditory task, 3 ERP peaks were analyzed (frontal N100 and P3a, temporal P2). All premature children demonstrated normal early frontal N100 and temporal P2 responses. The group differences were apparent in the late positivity (P3a) where controls showed a larger amplitude to the rare tones applied evenly to both ears. In contrast, the prematures did not show sensitivity to rare tones but showed a larger P3a upon left ear stimulation, when compared to the right. Also, the ERPs to the visual oddball task showed normal early positivities (P250–300) in the premature group. Once again, deviations from the normal were evident in late waves. The ERPs recorded from prematures showed a more diffuse topography especially between 500 and 600 ms post-stimulus and around the posterior area (P550). The succeeding negativity (SW) was not altered in the premature group. The ERP data suggest that premature children, even without clinically apparent problems, convey specific ERP singularity when engaged in a task that involves complex processing.  相似文献   

15.
Comprehensive EEG and stabilography investigation with separate and simultaneous performance of motor (voluntary postural control) and cognitive (calculation) tasks has been performed in 20 healthy subjects (22 ± 0.7 years). Specific spatial and frequency reactive changes have been found during motor task performance. These included an increase in coherence in the EEG α band for distant derivation pairs in the right hemisphere, as well as in symmetric parietal-occipital areas in both hemispheres. Cognitive task performance was accompanied by an increase in coherence for the slow bands (δ and θ) with a higher activation in the left hemisphere and frontal cortex areas. In performing the dual task, one could observe activation of spatial and frequency changes including both motor and cognitive tasks. In the dual tasks where both components were performed worse as compared to the control, reactive reorganization of EEG coherence was less pronounced than during the performance of separate tasks. A decrease in the coherence of the α1 band in the frontal areas appeared as a zone of “conflict of interest” or interference. In dual tasks with better performance of each component as compared to the control, EEG coherence increased in each specific area, as well as in the areas of “conflict of interests.”  相似文献   

16.
摘要 目的:探讨抑郁症患者的脑CT灌注成像特征与认知功能的相关性。方法:选取我院2020年1月到2023年1月收治的90例抑郁症患者作为研究对象,将其分为观察组,另选取同期来我院体检的90名健康志愿者作为对照组。收集所有受检者脑CT灌注成像检查数据,分析抑郁症患者的脑CT灌注成像特征,并建立受试者工作特征(ROC)曲线分析脑CT灌注成像对抑郁症的诊断效能。随后对观察组和对照组受检者均进行认知功能评估,其中包括连线检测(TMT)、视觉再生测验(VRT)、言语流畅性测验(VF)、数字广度测验(DST)以及数字符号测验(SDMT),并分析脑CT灌注成像与抑郁症认知功能的相关性。结果:观察组与对照组受检者rCBV、rCBF、MTT、TIP、右枕叶、左枕叶、右颞叶、左颞叶、右顶叶、左顶叶CT值对比无明显差异(P>0.05),观察组与对照组受检者右额叶、左额叶CT值对比差异显著,观察组明显低于对照组(P<0.05);90例抑郁症患者经过汉密尔顿抑郁量表(HAMD)评估后分数均>20分,确定存在抑郁症状,脑CT灌注成像与HAMD评分诊断抑郁症的准确性、灵敏度、特异性、阳性预测值和阴性预测值对比无明显差异(P>0.05),脑CT灌注成像的曲线下面积为83.89,最佳诊断着色界限值为82.53%,HAMD评分的曲线下面积为84.26,最佳诊断着色界限值为87.57%;观察组与对照组受检者连线提笔数、连线错误数、视觉再生检测结果对比无明显差异(P>0.05),观察组与对照组受检者连线、言语流畅性、数字广度、数字符号检测结果对比差异显著(P<0.05);Spearman相关分析结果表明:连线提笔数、连线错误数、视觉再生与脑CT灌注参数均无明显相关性(P>0.05),连线、言语流畅性、数字广度、数字符号与rCBV、rCBF、MTT、TIP、右枕叶、左枕叶、右颞叶、左颞叶、右顶叶、左顶叶CT值无明显相关性(P>0.05),连线与右额叶、左额叶CT值呈负相关(P<0.05),言语流畅性、数字广度、数字符号与右额叶、左额叶CT值呈正相关(P<0.05)。结论:抑郁症患者的脑CT灌注成像与健康群体呈现差异,其中右额叶、左额叶差异情况最为显著,提示抑郁症患者可能存在大脑额叶功能改变,另外,抑郁症患者的大脑额叶功能与认知功能变化具有明显相关性。  相似文献   

17.
Studies of auditory temporal resolution in birds have traditionally examined processing capabilities by assessing behavioral discrimination of sounds varying in temporal structure. Here, temporal resolution of the brown-headed cowbird (Molothrus ater) was measured using two auditory evoked potential (AEP)-based methods: auditory brainstem responses (ABRs) to paired clicks and envelope following responses (EFRs) to amplitude-modulated tones. The basic patterns observed in cowbirds were similar to those found in other songbird species, suggesting similar temporal processing capabilities. The amplitude of the ABR to the second click was less than that of the first click at inter-click intervals less than 10 ms, and decreased to 30% at an interval of 1 ms. EFR amplitude was generally greatest at modulation frequencies from 335 to 635 Hz and decreased at higher and lower modulation frequencies. Compared to data from terrestrial mammals these results support recent behavioral findings of enhanced temporal resolution in birds. General agreement between these AEP results and behaviorally based studies suggests that AEPs can provide a useful assessment of temporal resolution in wild bird species.  相似文献   

18.
Evoked potentials (EPs) in the parietal and temporal leads were recorded in 14 young subjects in response to successively administered right- and left-side simple visual symbols, squares and circles, during passive viewing and reactions to randomly presented target stimuli. Depending on task conditions and context, the stimuli were divided into four groups: (1) passively perceived stimuli, (2) irrelevant stimuli administered on the side opposite to the target, (3) irrelevant stimuli on the side of the target, and (4) target stimuli. The EPs were averaged over the groups. With an increase in the demands of attention from the first to the fourth groups of stimuli, a linear increase in activation, estimated by the total amplitude of the N1–P3 component, was observed in the parietal leads. The P3b component was mainly responsible for the growth of the EP amplitude. In the temporal leads, the activation was substantially weaker than in the parietal leads and displayed lower between-group differences. The results support the idea that the parietal cortex in humans is of primary importance in tasks involving visual attention and stimuli selection.  相似文献   

19.

Object

This study investigates the effect of tumor location on alterations of language network by brain tumors at different locations using blood oxygenation level dependent (BOLD) fMRI and group independent component analysis (ICA).

Subjects and Methods

BOLD fMRI data were obtained from 43 right handed brain tumor patients. Presurgical mapping of language areas was performed on all 43 patients with a picture naming task. All data were retrospectively analyzed using group ICA. Patents were divided into three groups based on tumor locations, i.e., left frontal region, left temporal region or right hemisphere. Laterality index (LI) was used to assess language lateralization in each group.

Results

The results from BOLD fMRI and ICA revealed the different language activation patterns in patients with brain tumors located in different brain regions. Language areas, such as Broca’s and Wernicke’s areas, were intact in patients with tumors in the right hemisphere. Significant functional changes were observed in patients with tumor in the left frontal and temporal areas. More specifically, the tumors in the left frontal region affect both Broca’s and Wernicke’s areas, while tumors in the left temporal lobe affect mainly Wernicke’s area. The compensated activation increase was observed in the right frontal areas in patients with left hemisphere tumors.

Conclusion

Group ICA provides a model free alternative approach for mapping functional networks in brain tumor patients. Altered language activation by different tumor locations suggested reorganization of language functions in brain tumor patients and may help better understanding of the language plasticity.  相似文献   

20.
The objective of this study was to investigate the ability of horses (Equus caballus) to detour around symmetric and asymmetric obstacles. Ten female Italian saddle horses were each used in three detour tasks. In the first task, the ability to detour around a symmetrical obstacle was evaluated; in the second and third tasks subjects were required to perform a detour around an asymmetrical obstacle with two different degrees of asymmetry. The direction chosen to move around the obstacle and time required to make the detour were recorded. The results suggest that horses have the spatial abilities required to perform detour tasks with both symmetric and asymmetric obstacles. The strategy used to perform the task varied between subjects. For five horses, lateralized behaviour was observed when detouring the obstacle; this was consistently in one direction (three on the left and two on the right). For these horses, no evidence of spatial learning or reasoning was found. The other five horses did not solve this task in a lateralized manner, and a trend towards decreasing lateralization was observed as asymmetry, and hence task difficulty, increased. These non-lateralized horses may have higher spatial reasoning abilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号