首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The regulation of the expression of three Escherichia coli met genes, metB, which codes for cystathionine gamma-synthetase (EC 4.2.99.9), metL, which codes for aspartokinase II-homoserine dehydrogenase II (EC 2.7.2.4-EC 1.1.1.3) and metJ, which codes for the methionine regulon aporepressor, has been studied using highly purified DNA-directed in vitro protein synthesis systems. In a system where the entire gene product is synthesized, the expression of the metB and metL genes is specifically inhibited by MetJ protein (repressor protein) and S-adenosylmethionine (AdoMet). In a simplified system that measures the formation of the first dipeptide of the gene product (fMet-Ala for the metJ gene), MetJ protein and AdoMet partially repress (approximately 40-60%) metJ gene expression. Thus, the metJ gene can be partially autoregulated by its gene product.  相似文献   

4.
Methionine is an important amino acid which acts not only as a substrate for protein elongation but also as the initiator of protein synthesis. The genes of the met regulon, which consists of 10 biosynthetic genes (metA, metB, metC, metE, metF, metH, metK, metL, metQ, and metX), two regulatory genes (metJ and metR), and the methionyl tRNA synthetase gene (metG), are scattered throughout the chromosome. The only linked genes are metK and metX at 63.6 min, metE and metR at 86.3 min, and the metJBLF gene cluster at 89 min. metBL form the only met operon.  相似文献   

5.
6.
The active form of protein B2, a homodimeric subunit of Escherichia coli ribonucleotide reductase, contains a diferric iron center and a cationic free radical localized to tyrosine 122 of one of the two polypeptide chains. Hydroxyurea scavenges this radical but leaves the iron center intact. The resulting metB2 (earlier named B2/HU) is enzymatically inactive. Crude extracts of E. coli catalyze the interconversion of metB2 and B2. Radical introduction into metB2 requires a flavin reductase together with a second poorly defined protein fraction ("Fraction b") as well as dioxygen, NAD(P)H, and a flavin (Fontecave, M., Eliasson, R., and Reichard, P. (1987) J. Biol. Chem. 262, 12325-12331). We now find that ferrous ions can substitute for Fraction b and that the diferric center of metB2 is reduced during anaerobic incubation of the system with reduced flavin and ferrous ions. Spectroscopic evidence and isotope experiments suggest an in situ reduction of the diferric to a diferrous center. Admission of oxygen then results in the instantaneous oxidation of tyrosine 122 to the cationic radical coupled to the reformation of the diferric center, giving enzymatically active B2. These data suggest that reduced diferrous B2 is an intermediate between metB2 and B2 during radical introduction. In addition, we find that anaerobic incubation of B2 with reduced flavin results in the loss of the tyrosyl radical and the formation of metB2. This reaction occurs in the absence of Fraction b or ferrous ions. Our experiments reconstitute with defined reagents the interconversion between metB2 and B2 observed earlier in the E. coli extract. The flavin reductase system catalyzes the interconversion in both directions with dioxygen as the critical factor deciding whether activation or inactivation of ribonucleotide reductase occurs.  相似文献   

7.
8.
We isolated and characterized cis-acting mutations that affect the regulation of the metB gene of Salmonella typhimurium LT2. The mutations were isolated in an Escherichia coli lac deletion strain lysogenized with lambda bacteriophage carrying a metB-lacZ gene fusion (lambda JBlac) in which beta-galactosidase production is dependent upon metB gene expression. The mutant lysogens show elevated, poorly regulated beta-galactosidase production. The altered regulation is a result of disruption of the methionine control system mediated by the metJ repressor. The mutations are located in a region of dyad symmetry centered near the -35 sequence of the metB promoter. We propose that these mutations alter the repressor binding site and define the metB operator sequence. In addition, we discuss a highly conserved, nonsymmetric DNA sequence of unknown function which occurs in the control regions of the metA, metC, metE, metF, metG, and metJB genes of both S. typhimurium and E. coli.  相似文献   

9.
The metB gene encoding cystathionine y-synthase, the second enzyme of methionine biosynthetic pathway, was isolated from a pSL109-based Corynebacterium glutamicum gene library via complementation of an Escherichia coli metB mutant. A DNA-sequence analysis of the cloned DNA identified an open-reading frame of 1161 bp which encodes a protein with the molecular weight of 41,655 comprising of 386 amino acids. The putative protein product showed good amino acid-sequence homology to its counterpart in other organisms. Introduction of a plasmid carrying the cloned metB into the C. glutamicum resulted in a 10-fold increase in cystathionine gamma-synthase activities, demonstrating the identity of the cloned gene. The C. glutamicum metB mutant which was generated by the site-specific integration of the cloned DNA into its chromosome did not lose the ability to grow on glucose minimal medium lacking supplemental methionine. The growth rate of the mutant strain was also comparable to that of the parental strain. These data indicate that, in addition to the transsulfuration pathway, other methionine biosynthetic pathways may be present in C. glutamicum.  相似文献   

10.
Escherichia coli PB160, which carries a tandem duplication with the gene order metB(+)argH(-)su(159) (+)thi(+): metB(+)argH(+)su(159) (-)thi(+), was used to study the mechanism of P1 transduction of genes in the duplicated region. Transduction of the su(159) (+) allele contained within the duplicated segment yields two kinds of su(159) (+) recombinants: 91% are haploid su(159) (+) and 9% are su(159) (+)/su(159) (-) merodiploids. The duplication in these merodiploid transductants includes the metB locus; however, both copies of the metB locus usually are derived from the recipient. Thus, the requirements for transduction of the "condition of merodiploidy" appear to be the cotransduction of the repeat point (the region where the duplication begins to repeat itself) and, of course, the selected marker (in this case su(159) (+)). A mechanism whereby two recipient chromosomes interact with the transduced "repeat point" region to regenerate the tandem duplication is implicated. It appears that a duplication much larger than the quantity of genetic material carried by a P1 phage can be produced in a transductant.  相似文献   

11.
The active form of protein B2, the small subunit of ribonucleotide reductase from Escherichia coli, contains a binuclear ferric center and a free radical localized to tyrosine 122 of the polypeptide chain. MetB2 is an inactive form that lacks the tyrosine radical but retains the Fe(III) center. We earlier reported (Fontecave, M., Eliasson, R., and Reichard, P. (1989) J. Biol. Chem. 264, 9164-9170) that enzymes from E. coli interconvert B2 and metB2, possibly as part of a regulatory mechanism. Introduction of the tyrosyl radical into metB2 occurred in two steps: first, the Fe(III) center was reduced to Fe(II), generating "reduced B2"; next oxygen regenerated non-enzymatically both Fe(III) and the tyrosyl radical. Here we demonstrate that dithiothreitol (DTT) between pH 8 and 9.5 also slowly converts metB2 to B2 in the presence of oxygen. Also in this case the reaction occurs stepwise with reduced B2 as an intermediate. DTT reduces Fe(III) of both metB2 and B2. In the latter case this reaction is accompanied by the immediate loss of the tyrosyl radical. Our results indicate that the tyrosyl radical can exist only in the presence of an intact Fe(III) center. In reduced B2 iron is loosely bound to the protein, dissociates on standing and is readily removed by chelating agents. Binding decreases at higher pH. Loss of iron from reduced B2 explains why ferrous iron stimulates and iron chelators inhibit reactivation of metB2. We propose that the reactivation of mammalian ribonucleotide reductase by DTT (Thelander, M., Gr?slund, A., and Thelander, L. (1983) Biochem. Biophys. Res. Commun. 110, 859-865) may proceed via a mechanism similar to the one found here for E. coli protein B2.  相似文献   

12.
Thioredoxins (Trx) 1 and 2, and three methionine sulfoxide reductases (Msr) whose activities are Trx-dependent, are expressed in Escherichia coli. A metB(1)trxA mutant was shown to be unable to grow on methionine sulfoxide (Met-O) suggesting that Trx2 is not essential in the Msr-recycling process. In the present study, we have determined the kinetic parameters of the recycling process of the three Msrs by Trx2 and the in vivo expression of Trx2 in a metB(1)trxA mutant. The data demonstrate that the lack of growth of the metB(1)trxA mutant on Met-O is due to low in vivo expression of Trx2 and not to the lower catalytic efficiency of Msrs for Trx2.  相似文献   

13.
Two mutations resulting in an alteration in large-subunit ribosomal protein L31 were mapped at around 88.5 min on the Escherichia coli chromosomal linkage map. They were located between metB and argH and cotransduced over 90% with metB. These mutations were shown to define the structural gene of protein L31, rpmE.  相似文献   

14.
The outer hair cell (OHC) underlies mammalian cochlea amplification, and its lateral membrane motor, prestin, which drives the cell's mechanical activity, is modulated by intracellular chloride ions. We have previously described a native nonselective conductance (G(metL)) that influences OHC motor activity via Cl flux across the lateral membrane. Here we further investigate this conductance and use the environmental toxin tributyltin (TBT) to better understand Cl-prestin interactions. Capitalizing on measures of prestin-derived nonlinear capacitance to gauge Cl flux across the lateral membrane, we show that the Cl ionophore TBT, which affects neither the motor nor G(metL) directly, is capable of augmenting the native flux of Cl in OHCs. These observations were confirmed using the chloride-sensitive dye MQAE. Furthermore, the compound's potent ability, at nanomolar concentrations, to equilibrate intra- and extracellular Cl concentrations is shown to surpass the effectiveness of G(metL) in promoting Cl flux, and secure a quantitative analysis of Cl-prestin interactions in intact OHCs. Using malate as an anion replacement, we quantify chloride effects on the nonlinear charge density and operating voltage range of prestin. Our data additionally suggest that ototoxic effects of organotins can derive from their disruption of OHC Cl homeostasis, ultimately interfering with anionic modulation of the mammalian cochlear amplifier. Notably, this observation identifies a new environmental threat for marine mammals by TBT, which is known to accumulate in the food chain.  相似文献   

15.
A direct sulfhydrylation pathway for methionine biosynthesis in Corynebacterium glutamicum was found. The pathway was catalyzed by metY encoding O-acetylhomoserine sulfhydrylase. The gene metY, located immediately upstream of metA, was found to encode a protein of 437 amino acids with a deduced molecular mass of 46,751 Da. In accordance with DNA and protein sequence data, the introduction of metY into C. glutamicum resulted in the accumulation of a 47-kDa protein in the cells and a 30-fold increase in O-acetylhomoserine sulfhydrylase activity, showing the efficient expression of the cloned gene. Although disruption of the metB gene, which encodes cystathionine gamma-synthase catalyzing the transsulfuration pathway of methionine biosynthesis, or the metY gene was not enough to lead to methionine auxotrophy, an additional mutation in the metY or the metB gene resulted in methionine auxotrophy. The growth pattern of the metY mutant strain was identical to that of the metB mutant strain, suggesting that both methionine biosynthetic pathways function equally well. In addition, an Escherichia coli metB mutant could be complemented by transformation of the strain with a DNA fragment carrying corynebacterial metY and metA genes. These data clearly show that C. glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. Although metY and metA are in close proximity to one another, separated by 143 bp on the chromosome, deletion analysis suggests that they are expressed independently. As with metA, methionine could also repress the expression of metY. The repression was also observed with metB, but the degree of repression was more severe with metY, which shows almost complete repression at 0.5 mM methionine in minimal medium. The data suggest a physiologically distinctive role of the direct sulfhydrylation pathway in C. glutamicum.  相似文献   

16.
The active form of protein B2, the small subunit of ribonucleotide reductase, contains two dinuclear Fe(III) centers and a tyrosyl radical. The inactive metB2 form also contains the same diferric complexes but lacks the tyrosyl radical. We now demonstrate that incubation of metB2 with hydrogen peroxide generates the tyrosyl radical. The reaction is optimal at 5.5 nM hydrogen peroxide, with a maximum of 25-30% tyrosyl radical being formed after approximately 1.5 hr of incubation. The activation reaction is counteracted by a hydrogen peroxide-dependent reduction of the tyrosyl radical. It is likely that the generation of the radical proceeds via a ferryl intermediate, as in the proposed mechanisms for cytochrome P-450 and the peroxidases.  相似文献   

17.
Completed Chromosomes in Thymine-Requiring Bacillus subtilis Spores   总被引:11,自引:10,他引:1       下载免费PDF全文
Origin:terminus genetic marker ratios (both purA: metB and purA:ilvA) were measured in extracts of spores of Bacillus subtilis strains W23 thy his and 168 thy. For strain W23 thy his, normalized to W23 spore deoxyribonucleic acid, both ratios were equal to unity and were consistent with the presence of only completed chromosomes in the spores. The same ratios in extracts of spores of 168 thy, normalized to strain 168 or the prototroph SB19, were abnormal, i.e., 2.26 +/- 0.10 and 0.71 +/- 0.06 for purA:metB and purA:ilvA, respectively. These values were unaffected by the extent of extraction of the spore deoxyribonucleic acid, the richness of the medium on which they are formed, and the thymine phenotype. The high ratio for purA:metB is in agreement with the results of earlier workers but, because of the low purA:ilvA ratio, cannot be explained simply by the presence of partially replicated chromosomes in spores of strain 168 thy. Furthermore, purA:leuA in such extracts is 1.01 +/- 0.06, consistent with the presence of only completed chromosomes. It is concluded that the abnormal origin:terminus marker ratios are only apparent and result from non-isogenicity between strains 168 thy and 168 in the metB thyB ilvA chromosome region introduced during construction of 168 thy by transformation of strain 168 with W23 thy deoxyribonucleic acid. It is concluded further that the chromosomes of strain 168 thy spores are in a completed form.  相似文献   

18.
Structural and functional organization of genes responsible for biosynthesis of amino acid methionine, which plays a leading role in cellular metabolism of bacteria, was studied in 24 natural Yersinia pestis strains of the major and minor subspecies from various natural plague foci located in the territory of Russian Federation and neighbouring foreign countries, and also in Y. pestis and Y. pseudotuberculosis strains recorded in the files of NCBI GenBank database. Conservatism of genes metA, metB, metC, metE, and metH as well as regulatory genes metR and metJ involved in biosynthesis of this amino acid was established. Sequencing of the variable locus of gene metB in natural Y. pestis strains of major and minor subspecies revealed that the reason for the methionine dependence of strains belonging to the major subspecies is a deletion of a single nucleotide (-G) in the 988 position from the beginning of the gene, whereas this dependence in strains belonging to subspecies hissarica results from the appearance of a single nucleotide (+G) insertion in the 989 position of gene metB. These mutations are absent in strains of the caucasica, altaica, and ulegeica subspecies of the plague agent and in strains of pseudotuberculosis microbe, which correlates with their capacity for methionine biosynthesis.  相似文献   

19.
Genetic analysis of a mutation affecting the thermal response of the 50S ribosomal subunit to in vitro polyphenylalanine synthesis indicates that the gene, rit, is located near metB on the Escherichia coli chromosome and that the probable gene order is metB-rit-arg-rpo.  相似文献   

20.
Secondary attachment site lysogens of Deltaatt(lambda)Deltappc-argECBH strains of Escherichia coli with lambdacI857 integrated into the bfe gene (88 min) were isolated. Of 20 such lysogens examined, 2 produce lysates with transducing phage containing the metBJF gene cluster (87 min). Reintroduction of the ppc-argECBH chromosome segment (which lies between the bfe and met genes) into these strains virtually abolishes the production of met transducing phage. All of the phage examined have lost essential genes from the left arm of the lambda chromosome. Approximately 85% of the phage appear to have the same genetic composition, containing the metBJF gene cluster, but not the closely linked gene cytR, and having lost phage genes G and J. Analytical CsCl density gradient centrifugation of five representatives of this major class of phage shows four of them to have identical densities (lighter than lambda), while the fifth cannot be resolved from lambda. The four apparently identical phage were isolated from three separate lysates, which suggests the existence of preferred sites for illegitimate recombination on the bacterial and phage chromosomes. Three specialized transducing phage that carry cytR in addition to metB, metJ, and metF have also been studied. Each of these viruses has a different amount of phage deoxyribonucleic acid. Two of them have less deoxyribonucleic acid than lambda, whereas the third has about the same amount. The metB, metF, and cytR genes of the transducing phage have been shown to function in vivo. The phage-borne metB and metF genes are subject to metJ-mediated repression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号