首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Insulin-like growth factor (IGF)-I is a pleiotropic hormone that regulates vascular smooth muscle cell (VSMC) migration, proliferation, apoptosis, and differentiation. These actions are mediated by the IGF-I receptor. How activation of the same receptor by the same ligand leads to these diverse cellular responses is not well understood. Here we describe a novel mechanism specifying VSMC responses to IGF-I stimulation, distinctive for the pivotal roles of local IGF-binding proteins (IGFBPs). The role of local IGFBPs was indicated by comparing the activities of IGF-I and des-1-3-IGF-I, an IGF-I analog with reduced binding affinity to IGFBPs. Compared with IGF-I, des-1-3-IGF-I was more potent in stimulating DNA synthesis but much less potent in inducing directed migration of VSMCs. When the effects of individual IGFBPs were tested, IGFBP-2 and IGFBP-4 were found to inhibit IGF-I-stimulated DNA synthesis and migration. IGFBP-5 had an inhibitory effect on IGF-I-stimulated DNA synthesis, but it strongly potentiated IGF-I-induced VSMC migration. By using a non-IGF-binding IGFBP-5 mutant and an IGF-I-neutralizing antibody, it was demonstrated that IGFBP-5 also stimulates VSMC migration in an IGF-independent manner. This effect of IGFBP-5 was inhibited by soluble heparin and by treating cells with heparinase. Mutation of the heparin-binding motif of IGFBP-5 reduced its migration promoting activity. These findings suggest that local IGFBPs are important determinants of cellular responses to IGF-I stimulation, and a key player in this paradigm is IGFBP-5. IGFBP-5 not only modulates IGF-I actions, but it also stimulates cell migration by interacting with cell-surface heparan sulfate proteoglycans.  相似文献   

2.
Cultured hepatic stellate cells (HSCs), the cell type primarily involved in the progression of liver fibrosis, secrete insulin-like growth factor-I (IGF-I) and IGF binding protein (IGFBP) activity. IGF-I exerts a mitogenic effect on HSCs, thus potentially contributing to the fibrogenic process in an autocrine fashion. However, IGF-I action is modulated by the presence of specific IGFBPs that may inhibit and/or enhance its biologic effects. Therefore, we examined IGFBP-1 through IGFBP-6 mRNA and protein expression in HSCs isolated from human liver and activated in culture. Regulation of IGFBPs in response to IGF-I and other polypeptide growth factors involved in the hepatic fibrogenic process was also assessed. RNase protection assays and ligand blot analysis demonstrated that HSCs express IGFBP-2 through IGFBP-6 mRNAs and release detectable levels of IGFBP-2 through IGFBP-5. Because IGF-I, platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-β (TGF-β) stimulate HSC proliferation and/or matrix production, we tested their effect on IGFBPs released by HSCs. IGF-I induced IGFBP-3 and IGFBP-5 proteins in a time-dependent manner without an increase in the corresponding mRNAs. IGFBP-4 protein levels decreased in response to IGF-I. TGF-β stimulated IGFBP-3 mRNA and protein but decreased IGFBP-5 mRNA and protein. In contrast, PDGF-BB failed to regulate IGFBPs compared with controls. Recombinant human IGFBP-3 (rhIGFBP-3) was then tested for its effect on IGF-I-induced mitogenesis in HSCs. rhIGFBP-3 inhibited IGF-I-stimulated DNA synthesis in a dose-dependent manner, with a peak effect observed at 25 nM IGFBP-3. Because TGF-β is highly expressed in cirrhotic liver tissue, we determined whether IGFBP-3 mRNA expression is increased in liver biopsies obtained from patients with an active fibroproliferative response due to viral-induced chronic active hepatitis. In the majority of these samples, IGFBP-3 mRNA was increased compared with normal controls. These findings indicate that human HSCs, in their activated phenotype, constitutively produce IGFBPs. IGF-I and TGF-β differentially regulate IGFBP-3, IGFBP-4, and IGFBP-5 expression, which, in turn, may modulate the in vitro and in vivo action of IGF-I. J. Cell. Physiol. 174:240–250, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Insulin-like growth factor binding proteins (IGFBPs) are found both associated with cells and in extracellular fluids. Cell-associated IGFBPs increase [125I]-IGF binding to cell monolayers, whereas extracellular (soluble, released) IGFBPs decrease binding. In the current study, we show that either IGFBP-3 or IGFBP-5 are the major forms of IGFBP released from monolayers of human GM10 fibroblasts, T98G glioblastoma cells and forskolin-treated bovine MDBK cells. IGFBPs represent the most abundant [125I]-IGF-I binding site on GM10 and T98G cell monolayers, but 4-17% of the total cell-associated IGFBPs are released from the cell monolayer at 8°C during their quantification. Most of the IGFBPs (> 70%) are released from MDBK cells. Quantitative estimates of [125I]-IGF binding to the cell monolayers are altered because of the ability of the released IGFBPs to reduce the amount of radiolabeled ligand that is available to bind to the cell surface. Lanthanum (La3+) depresses IGFBP release from all three cell types (> 80% for GM10 and T98G cells and > 65% for MDBK cells). The effect was cation specific, noted with La3+ or Zn2+ but not with either Mn2+, Sr2+ or Se3+. The effect was also IGFBP specific; La3+ markedly depressed the release of IGFBP-3 and IGFBP-5, but had less of an effect on IGFBP-2 and IGFBP-4. Concomitant with a decrease in IGFBP-3 and IGFBP-5 release, La3+ caused an increase in [125I]-IGF-I binding to cell-associated IGFBPs and type I IGF receptors. The released soluble IGFBPs have a three- to 20-fold greater affinity (Ka) for [125I]-IGF-I compared to cell-associated IGFBPs. La3+ did not alter the affinity constants of cell-associated IGFBPs. In summary, we have identified a means to prevent loss of IGFBPs from cell monolayers during binding assays. This procedure will be useful in accurately quantifying the levels of IGFBPs on cell monolayers and in determining the role of cell-associated IGFBPs in controlling IGF activity. Retention of cell-associated low affinity IGFBPs may be important in controlling the size of the pericellular IGF pool and in regulating IGF-I access to the type I IGF receptor. J. Cell. Biochem. 66:256-267. © 1997 Wiley-Liss, Inc.  相似文献   

4.
The insulin-like growth factors (IGFs) I and II are present in extracellular fluids associated with specific binding proteins (IGFBPs) that can modify their biologic actions. These studies were undertaken to determine which forms of IGFBP are secreted by endometrial carcinoma (HEC-1B) and breast carcinoma (MDA-231) cells, to characterize variables that control IGFBP secretion, and to study the effect of IGFBP-1 and IGFBP-2 on IGF-I stimulated cell proliferation. Secreted IGFBPs were identified by ligand blotting and IGFBP-1 was quantified using a specific radioimmunoassay (RIA). MDA-231 cell conditioned media (CM) contained four (43,000, 39,000, 30,000 and 24,000 Mr) forms of IGFBP, and HEC-1B cell CM contained three forms (39,000, 34,000 and 30,000 Mr). Immunoblotting showed that the 30,000 Mr form secreted by both cell types was IGFBP-1. Likewise the 34,000 Mr band in HEC-1B media reacted with IGFBP-2 antiserum and the 39,000 and 43,000 Mr bands reacted with IGFBP-3 antiserum. IGF-I stimulated the secretion of IGFBP-3 from both cell types and IGFBP-2 from HEC-1B cells but either decreased or caused no change in secretion of IGFBP-1 and a 24,000 Mr form. In contrast, insulin inhibited the secretion of IGFBP-1 but increased the secretion of the 24,000 Mr form. Compounds that elevate intracellular cAMP levels increased the secretion of IGFBP-3, IGFBP-1, and the 24,000 Mr form from both MDA-231 and HEC-1B cells. When sparse cultures of MDA-231 cells were used, addition of IGF-I caused a 24% increase in cell number after 48 hr. This mitogenic response was enhanced by the presence of recombinant human IGFBP-1 (45% increase in cell number, P less than 0.001). Bovine IGFBP-2 did not potentiate IGF-I stimulated cell proliferation. These findings show that two tumor cell lines secrete distinct forms of IGFBPs and that there is differential regulation of IGFBP secretion. At least one form secreted by both tumors may act as a positive autocrine modulator of IGF-I's growth stimulating actions.  相似文献   

5.
6.
7.
Insulin-like growth factor binding protein (IGFBP)-3 effects proliferation and differentiation of numerous cell types by binding to insulin-like growth factors (IGF) and attenuating their activity or by directly affecting cells in an IGF-independent manner. Consequently, IGFBPs produced by specific cells may affect their differentiation and proliferation. In this study we show that embryonic porcine myogenic cells, unlike murine muscle cell lines, produce significant quantities of a binding protein immunologically identified as IGFBP-3. Nonfusing cells subcultured from highly fused porcine myogenic cell cultures do not produce detectable IGFBP-3 protein or mRNA, thus suggesting the IGFBP-3 is produced by muscle cells in the porcine myogenic cell cultures. Treatment of porcine myogenic cultures with 20 ng of IGF-I or 20 ng of Des (1-3) IGF-I/ml serum-free media for 24 h results in a threefold reduction in the level of IGFBP-3 in conditioned media. This reduction is not affected by cell density over a sixfold range. Additionally, treatment for 24 h with 20 ng of IGF-I/ml media results in a sevenfold decrease in the steady-state level of IGFBP-3 mRNA. This IGF-I-induced decrease in IGFBP-3 mRNA level appears to be relatively unique to myogenic cells. IGF-I treatment also causes a fourfold increase in the steady-state level of myogenin mRNA. This increase in myogenin mRNA suggests that, as expected, IGF-I treatment accelerates differentiation of myogenic cells. The simultaneous decrease in IGFBP-3 mRNA and protein that accompanies IGF-I-induced myogenin expression suggests that differentiation of myogenic cells may be preceded or accompanied by decreased production of IGFBP-3.  相似文献   

8.
We have found that over one-half of the total cell surface 125I-insulin-like growth factor I (IGF-I) binding to BHK cells represents binding to IGF binding proteins (IGFBPs) rather than to the IGF-I receptor. In addition to a number of secreted IGFBPs, we have now characterized two cell-associated IGFBPs with unique characteristics. The cell-associated IGFBPs have molecular weights of 30,000 (30K) and 25,000 (25K), as determined by the Western ligand blot technique. IGFBP-30K is located at the cell surface and can be readily labeled by affinity cross-linking with 125I-IGF-I. Surface expression of IGFBP-30K increases 5.4 +/- 1.2-fold (n = 11) with serum starvation. This induction is fully evident by 4 h, plateauing by 24 h, and is completely inhibitable by cycloheximide. The fasting-induced increase in IGFBP-30K is inhibited by IGF-I and by des-IGF-I and, to a lesser extent, by insulin. Unlike cell-associated IGFBP-30K, secretion of IGFBP was stimulated (6.8 +/- 0.5-fold, n = 2) by IGF-I, whereas IGFBP secretion was inhibited 54% by insulin. These results demonstrate coordinate regulation of IGFBP by serum starvation and IGF-I, such that at low concentrations of IGF-I, cell surface binding protein increases whereas binding protein secretion decreases. At high concentrations of IGF-I, IGFBP secretion increases and cell surface IGF-I receptor, as well as IGFBP, decreases. Taken together, these regulatory events regulate the availability of IGF-I for biologic signalling.  相似文献   

9.
The liver is a major source of circulating insulin-like growth factor I (IGF-I), and it also synthesizes several classes of IGF binding proteins (IGFBPs). Synthesis of IGF-I and IGFBPs is regulated by hormones, growth factors, and cytokines. They are nutritionally regulated and expressed in developmentally specific patterns. To gain insight into cellular regulatory mechanisms that determine hepatic synthesis of IGF-I and IGFBPs and to identify potential target cells for IGF-I within the liver, we studied the cellular sites of synthesis of IGF-I, IGF receptor, growth hormone (GH) receptor, and IGFBPs in freshly isolated rat hepatocytes, endothelial cells, and Kupffer cells. We also localized cellular sites of IGFBP synthesis by in situ hybridization histochemistry. Western ligand and immunoblot analyses were used to determine IGFBP secretion by isolated cells. Two IGF-I mRNA subtypes with different 5' ends (class 1 and class 2) were detected in all isolated liver cell preparations. Type 1 IGF receptor mRNA was detected in endothelial cells, indicating that these cells are a local target for IGF actions in liver. GH receptor was expressed in all cell preparations, consistent with GH regulation of IGF-I and IGFBP synthesis in multiple liver cell types. The IGFBPs expressed striking cell-specific expression. IGFBP-1 was synthesized only in hepatocytes, and IGFBP-3 was expressed in Kupffer and endothelial cells. IGFBP-4 was expressed at high levels in hepatocytes and at low levels in Kupffer and endothelial cells. Cell-specific expression of distinct IGFBPs in the liver provides the potential for cell-specific regulation of hepatic and endocrine actions of IGF-I.  相似文献   

10.
While extracellular acidification within solid tumors is well-documented, how reduced pH impacts regulation of insulin-like growth factor-I (IGF-I) has not been studied extensively. Because IGF-I receptor binding is affected by IGF binding proteins (IGFBPs), we examined how pH impacted IGFBP-3 regulation of IGF-I. IGF-I binding in the absence of IGFBP-3 was diminished at reduced pH. Addition of IGFBP-3 reduced IGF-I cell binding at pH 7.4 but increased surface association at pH 5.8. This increase in IGF-I binding at pH 5.8 corresponded with an increase in IGFBP-3 cell association. This, however, was not due to an increase in affinity of IGFBP-3 for heparin at reduced pH although both heparinase III treatment and heparin addition reduced IGFBP-3 enhancement of IGF-I binding. An increase in IGF-I binding to IGFBP-3, though, was seen at reduced pH using a cell-free assay. We hypothesize that the enhanced binding of IGF-I at pH 5.8 is facilitated by increased association of IGFBP-3 at this pH and that the resulting cell associated IGF-I is IGFBP-3 and not IGF-IR bound. Increased internalization and nuclear association of IGF-I at pH 5.8 in the presence of IGFBP-3 was evident, yet cell proliferation was reduced by IGFBP-3 at both pH 5.8 and 7.4 indicating that IGFBP-3-cell associated IGF-I does not signal the cell to proliferate and that the resulting transfer of bound IGF-I from IGF-IR to IGFBP-3 results in diminished proliferation. Solution binding of IGF-I by IGFBP-3 is one means by which IGF-I-induced proliferation is inhibited. Our work suggests that an alternative pathway exists by which IGF-I and IGFBP-3 both associate with the cell surface and that this association inhibits IGF-I-induced proliferation.  相似文献   

11.
12.
The proliferative action of insulin-like growth factors (IGF-I and -II) is mediated via the type I IGF receptor (IGF-IR) and is modulated by their association with high affinity binding proteins, IGFBP-1 to -6. We recently found that, in addition to its ability to bind IGFs, IGFBP-3 also inhibits IGF-IR activation independently of IGF binding and without interacting directly with IGF-IR. Here, we show that IGFBP-3 is capable of blocking the signal triggered by IGFs. Breast carcinoma-derived cells (MCF-7) were stimulated by des(1-3)IGF-I or [Gln(3),Ala(4),Tyr(15),Leu(16)]IGF-I, two IGF analogues with intact affinity for IGF-IR, but with weak or virtually no affinity for IGFBPs, then incubated with IGFBP-3. The activated IGF-IR was desensitized through reversal of its autophosphorylation, following which both phosphatidylinositol 3-kinase and p42(MAPK) activities were depressed. Direct measurement of phosphotyrosine phosphatase activity and reconstitution experiments using tyrosine-phosphorylated insulin receptor substrate-1 (IRS-1) indicated that IGFBP-3 activated a phosphotyrosine phosphatase (PTPase). This action appeared to be peculiar to IGFBP-3 among the IGFBPs, since neither IGFBP-1 nor IGFBP-5 (structurally the closest to IGFBP-3), had any such effect. Several cell lines derived from normal or tumor cells responsive to IGF-I were used to show that IGFBP-3-stimulated PTPase is cell type-specific. Although the precise nature of the phosphatase remains to be determined, the results of this study demonstrate that IGFBP-3 stimulates a phosphotyrosine phosphatase activity that down-regulates the IGF-I signaling pathway, suggesting a major role for IGFBP-3 in regulating cell proliferation.  相似文献   

13.
14.
The insulin-like growth factor (IGF) system is a key regulator of cell growth, survival and differentiation, and these functions are co-modulated by other growth factors including fibroblast growth factor-2 (FGF-2). To investigate IGF/FGF interactions in neuronal cells, we employed neuroblastoma cells (SK-N-MC). In serum free conditions proliferation of the SK-N-MC cells was promoted by IGF-I (25 ng/ml), but blunted by FGF-2 (50 ng/ml). IGF-I-induced proliferation was abolished in the presence of FGF-2 even when IGF-I was used at 100 ng/ml. In addition to our previously described FGF-2 induced proteolytic cleavage of IGFBP-2, we found that FGF-2 increased IGFBP-6 levels in conditioned medium (CM) without affecting IGFBP-6 mRNA abundance. Modulation of IGFBP-2 and -6 levels were not significant mechanisms involved in the blockade of IGF-I action since the potent IGF-I analogues [QAYL]IGF-I and des(1-3)IGF-I (minimal IGFBP affinity) were unable to overcome FGF-2 inhibition of cell proliferation. FGF-2 treated cells showed morphological differentiation expressing the TUJ1 neuronal marker while cells treated with IGF-I alone showed no morphological change. When IGF-I was combined with FGF-2, however, cell morphology was indistinguishable from that seen with FGF-2 alone. FGF-2 inhibited proliferation and enhanced differentiation was also associated with a 70% increase in cell death. Although IGF-I alone was potently anti-apoptotic (60% decreased), IGF-I was unable to prevent apoptosis when administrated in combination with FGF-2. Gene-array analysis confirmed FGF-2 activation of the intrinsic and extrinsic apoptotic pathways and blockade of IGF anti-apoptotic signaling. FGF-2, directly and indirectly, overcomes the proliferative and anti-apoptotic activity of IGF-I by complex mechanisms, including enhancement of differentiation and apoptotic pathways, and inhibition of IGF-I induced anti-apoptotic signalling. Modulation of IGF binding protein abundance by FGF-2 does not play a significant role in inhibition of IGF-I induced mitogenesis.  相似文献   

15.
Retinoids are potent inhibitors of growth and tumor progression in many mammary carcinoma cell lines, though regulation of growth in nontumorigenic mammary epithelial cells by retinoids is less clear. Here, we have characterized the inhibition of MAC-T (a nontransformed bovine mammary epithelial cell line) cellular proliferation by retinoids and their role in regulating insulin-like growth factor binding proteins (IGFBPs). Retinoic acid (RA) (100 nM) was a potent inhibitor of MAC-T cell proliferation. Retinol was 10–100 times less effective. Neither retinoid could completely arrest growth at noncytotoxic concentrations. Retinoic acid inhibited cellular proliferation by 1 h (P < .05), but inhibition was fivefold greater by 24 h (P < .01). This second stage of growth inhibition (after 12 h) was dependent upon protein synthesis. However, RA-induced inhibition of cellular proliferation did not persist, with thymidine incorporation increasing toward control levels by 4 days in culture. Retinoic acid was less effective in inhibiting thymidine incorporation when cells were stimulated with insulin, des(1–3) IGF-I, or Long(R3) IGF-I when compared to cells stimulated with native IGF-I or serum. Inhibition of proliferation by RA was associated with increased levels of IGFBP-2 in conditioned media and in plasma membrane preparations. Treatment with insulin or des(1–3) IGF-I resulted in the appearance of IGFBP-3 in conditioned media and on the cell surface. However, RA significantly reduced IGFBP-3 levels in conditioned media and eliminated IGFBP-3 associated with the plasma membrane. Thus, RA is a potent but transient inhibitor of bovine mammary epithelial cell proliferation, and this growth inhibition is correlated with increased IGFBP-2 accumulation and inhibition of IGF-I stimulated IGFBP-3 protein secretion. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Insulin-like growth factor-binding protein 5 (IGFBP-5) is a secreted protein that binds to insulin-like growth factors (IGFs) and modulates IGF actions on cell proliferation, differentiation, survival, and motility. IGFBP-5 also regulates these cellular events through IGF-independent mechanisms. To elucidate the molecular mechanisms governing these diverse actions of IGFBP-5, we screened a human cDNA library by a yeast two-hybrid system using IGFBP-5 as bait and identified fibronectin (FN) as a potential IGFBP-5-interacting partner. The complex formation of IGFBP-5 and FN was established by glutathione S-transferase pull-down, solution, and solid phase binding assays using glutathione S-transferase-IGFBP-5 and native IGFBP-5 in vitro and by co-immunoprecipitation in vivo. Binding assay using deletion mutants indicated that the IGFBP-5 C domain binds to the 10th and 11th type I repeats of FN. IGFBP-5 potentiated IGF-I-induced cell migration in FN-null, but not in wild-type, mouse embryonic cells. When FN was reintroduced either as an adhesive substrate or in solution to the FN-null cells, the potentiating effect of IGFBP-5 on IGF-I-induced cell migration was abolished. Binding of IGFBP-5 to FN had no effect on the ability of IGFBP-5 to bind IGF-I, but it increased the proteolytic degradation of IGFBP-5. Inhibition of IGFBP-5 proteolysis restored the potentiating effect of IGFBP-5. These results suggest that FN and IGFBP-5 bind to each other, and this binding negatively regulates the ligand-dependent action of IGFBP-5 by triggering IGFBP-5 proteolysis.  相似文献   

17.
The components of the insulin-like growth factor (IGF) axis and their roles in regulating proliferation and differentiation of the human colon adenocarcinoma cell line, Caco-2, have been investigated. Caco-2 cells proliferated in serum-free medium at 75% the rate observed in medium containing 10% fetal bovine serum. IGF-I (10 nM) increased Caco-2 cell growth in serum-free medium, but not to the rate seen with serum. Multiple IGF-II mRNA species were produced by Caco-2 cells, but IGF-I mRNA was undetectable. Secretion of radioimmunoassayable IGF-II corresponded with steady-state levels of IGF-II mRNA, neither of which was observed to change markedly over the course of 16 days of Caco-2 cell differentiation. Levels of sucrase-isomaltase mRNA, a marker for enterocytic differentiation, increased 12-fold between days 5 and 16 of culture. Northern blotting of total RNA and ligand blot and immunoblot analyses of serum-free conditioned medium revealed that Caco-2 cells produce several IGF binding proteins (IGFBPs), including IGFBP-2, -3, and -4, as well as a 31,000 M, species that was not identified. The pattern of IGFBP secretion changed dramatically during Caco-2 cell differentiation: IGFBP-3 and IGFBP-2 increased 8.5-fold and 5-fold, respectively, whereas IGFBP-4 and the 31,000 M, species decreased 43% and 90%. Caco-2 cell clones stably transfected with a human IGFBP-4 cDNA construct exhibited a 60% increase in steady-state level of IGFBP-4 mRNA, and secreted twice as much IGFBP-4 protein as controls. Moreover, IGFBP-4-overexpressing cells proliferated at only 25% the rate of control cells in serum-free medium, in conjunction with a 70% increase in expression of sucrase-isomaltase. In summary, these studies indicate that a complex IGF axis is involved in autocrine regulation of Caco-2 cell proliferation and differentiation. © 1996 Wiley-Liss, Inc.  相似文献   

18.
The anabolic effects and bioavailability of insulin-like growth factors I and II (IGF-I, IGF-II) are regulated in part by a family of IGF-binding proteins (IGFBPs). There are six known members of the IGFBP family, which share distinct structural characteristics and functional activities. To study the binding properties of these proteins, we have expressed recombinant IGFBP-3 and IGFBP-4 using the LCR/Mel expression system. Using this system, we found that recombinant IGFBP-3 was secreted by Mel cells and had a glycosylation pattern similar to that of native IGFBP-3. Recombinant IGFBP-4 secreted from Mel cells had a molecular size identical to that of non-glycosylated native IGFBP-4. The binding kinetics of recombinant IGFBPs was measured using a solid-phase ligand-binding assay, an in vitro solution-binding assay, and a cellular proliferation assay. IGF-I bound with high affinity to recombinant IGFBP-3 and IGFBP-4 with K(D)s of <0.25 nmol. As reported for native IGFBPs, IGF-II bound with affinity higher than IGF-I to recombinant IGFBP-3 and IGFBP-4 (K(D) of <0.05 nmol). Recombinant IGFBP-3 and IGFBP-4 were found to inhibit the IGF-induced proliferation of an NIH3T3 cell line engineered to overexpress the IGF-I receptor. We have compared the binding kinetics of Mel cell-expressed IGFBPs with that of recombinant protein expressed in Escherichia coli and found them to be equivalent. Here, we show that the LCR/Mel expression system represents an effective route for expression of biologically active IGFBPs.  相似文献   

19.
Growth factors and matrix proteins regulate the proliferation and differentiation of osteoblasts. The insulin-like growth factor (IGF) system comprises IGF-I, IGF-II, and six high-affinity IGF-binding proteins (IGFBPs). IGFs stimulate cell growth in many types of tissue; IGF-binding proteins regulate cellular actions and can affect cell growth. IGF-I is involved in differentiation, proliferation, and matrix formation in osteoblasts; IGFBP-5 is associated with the extracellular matrix (ECM) and can potentiate the actions of IGF-I. We investigated the effect of ECM proteins on the responses of MC3T3-E1 osteoblast cells to IGF-I and IGFBP-5. In addition, because extracellular signal-regulated kinases 1 and 2 (Erk 1/2) affect cell growth, we evaluated the effects of IGFBP-5 on Erk 1/2 phosphorylation in MC3T3-E1 cells. IGF-I caused an increase in IGFBP-5 expression in cultured MC3T3-E1 cells, and IGF-I plus IGFBP-5 significantly increased cell growth. Likewise, the addition of IGF-I and IGFBP-5 to cultured MC3T3-E1 cells increased the synthesis of the ECM proteins osteopontin (OPN) and thrombospondin-1 (TSP-1), which can bind to alphaVbeta3 integrin receptors on the cell surface. By contrast, the addition of an antibody against ECM proteins inhibited the effects of OPN and TSP-1 on IGFBP-5 expression. The stimulatory effect of IGFBP-5 was mediated via Erk 1/2 activation. These data suggest that IGFBP-5 regulates Erk 1/2 phosphorylation in cultured MC3T3-E1 cells via ECM proteins that may ultimately stimulate the growth of osteoblasts. We determined whether occupation of the alphaVbeta3 integrin receptor affects IGF-I receptor (IGF-IR)-mediated signaling and function in MC3T3-E1 osteoblast cells. Occupation of the alphaVbeta3 integrin receptor with ECM proteins induced IGF-I-stimulated IGF-IR phosphorylation. Conversely, in the presence of the alphaVbeta3-specific disintegrin echistatin, IGF-I-stimulated IGF-IR activation was inhibited. IGF-I-stimulated IGF-IR phosphorylation was accompanied by IRS-1 phosphorylation and MAPK activation. However, these effects were attenuated by echistatin. Thus, occupancy of the alphaVbeta3 disintegrin receptor modulates IGF-I-induced IGF-IR activation and IGF-IR-mediated function in MC 3T3-E1 osteoblasts.  相似文献   

20.
The role and mechanisms of action of insulin-like growth factors (IGFs) in skin remain unclear. Epidermal keratinocytes possess IGF-I receptors and are responsive to IGF-I, which is primarily derived from underlying dermal fibroblasts. IGF binding proteins (IGFBPs), also synthesized by fibroblasts, may be involved in paracrine targeting of IGF-I to its receptors. We therefore examined whether human keratinocytes synthesize IGFBPs and their mRNAs. Following culture in complete medium (containing bovine pituitary extract and epidermal growth factor) Western ligand blotting (WLB) of cell conditioned medium revealed a major band of 32 kD, a less abundant IGFBP of 24 kD at all passages, and a 37–42 kD IGFBP which increased in abundance in late passage. Immunoprecipitation followed by WLB confirmed that the predominant 32 kD band was IGFBP-2. Radioimmunoassay of IGFBP-1, -3, and -6 revealed detectable levels of IGFBP-3 and significant levels of IGFBP-6, but not IGFBP-1. Northern analysis following culture in complete medium revealed that at early passage IGFBP-1, -2, -4, and -6 mRNAs were detectable. IGFBP-3 and -5 mRNAs were not detectable. Following culture in growth factor-free medium a 37–42 kD band, consistent with IGFBP-3, was predominant and a 24 kD band consistent with IGFBP-4 was also present. These data demonstrate the expression of a distinct pattern of IGFBPs by cultured human keratinocytes dependent on culture conditions. Keratinocyte-derived IGFBPs are likely to play a role in the transport and targeting of IGF-I from dermally derived fibroblasts to the epidermis. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号