首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Attacks of tachysystolia have been studied, which were induced by premature stimuli (amplitude up to 4-5 diastolic thresholds, duration 4 ms) applied after a set of rectangular impulses (amplitude 2 diastolic thresholds, duration 4 ms, frequency 0.5 or 2 Hz). The spatial and temporal distribution of electrical potential throughout the surface of a thin (approximately 1 mm) preparation was registered by two multi-electrode arrays (32 unipolar electrodes each). One array recorded the distribution of electrical potential on the endocardial surface and the other, on the epicardial one. Wave isochronous pictures (maps) corresponding to spatial and temporal propagation of excitation on the surfaces of the preparation were reconstructed on the basis of electrograms registered on each of the surfaces. On the basis of these maps, the three-dimensional structure of scroll waves, including the location, direction and velocity of the shift of filament ends as well as the shape of the thread was analyzed. The analysis of the data obtained in our experiments allow one to conclude that, under tachysystolias caused by three-dimensional scroll wave with a straight filament, there occur the following kinds of wave thread movements: (1) the wave thread may change its location from turn to turn and on the whole be located at different angles to the preparation surfaces; (2) the wave thread may precess, when one of the filament end is "secured" on the surface and the other constantly changes its location on the opposite surface; (3) the wave thread may periodically intertwine (twisted filament) and untwine; (4) dimensions of the scroll wave kernels (sections of the filament on the surfaces) may change from turn to turn both simultaneously on both surfaces (endocardial and epicardial) and on one of them only; (5) the wave thread may curve when it goes within the wall from endocardial to epicardial surfaces; the curve may come rather close the surfaces of the myocardial tissue.  相似文献   

2.
The dynamics of an electrical scroll wave with the U-shaped filament with both ends of the filament being “anchored” on the endocardial surface and the dependence of the structure of pseudoECG on the dynamics of the vortex during the development of polymorphic tachysystolia have been studied by applying premature stimuli to the “target phase” with subsequent registration of the spatial and temporal distribution of electrical potential throughout the surface (endocardial and epicardial) of a thin (≈1 mm) preparation. It was found that (1) the pseudoECG of the polymorphic form during the tachysystolia attack can be observed in the case that the position of the filament ends on the surfaces of the preparation does not practically change from turn to turn (filament ends are “anchored”); (2) the thread of a scroll wave during this attack can twist and untwin (twisted filament), just as it was the case for scroll waves with a straight filament; (3) in the case of pseudoECG of polymorphic form, the twisting and untwining of the filament were stronger (the angle of maximal twisting was 120 degrees and more), and the angle of twisting changed by a substantially greater value from turn to turn as compared with the pseudoECG of monomorphic form; (4) in the case of pseudoECG of polymorphic form, the time interval between the appearance of waves on the surfaces of the preparation (T epi-endo) was substantially greater and changed to a greater extent from turn to turn of the vortex; and (5) simultaneously with the appearance of pseudoECG of polymorphic form and the onset of changes in the twisting of the scroll and the T epi-endo interval indicated in (2–4), significant changes in the patterns of coverage of the surface by excitation occurred. Based on the results obtained, an explanation of the reasons for the appearance of excitation breakdown patterns on the surface of the myocardium was proposed, which differs from the traditional viewpoint. These patterns may be the result of reflection on myocardial surfaces of the activity of not different simultaneously occurring sources of initiation of excitation but of a single three-dimensional vortex whose filament twists when passing through the thickness of the myocardium and can closely approach one or the other surface.  相似文献   

3.
Abstract: Palaeozoic armoured agnathans (or ostracoderms) are characterised by having an external, bone shield enclosing the anterior part of their bodies, which demonstrate great diversity of both forms and sizes. The functional significance of these cephalic shields remains unclear (they may have been a functional analogue of the vertebral column, or merely afforded protection). Here we assess the importance of the cephalic shield in terms of locomotion. In order to do this, we have studied flow patterns of the Devonian heterostracan Errivaspis waynensis ( White, 1935 ), using an anatomically correct model of E. waynensis positioned at different pitching angles. The fluid flow was visualised in a wind tunnel, using planar light sheet techniques, adding vaporised propylene glycol to the fluid. The flow pattern over the cephalic shield of Errivaspis is dominated by the formation of leading‐edge vortices (LEVs). When the model was positioned at angles of attack of ‐2 degrees or higher a pair of nearly symmetrical, counter‐rotating primary vortices were produced, which flowed downstream over the upper surface of the cephalic shield. At moderate angles of attack, LEVs remained attached to the dorsal surface, but, as the angle of attack increased above 7 degrees, vortices began to separate from the surface at posterior locations. At a high angles of attack (around 12 degrees or 13 degrees), vortex breakdown (or vortex burst) occured. The body‐induced vortical flow around the cephalic shield is very similar to the that described over delta wing aircraft. This strategy generates lift forces through vortex generation (vortex lift). Based on this analogue and knowing that Errivaspis lacked pectoral fins or any other obvious control surfaces, vortex lift forces added through this mechanism may have played a major role in the locomotion of these primitive fishes, not only to counteract the negative buoyancy of the fish, but also as a means of manoeuvring.  相似文献   

4.
It has been suggested that reentrant activity in three-dimensional cardiac muscle may be organized as a scroll wave rotating around a singularity line called the filament. Experimental studies indicate that filaments are often concealed inside the ventricular wall and consequently, scroll waves do not manifest reentrant activity on the surface. Here we analyse how such concealed scroll waves are affected by a twisted anisotropy resulting from rotation of layers of muscle fibers inside the ventricular wall. We used a computer model of a ventricular slab (15x15x15 mm(3)) with a fiber twist of 120 degrees from endocardium to epicardium. The action potential was simulated using FitzHugh-Nagumo equations. Scroll waves with rectilinear filaments were initiated at various depths of the slab and at different angles with respect to fiber orientation. The analysis shows that independent of initial conditions, after a certain transitional period, the filament aligns with the local fiber orientation. The alignment of the filament is determined by the directional variations in cell coupling due to fiber rotation and by boundary conditions. Our findings provide a mechanistic explanation for the prevalence of intramural reentry over transmural reentry during polymorphic ventricular tachycardia and fibrillation.  相似文献   

5.
Structural changes in frog skeletal muscle were studied using x-ray diffraction with a time resolution of 0.53–1.02 ms after a single electrical stimulus at 8°C. Tension began to drop at 6 ms (latency relaxation), reached a minimum at 8 ms, and then twitch tension developed. The intensity of the meridional reflection at 1/38.5 nm−1, from troponin molecules on the thin filament, began to increase at 4–5 ms and reached a maximum at ~12 ms. The meridional reflections based on the myosin 43-nm repeat began to decrease when the tension began to develop. The peak position of the third-order myosin meridional reflection began to shift toward the higher angle at ~5 ms, reached a maximum shift (0.02%) at 10 ms, and then moved toward the lower angle. The intensity of the second actin layer line at 1/18 nm−1 in the axial direction, which was measured at 12°C, began to rise at 5 ms, whereas the latency relaxation started at 3.5 ms. These results suggest that 1), the Ca2+-induced structural changes in the thin filament and a structural change in the thick filament have already taken place during latency relaxation; and 2), the Ca2+ regulation of the thin filament is highly cooperative.  相似文献   

6.
Qu Z  Kil J  Xie F  Garfinkel A  Weiss JN 《Biophysical journal》2000,78(6):2761-2775
Scroll wave (vortex) breakup is hypothesized to underlie ventricular fibrillation, the leading cause of sudden cardiac death. We simulated scroll wave behaviors in a three-dimensional cardiac tissue model, using phase I of the Luo-Rudy (LR1) action potential model. The effects of action potential duration (APD) restitution, tissue thickness, filament twist, and fiber rotation were studied. We found that APD restitution is the major determinant of scroll wave behavior and that instabilities arising from APD restitution are the main determinants of scroll wave breakup in this cardiac model. We did not see a "thickness-induced instability" in the LR1 model, but a minimum thickness is required for scroll breakup in the presence of fiber rotation. The major effect of fiber rotation is to maintain twist in a scroll wave, promoting filament bending and thus scroll breakup. In addition, fiber rotation induces curvature in the scroll wave, which weakens conduction and further facilitates wave break.  相似文献   

7.
Polarized fluorescence from F-actin-ε-ADP in thin filaments reconstituted in a myosin-free single muscle fiber was measured at various concentrations of Ca2+. Four components of polarized fluorescence changed with increasing Ca2+ concentration at pCa values of around 7 to 6, concomitant with a change of the tension generated by the fiber irrigated with myosin in the presence of Mg-ATP. From analysis of observed values of the four components, it was found that the flexibility of the thin filament increased, or the elastic modulus for bending decreased from 5.7 × 10?17 dyn cm2 to 4.7 × 10?17 dyn cm2, when the pCa value decreased from 7 to 6. In the same range of pCa values, the angles of absorption and emission dipoles of ε-ADP changed, suggesting a small rotation of the base-plane of ε-ADP around an axis perpendicular to the F-actin axis.  相似文献   

8.
Weakly attached cross-bridges in relaxed frog muscle fibers.   总被引:1,自引:1,他引:0       下载免费PDF全文
Tension responses due to small, rapid length changes (completed within 40 microseconds) were obtained from skinned single frog muscle fiber segments (4-10 mm length) incubated in relaxing and rigor solutions at various ionic strengths. The first 2 ms of these responses can be described with a linear model in which the fiber is regarded as a rod, composed of infinitesimally small, identical segments, containing one undamped elastic element and two or three damped elastic elements and a mass in series. Rigor stiffness changed less than 10% in a limited range, 40-160 mM, of ionic strength conditions. Equatorial x-ray diffraction patterns show a similar finding for the filament spacing and intensity ratio I(11)/I(10). Relaxed fibers became stiffer under low ionic strength conditions. This stiffness increment can be correlated with a decreasing filament spacing and (an increased number of) weakly attached cross-bridges. Under low ionic strength conditions an additional recovery (1 ms time constant) became noticeable which might reflect characteristics of weakly attached cross-bridges.  相似文献   

9.
The interaction of troponin molecules on the thin filament with Ca2+ plays a key role in regulating muscle contraction. To characterize the structural changes of troponin caused by Ca2+ and crossbridge formation, we recorded the small-angle x-ray intensity and the myoplasmic free Ca2+ concentration using fluo-3 AM in the same frog skeletal muscle during twitch elicited by a single electrical pulse at 16°C. In an overstretched muscle, the intensity of the meridional reflection from troponin at 1/38.5 nm−1 began to change at 4 ms after the stimulus, reached a peak at 10 ms, and returned to the resting level with a halftime of 25 ms. The concentration of troponin-bound Ca2+ began to increase at 1-2 ms after the stimulus, reached a peak at 5 ms, and returned to the resting level with a halftime of 40 ms, indicating that troponin begins to change conformation only after a sizable amount of Ca2+ has bound to it, and returns to the resting structure even when there is still some bound Ca2+. In a muscle with a filament overlap, crossbridge formation appears to slow down Ca2+ release from troponin and have a large effect on its conformation.  相似文献   

10.
Stortz CA 《Carbohydrate research》2006,341(15):2531-2542
The adiabatic potential energy surfaces (PES) of six trisaccharides, sulfated derivatives of alpha-D-Gal p-(1-->3)-beta-D-Gal p-(1-->4)-alpha-D-Gal p and beta-D-Gal p-(1-->4)-alpha-D-Gal p-(1-->3)-beta-D-Gal p representing models of lambda-, mu-, and nu-carrageenans were obtained using the MM3 force-field at epsilon = 3. Each PES was described by a single contour map for which the energy is plotted against the two psi glycosidic angles, given the small variations of the phi glycosidic torsional angle in the low-energy regions of disaccharide maps. Most surfaces appear as expected from the maps of the disaccharidic repeating units of carrageenans, with less important factors altering the additive effect of both linkages. Only small interactions between the first and third monosaccharidic moieties of the trisaccharides are observed. The flexibility of the alpha-linkages appears nearly identical to that in their disaccharide counterparts, with only one exception, where it appears reduced by the presence of the third monosaccharide. On the other hand, the flexibility of the beta-linkage appears to be equal or sometimes even higher than that observed for the corresponding disaccharide.  相似文献   

11.
The rapid growth of stamen filaments just before flower anthesis in Arabidopsis thaliana does not occur in the male sterile33 ( ms33 , formerly known as msZ ) mutant. ms33 filaments were approximately 40% shorter than the wild type (WT), and there was corresponding reduction in the epidermal cell length of filaments. This suggests that MS33 controls the final cell-elongation phase of filament growth. Both low temperatures and gibberellic acid (GA3) restored filament and cell growth in intact ms33 flowers, but these treatments only had a small promotive effect on WT filaments. Decapitation experiments involving the removal of the anther had the opposite effect on WT and ms33 filaments; growth was inhibited in WT, but was increased in ms33 filaments. In young stamen primordia cultured in vitro, filament growth was less in WT, but more in ms33 , than in respective in vivo produced filaments. Plant growth substances (PGSs), GA3 and indole-3-acetic acid (IAA) were promotive, zeatin had no effect, and abscisic acid (ABA) and ethrel inhibited filament growth in both intact and decapitated WT and ms33 filaments. Together these observations suggest that MS33 is activated immediately before anthesis and that the MS33 product either regulates temporal biosynthesis of gibberellins (GAs) and/or IAA or makes the filament tissue sensitive to these PGSs, which in turn trigger cell elongation and filament growth. The data also suggest that ms33 mutant anthers contain a relatively high ratio of growth inhibitors to promoters, which inhibits epidermal cell elongation and filament growth.  相似文献   

12.
13.
Motor maps and electrical thresholds for evoking movements from motor areas of the cerebral cortex were evaluated in normal cats by using intracortical microstimulation techniques. Stainless steel chambers were implanted over craniotomies in adult cats trained to perform reaching and retrieval movements with their forelimbs. Prehensile motor training was continued and movement performance monitored for about 6–10 weeks during which the cortex was progressively explored with sharp tungsten electrodes inserted into cortical gyri (anterior and posterior sigmoid, and coronal) and the banks of sulci (cruciate, presylvian and coronal). Twice weekly, under light general anaesthesia, 3–4 tracks were made in either hemisphere till about 50 tracks were made in each hemisphere. Mean thresholds for evoking forelimb movements from different cytoarchitectonic areas (4γ, 4δ, 6aγ and 3a) were compared and no consistent or significant differences were observed between the different areas. In the animals (4/6) which used either forelimb to perform the tasks, there were no consistent differences in the mean thresholds for evoking forelimb movements from the two hemispheres. However, in 2 animals, which used their right forelimbs predominantly or exclusively to perform all the tasks, mean thresholds for evoking forelimb movements was significantly higher in areas 4γ and 6aγ of the left hemisphere (compared to the right); no consistent differences in the mean thresholds for evoking hindlimb or facial movements were observed between the two hemispheres. These findings suggest that ICMS thresholds for evoking forelimb movements may be similar in different sensorimotor areas of the cat cerebral cortex, and these thresholds could be influenced by motor training.  相似文献   

14.
Motor maps and electrical thresholds for evoking movements from motor areas of the cerebral cortex were evaluated in normal cats by using intracortical microstimulation techniques. Stainless steel chambers were implanted over craniotomies in adult cats trained to perform reaching and retrieval movements with their forelimbs. Prehensile motor training was continued and movement performance monitored for about 6-10 weeks during which the cortex was progressively explored with sharp tungsten electrodes inserted into cortical gyri (anterior and posterior sigmoid, and coronal) and the banks of sulci (cruciate, presylvian and coronal). Twice weekly, under light general anaesthesia, 3-4 tracks were made in either hemisphere till about 50 tracks were made in each hemisphere. Mean thresholds for evoking forelimb movements from different cytoarchitectonic areas (4gamma, 4delta, 6agamma and 3a) were compared and no consistent or significant differences were observed between the different areas. In the animals (4/6) which used either forelimb to perform the tasks, there were no consistent differences in the mean thresholds for evoking forelimb movements from the two hemispheres. However, in 2 animals, which used their right forelimbs predominantly or exclusively to perform all the tasks, mean thresholds for evoking forelimb movements was significantly higher in areas 4gamma and 6agamma of the left hemisphere (compared to the right); no consistent differences in the mean thresholds for evoking hindlimb or facial movements were observed between the two hemispheres. These findings suggest that ICMS thresholds for evoking forelimb movements may be similar in different sensorimotor areas of the cat cerebral cortex, and these thresholds could be influenced by motor training.  相似文献   

15.
Majumder R  Nayak AR  Pandit R 《PloS one》2011,6(4):e18052
Cardiac arrhythmias, such as ventricular tachycardia (VT) and ventricular fibrillation (VF), are among the leading causes of death in the industrialized world. These are associated with the formation of spiral and scroll waves of electrical activation in cardiac tissue; single spiral and scroll waves are believed to be associated with VT whereas their turbulent analogs are associated with VF. Thus, the study of these waves is an important biophysical problem. We present a systematic study of the combined effects of muscle-fiber rotation and inhomogeneities on scroll-wave dynamics in the TNNP (ten Tusscher Noble Noble Panfilov) model for human cardiac tissue. In particular, we use the three-dimensional TNNP model with fiber rotation and consider both conduction and ionic inhomogeneities. We find that, in addition to displaying a sensitive dependence on the positions, sizes, and types of inhomogeneities, scroll-wave dynamics also depends delicately upon the degree of fiber rotation. We find that the tendency of scroll waves to anchor to cylindrical conduction inhomogeneities increases with the radius of the inhomogeneity. Furthermore, the filament of the scroll wave can exhibit drift or meandering, transmural bending, twisting, and break-up. If the scroll-wave filament exhibits weak meandering, then there is a fine balance between the anchoring of this wave at the inhomogeneity and a disruption of wave-pinning by fiber rotation. If this filament displays strong meandering, then again the anchoring is suppressed by fiber rotation; also, the scroll wave can be eliminated from most of the layers only to be regenerated by a seed wave. Ionic inhomogeneities can also lead to an anchoring of the scroll wave; scroll waves can now enter the region inside an ionic inhomogeneity and can display a coexistence of spatiotemporal chaos and quasi-periodic behavior in different parts of the simulation domain. We discuss the experimental implications of our study.  相似文献   

16.
We investigated the capacity for torque development and muscle activation at the onset of fast voluntary isometric knee extensions at 30, 60, and 90 degrees knee angle. Experiments were performed in subjects (n = 7) who had high levels (>90%) of activation at the plateau of maximal voluntary contractions. During maximal electrical nerve stimulation (8 pulses at 300 Hz), the maximal rate of torque development (MRTD) and torque time integral over the first 40 ms (TTI40) changed in proportion with torque at the different knee angles (highest values at 60 degrees ). At each knee angle, voluntary MRTD and stimulated MRTD were similar (P < 0.05), but time to voluntary MRTD was significantly longer. Voluntary TTI40 was independent (P > 0.05) of knee angle and on average (all subjects and angles) only 40% of stimulated TTI40. However, among subjects, the averaged (across knee angles) values ranged from 10.3 +/- 3.1 to 83.3 +/- 3.2% and were positively related (r2 = 0.75, P < 0.05) to the knee-extensor surface EMG at the start of torque development. It was concluded that, although all subjects had high levels of voluntary activation at the plateau of maximal voluntary contraction, among subjects and independent of knee angle, the capacity for fast muscle activation varied substantially. Moreover, in all subjects, torque developed considerably faster during maximal electrical stimulation than during maximal voluntary effort. At different knee angles, stimulated MRTD and TTI40 changed in proportion with stimulated torque, but voluntary MRTD and TTI40 changed less than maximal voluntary torque.  相似文献   

17.
 A natural reaction of the adult Colorado potato beetle [Leptinotarsa decemlineata (Say)] is to walk uphill on sloped surfaces. The geotaxis reaction of the beetle was observed on slopes of 20° or steeper. It was demonstrated that the uphill orientation behaviour was not a consequence of physical limitation for across-slope locomotion. The walking speed of insects deviating from the fall line did not change within the range of slope angles tested. The speed of adult beetles decreased with an increase in the slope of the substrate as a reaction to the increased gravitational force vector opposing uphill movement. The larger size of the hind legs might make uphill locomotion more efficient than traversing a sloped surface. As the angle of the slope increased, the gait changed from a 3/3 to a 5/1, as did the posterior and anterior extreme position of the legs. This behaviour might be triggered by the need to maintain balance on slanted surfaces as the vertical projection of the centre of mass on the substrate moved outside the support base pattern at the steeper angles. In one experiment beetles were made to pull a load when walking over a horizontal surface. The loads pulled were equivalent to the gravitational loads opposing forward motion when walking up a slope. No differences in forward speed or gait were observed at the lower-angle equivalent compared to beetles walking on slopes. Differences in speed were noted at slope angles higher than 40° indicating that adaptation of the walking strategy might be needed on steeply slanted surfaces. Received: 2 May 2000 / Accepted in revised form: 11 September 2000  相似文献   

18.
A clamped cantilever beam test was developed to determine the fatigue crack propagation rate of the CoCr alloy/PMMA cement interface at high crack tip phase angles. A combination of finite element and experimental methods was used to determine the fatigue crack growth rates of two different CoCr alloy/PMMA cement surfaces. A crack tip phase angle of 69 deg was found, indicating that loading at the crack tip was mixed-mode with a large degree of in-plane shear loading. The energy required to propagate a crack at the interface was much greater for the plasma-sprayed CoCr surface when compared to the PMMA-precoated satin finish (p < 0.001). Both interface surfaces could be modeled using a Paris fatigue crack growth law over crack propagation rates of 10(-4) to 10(-9) m/cycle.  相似文献   

19.
Stortz CA  Cerezo AS 《Biopolymers》2003,70(2):227-239
The adiabatic potential energy surfaces (PES) of six trisaccharides-namely 3,6-An-alpha-D-Galp-(1-->3)-beta-D-Galp-(1-->4)-3,6-An-alpha-D-Galp, beta-D-Galp-(1-->4)-3,6-An-alpha-D-Galp-(1-->3)-beta-D-Galp, and their derivatives sulfated on positions 2 and 4 of the beta-galactose unit-were obtained using the MM3 force field. Each PES was described by a single contour map for which the energy is plotted against the two psi glycosidic angles, given the small variations of the phi glycosidic torsional angle in the low-energy regions of disaccharide maps. In five of the six examples, the surfaces are those expected from the maps of the disaccharidic repeating units of carrageenans, with less important factors altering the additive effect of both linkages. However, when a sulfate group is present on C2 of a beta-galactose reducing end, a new low-energy minimum in a different region is produced, originated in a hydrogen bond between the first and third monosaccharidic moieties of the trisaccharide. The flexibility of the beta-linkages is nearly identical to that in their disaccharide counterparts, while that of the alpha-linkages is slightly reduced, independent of their presence closer or further away from the reducing end. A fair agreement is observed between the x-ray fiber diffraction analysis for a kappa-carrageenan double helix and the surfaces obtained for the trisaccharide analogs of that polymer.  相似文献   

20.

Background

Biventricular (BiV) is extensively used in the treatment of congestive heart failure but so far no recommendations for optimized programming of atrioventricular-delay (AVD) settings have been proposed. Can AVD optimization be performed using a simple formula based on non-invasive doppler-echocardiography?

Methods

25 patients (ejection fraction 30±8%) received BiV ICDs. Doppler-echocardiographic evaluation of diastolic and systolic flow was performed for different AVDs (30ms to 150ms) and different stimulation sites (left ventricular (LV), right ventricular and BiV). The optimal atrioventricular delay was calculated applying a simple formula based on systolic and diastolic mechanical delays determined during doppler-echocardiography.

Results

The mean optimal AVD was calculated to be 112±29ms (50 to 180ms) for BiV, 95±30ms (65 to 150ms) for LV and 75±28ms (40 to 125ms) for right ventricular pacing with wide interindividual variations. Compared to suboptimal AVDs diastolic optimization improved preejection and ejection intervals independent to pacing site. Optimization of the AVD significantly increased ejection time during BiV pacing (279ms versus 266ms; p<0.05). Compared to LV or right ventricular pacing BiV pacing produced the shortest mean pre-ejection and longest ejection intervals as parameters of improved systolic ventricular contractile synchrony. Diastolic filling times were longest during BiV pacing compared to LV or RV pacing.

Conclusions

Individual programming of BiV pacing devices increases hemodynamic benefit when implementing the inter-individually widely varying electromechanical delays. Optimization applying a simple formula not only improves diastolic ventricular filling but also increases systolic functional parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号