首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Diagnostic photopigment analysis is a useful tool for determining the presence and relative abundance of algal groups in natural phytoplankton assemblages. This approach is especially useful when a genus has a unique photopigment composition. The toxic dinoflagellate Karenia brevis (Davis) G. Hansen & Moestrup comb. nov. shares the diagnostic pigment gyroxanthin‐diester with only a few other dinoflagellates and lacks peridinin, one of the major diagnostic pigments of most dinoflagellate species. In this study, measurements of gyroxanthin‐diester and other diagnostic pigments of K. brevis were incorporated into the initial pigment ratio matrix of the chemical taxonomy program (CHEMTAX) to resolve the relative contribution of K. brevis biomass in mixed estuarine phytoplankton assemblages from Florida and Galveston Bay, Texas. The phytoplankton community composition of the bloom in Galveston Bay was calculated based on cell enumerations and biovolumetric measurements in addition to chl a‐specific photopigment estimates of biomass (HPLC and CHEMTAX). The CHEMTAX and biovolume estimates of the phytoplankton community structure were not significantly different and suggest that the HPLC–CHEMTAX approach provides reasonable estimates of K. brevis biomass in natural assemblages. The gyroxanthin‐diester content per cell of K. brevis from Galveston Bay was significantly higher than in K. brevis collected from the west coast of Florida. This pigment‐based approach provides a useful tool for resolving spatiotemporal distributions of phytoplankton in the presence of K. brevis blooms, when an appropriate initial ratio matrix is applied.  相似文献   

2.
应用光合色素研究广西钦州湾丰水期浮游植物群落结构   总被引:10,自引:2,他引:8  
蓝文陆  王晓辉  黎明民 《生态学报》2011,31(13):3601-3608
通过2010年6月现场航次19个站点的调查,应用反相高效液相色谱(RP - HPLC) 并结合二极管阵列检测器分析技术,分析了丰水期广西钦州湾浮游植物光合色素组成,进而由CHEMTAX 软件估算全粒级浮游植物的群落结构。结果表明,钦州湾浮游植物光合色素含量以叶绿素a最高,其次为岩藻黄素;浮游植物的优势类群为硅藻,其次为蓝藻和青绿藻,它们分别平均占据了浮游植物生物量的70.2%、12.6%和9.4%,而其它藻类除了绿藻茅岭江河口占据较高的比例(40.2%)之外在其它站点所占比例很低。钦州湾浮游植物群落结构形成了茅岭江口、内湾、外湾和湾外近海共四种类型,茅岭江口以绿藻为优势类群,内湾以硅藻、蓝藻和青绿藻为主要优势类群,外湾以硅藻为单一优势类群,湾外相对于外湾硅藻比重略为下降。主要光合色素含量及浮游植物类群生物量的分布特征与盐度、营养盐关系密切,浮游植物群落结构的分布变化主要受径流及其输入导致的营养盐变化的影响,而这种影响导致了内湾和外湾之间浮游植物主要类群的生物量多寡及浮游植物群落结构的差异。  相似文献   

3.
Flores  L. Naselli  Barone  R. 《Hydrobiologia》1994,(1):197-205
The relationship between the trophic state of 21 Sicilian dam reservoirs and their taxonomic community structure of phytoplankton (87 taxa) as well as zooplankton (45 taxa) have been examined by means of cluster analysis performed using annual average biomass values. The phytoplankton community structure was closely connected with the trophic state of the reservoirs, whereas the zooplankton community structure was related to hydrological regimes peculiar to the individual water bodies and not to the trophic state.  相似文献   

4.
Phytoplankton community pigment composition and water quality were measured seasonally along salinity gradients in two minimally urbanized salt marsh estuaries in South Carolina in order to examine their spatial and temporal distributions. The North Inlet estuary has a relatively small watershed with minimal fresh water input, while the Ashepoo, Combahee, and Edisto (ACE) Basin is characterized by a relatively greater influence of riverine drainage. Sampling stations were located in regions of the estuaries experiencing frequent diurnal tidal mixing and had similar salinity and temperature regimens. Phytoplankton community pigment composition was assessed by using high-performance liquid chromatography (HPLC) and multivariate statistical analyses. Shannon diversity index, principal-component, and cluster analyses revealed that phytoplankton community pigments in both estuaries were seasonally variable, with similar diversities but different compositions. The temporal pigment patterns indicated that there was a relatively weak correlation between the pigments in ACE Basin and the relative persistence of photopigment groups in North Inlet. The differences were presumably a consequence of the unpredictability and relatively greater influence of river discharge in the ACE Basin, in contrast to the greater environmental predictability of the more tidally influenced North Inlet. Furthermore, the timing, magnitude, and pigment composition of the annual phytoplankton bloom were different in the two estuaries. The bloom properties in North Inlet reflected the predominance of autochthonous ecological control (e.g., regenerated nutrients, grazing), and those in ACE Basin suggested that there was greater influence of allochthonous environmental factors (e.g., nutrient loading, changes in turbidity). These interestuarine differences in phytoplankton community structure and control provide insight into the organization of phytoplankton in estuaries.  相似文献   

5.
Phytoplankton community pigment composition and water quality were measured seasonally along salinity gradients in two minimally urbanized salt marsh estuaries in South Carolina in order to examine their spatial and temporal distributions. The North Inlet estuary has a relatively small watershed with minimal fresh water input, while the Ashepoo, Combahee, and Edisto (ACE) Basin is characterized by a relatively greater influence of riverine drainage. Sampling stations were located in regions of the estuaries experiencing frequent diurnal tidal mixing and had similar salinity and temperature regimens. Phytoplankton community pigment composition was assessed by using high-performance liquid chromatography (HPLC) and multivariate statistical analyses. Shannon diversity index, principal-component, and cluster analyses revealed that phytoplankton community pigments in both estuaries were seasonally variable, with similar diversities but different compositions. The temporal pigment patterns indicated that there was a relatively weak correlation between the pigments in ACE Basin and the relative persistence of photopigment groups in North Inlet. The differences were presumably a consequence of the unpredictability and relatively greater influence of river discharge in the ACE Basin, in contrast to the greater environmental predictability of the more tidally influenced North Inlet. Furthermore, the timing, magnitude, and pigment composition of the annual phytoplankton bloom were different in the two estuaries. The bloom properties in North Inlet reflected the predominance of autochthonous ecological control (e.g., regenerated nutrients, grazing), and those in ACE Basin suggested that there was greater influence of allochthonous environmental factors (e.g., nutrient loading, changes in turbidity). These interestuarine differences in phytoplankton community structure and control provide insight into the organization of phytoplankton in estuaries.  相似文献   

6.
The purpose of this study was to clarify the differences of the community structure and the diversity of aquatic organisms (i) among sampling sites that the distances from inlets or outlets were different each other, and (ii) between the floodwater and the irrigation water during the crop season in a paddy field. The irrigation water was sampled from one inlet. The taxonomical groups and the number of aquatic organisms ranging in size from 30µm to 2cm in the floodwater and the irrigation water were surveyed approximately every 10days during the growth period of the rice plant. Aquatic organisms were classified mainly at the order level. Thirty-eight taxonomical groups of aquatic organisms were found in the floodwater, while 18 groups were found in the irrigation water. We were not able to find the differences of the community structure of aquatic organisms among the sites. In the floodwater, the number of taxonomical group increased and the community structure changed during the late flooding period (over 50days after the onset of flooding) at any site, while those in the irrigation water hardly changed. Although the community structure of aquatic organisms differed between the floodwater and the irrigation water throughout the flooding period, the differences became especially bigger during the late flooding period. Principal component analysis showed that three groups (Pennales, Dinoflagellida, Choreotrichida) characterized the community structure in the irrigation water. Their population densities tended to be the highest at the site near inlets and the lowest at the site far from inlets.  相似文献   

7.
The seasonal variation of phytoplankton in an eutrophic tropical reservoir was evaluated through photosynthetic pigments analyzed by HPLC. The contributions of algal classes to total chlorophyll a (TChl-a) were estimated by two procedures. The first one used fixed marker pigment/chlorophyll a ratio available from culture studies of the major species of each class. In the second procedure, a matrix factorization program (CHEMTAX) was used to analyze the pigment data. The pigment data were compared with carbon biomass estimated from microscope analysis. A significant correlation between total chlorophyll a (measured by HPLC) and total biomass was obtained, indicating only a slight variation in the content of algal chlorophyll a when compared to its fluctuations in carbon biomass. The interpretation of pigment data with CHEMTAX resulted in a good agreement with biomass. Although displaying some differences, the general pattern of the phytoplankton community dynamics and the major shifts in composition, biomass and the cyanobacterial bloom were evidenced. In contrast, Chl-a biomass estimates from fixed Xan/Chl-a ratios presented poor agreement with microscope data and did not register the principal changes in phytoplankton. Our results also highlighted the needs of better understanding of the relationships between marker pigments, chlorophyll-a and algal biomass.  相似文献   

8.
The influence of copepods (mainly Oithona sim-ilis) and krill (Euphausia superba) grazing on the species composition of plankton communities in ship board con tainers was investigated during the spring and post spring period in the Scotia Weddell Sea in the Antarctic ocean. Numbers of grazers were experimentally manipulated in containers with natural phytoplankton assemblages. With ratural levels of copepods but no krill a high (700–950 g C·l1, ca 30 g chl a·.l1) phytoplankton biomass developed. In these cultures large diatoms, e.g. Corethron criophilum and chains of Thalassiosira sp., made up 80% of total phytoplankton cell carbon at the end of the experiment. In cultures with elevated numbers of copepods (5X or 10X the natural level) phytoplankton biomass was somewhat reduced (ca 23 g chl a · l1) compared to cultures with natural copepod abundance, but still high. Phytoplankton species composition was on the other hand greatly influenced. Instead of large diatoms these cultures were dominated by Phaeocystis pouchetii (70%) together with small Nitszchia sp. and Chaetoceros neogracile (20%). In containers with krill (both juveniles and adults), but without elevated numbers of copepods, phytoplankton biomass rapidly approached zero. With 10X the in situ level of copepods, krill first preyed on these before Corethron criophilum and Thalassiosira sp. were grazed. When krill were removed a plankton community dominated by flagellates (60–90%), e.g. Pyramimonas sp. and a Cryptophycean species, grazed by an unidentified droplet-shaped heterothrophic flagellate, developed. These flagellates were the same as those which dominated the plankton community in the Weddell Sea after the spring bloom. A similar succession was observed in situ when a krill swarm grazed down a phytoplankton bloom in a few hours. Our experiments show that copepods cannot control phytoplankton biomass in shipboard cultures even at artificially elevated numbers. Krill at concentrations similar to those in natural swarms have a great impact on both phytoplankton biomass and species composition in shipboard cultures. Both copepods and krill may have an impact on phytoplankton species composition and biomass in situ since the rates of phytoplankton cell division were probably artificially increased in shipboard cultures compared to natural conditions, where lower growth rates make phytoplankton more vulnerable to grazing. A similarity between phytoplankton successions in containers and in situ, especially with respect to krill grazing, supports the conclusion that grazing may structure phytoplankton communities in the Scotia-Weddell Sea.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

9.
Pigment analyses by TLC were carried out during and after the peak of a Peridinium bloom in Lake Kinneret (Israel). During the experimental period considerable changes occurred in the absolute and relative amounts of the various pigments, especially carotene, diadinoxanthine, peridinin, chlorophyll a and chlorophyl c. The ratio between total Carotenoid to total chlorophyll content is also followed. Our findings show that considerable changes in pigment composition in natural phytoplankton can occur while the species composition remains constant.  相似文献   

10.
Recurrent occurrences of visible mucilage “clouds” that cover areas up to several hundred kilometres with vertical dimensions of 20–30 m have been recorded in the stratified water column in the northern Adriatic. In the past this was described as “mare sporco” phenomenon. Past studies of the phenomenon indicated that phytoplankton is an important component of mucilage. Our research revealed the composition of phytoplankton assemblages in different types of mucilaginous aggregates collected during the summers of 1997 and 2000 using pigment biomarkers (HPLC). Phytoplankton biomass in the mucilage samples was very high, ranging from 7.9 μg g−1 to 390.8 μg g−1 of chlorophyll a per unit of dry mass of mucilage. The phytoplankton community in the early, loose stage of mucilaginous aggregates was heterogeneous, as indicated by the diversity of detected pigments. The number of phytoplankton groups decreased as the aggregates aged and diatoms increased in relative biomass (up to 92.7%). Phytoplankton biomass in seawater was similar in years with and without mucilage; however, significantly higher contributions to the total biomass of 19′-hexanoyloxyfucoxanthin-containing phytoplankton (prymnesiophytes) were found in the upper 10 m in spring of the “mucilaginous years” (1997 and 2000) followed by prevalence of diatoms in summer. The Fp pigment index used to assess seawater trophic conditions reached lower values in April–May in mucilaginous years (1997 and 2000) compared to non-mucilaginous years (1998 and 1999). We conclude that the role of prymnesiophytes and other small flagellates is crucial for the initial phases of mucilage appearance. Aggregates represent a favourable environment for the secondary development of opportunistic diatoms that foster mucilage formation.  相似文献   

11.
12.
It is widely recognized that the mesoscale eddies play an important part in the biogeochemical cycle in ocean ecosystem, especially in the oligotrophic tropical zones. So here a heterogeneous cyclonic eddy in its flourishing stage was detected using remote sensing and in situ biogeochemical observation in the western South China Sea (SCS) in early September, 2007. The high-performance liquid chromatography method was used to identify the photosynthetic pigments. And the CHEMical TAXonomy (CHEMTAX) was applied to calculate the contribution of nine phytoplankton groups to the total chlorophyll a (TChl a) biomass. The deep chlorophyll a maximum layer (DCML) was raised to form a dome structure in the eddy center while there was no distinct enhancement for TChl a biomass. The integrated TChl a concentration in the upper 100 m water column was also constant from the eddy center to the surrounding water outside the eddy. However the TChl a biomass in the surface layer (at 5 m) in the eddy center was promoted 2.6-fold compared to the biomass outside the eddy (p < 0.001). Thus, the slight enhancement of TChl a biomass of euphotic zone integration within the eddy was mainly from the phytoplankton in the upper mixed zone rather than the DCML. The phytoplankton community was primarily contributed by diatoms, prasinophytes, and Synechococcus at the DCML within the eddy, while less was contributed by haptophytes_8 and Prochlorococcus. The TChl a biomass for most of the phytoplankton groups increased at the surface layer in the eddy center under the effect of nutrient pumping. The doming isopycnal within the eddy supplied nutrients gently into the upper mixing layer, and there was remarkable enhancement in phytoplankton biomass at the surface layer with 10.5% TChl a biomass of water column in eddy center and 3.7% at reference stations. So the slight increasing in the water column integrated phytoplankton biomass might be attributed to the stimulated phytoplankton biomass at the surface layer.  相似文献   

13.
14.
Both in situ primary production and biomass (chlorophyll ) of fractionated phytoplankton (<64,µ, <25 µm and < 10 µm) were studied in 10 Canadian Shield lakes to elucidate the spatial and temporal variability of the contribution of size fractions to the biomass and primary production of the phytoplankton community. Mean summer biomass and production of each size fraction varied significantly between lakes. Within lakes, temporal variation was low for biomass but great for production. However, temporal variation can be considered of minor importance during the sampling period, as compared to the spatial variation between lakes. Algae from the < 10 µm size fraction were the most important in biomass (41–65 %) and production (23–69%). The temporal trends for both phytoplankton variables thus generally followed closely that of the < 10 µm size fraction. Among the physical, chemical and morphometric variables of the studied lakes, water transparency (Secchi disk), total phosphorus, lake volume, lake area, and mean depth gave the best correlations with phytoplankton variables.Contribution number 354 from the Groupe de recherches en Ecologie des Eaux douces, Limnological Research Group, Université de Montréal.  相似文献   

15.
The hypertrophic Swarzdzkie Lake, Poland, is characterized byhigh species diversity, abundance and biomass of both phytoplanktonand zooplankton (up to 99.5 mg WW L–1 and 817.75 µgDW L–1, respectively). The community grazing rate calculatedwith the use of two empirical models, and based on herbivorouscrustaceans, peaked in spring and early autumn up to 150.6%of water filtered per day, and was the lowest during winter.Simple statistics revealed a positive correlation between zooplanktonbiomass and chlorophyll a concentration (r = 0.404, P = 0.033)and between zooplankton abundance and phytoplankton biomass(r = 0.42, P = 0.028). Canonical statistics indicated, however,that the relationship exists only with size groups and/or livingforms of a few taxonomical groups of phytoplankton. Redundancyanalysis (RDA) confirmed a positive influence of the communitygrazing rate on micro- and nanoplanktonic Cryptophyceae, butnot on the microplanktonic Cyanobacteria, as was suggested bycanonical correlation analysis. RDA also indicated a weak negativeinfluence on nanoplanktonic Euglenophyceae and Chlorophyceaeexerted by filtering crustaceans. Some taxonomically diverseflagellated nanoplanktonic algae were grazing sensitive, whereasmicroplanktonic cryptophytes and coenobial green algae weresignificantly grazing resistant.  相似文献   

16.
Phytoplankton pigments and community composition in Lake Tanganyika   总被引:3,自引:0,他引:3  
1. A 2‐year (2002–2003) survey of chlorophyll and carotenoid pigments is reported for two off‐shore stations of Lake Tanganyika, Kigoma (Tanzania) and Mpulungu (Zambia), and from three cruises between those sites. Chlorophyll a concentrations were low (0.3–3.4 mg m?3) and average chlorophyll a integrated through the 100 m water column were similar for both stations and years (36.4–41.3 mg m?2). Most pigments were located in the 0–60 m layer and decreased sharply downward. Chlorophyll a degradation products (phaeophytins and phaeophorbides) were detected at 100 m depth, whereas carotenoids became undetectable. Temporal and seasonal variation of the vertical distribution of pigments was high. 2. The biomass of phytoplankton groups was calculated from marker pigment concentrations over the 0–100 m water column using the CHEMTAX software. On average for the study period, chlorophytes dominated in the northern station, followed by cyanobacteria T1 (type 1, or Synechococcus pigment type), whereas cyanobacteria T1 dominated in the south. Cyanobacteria T2 (type 2, containing echinenone), presumably corresponding to filamentous taxa, were detected in the rainy season. Diatoms (and chrysophytes) developed better in the dry season conditions, with a deep mixed layer and increased nutrient availability. Very large variation in the vertical distribution of algal groups was observed. 3. Our observations on phytoplankton composition are broadly consistent with those from previous studies. Our pigment data provide evidence for the lake‐wide importance of picocyanobacteria and high interannual variation and spatial heterogeneity of phytoplankton in Lake Tanganyika, which may render difficult assessment of long‐term changes in phytoplankton driven by climate change.  相似文献   

17.
18.
Climatic and hydrological variability is usually high in the Pampa Plain (Argentina). However it has not studied yet how this variability may affect the phytoplankton and zooplankton biomass and community structure in aquatic systems of this region. The main purpose of this study was to assess flushing effects on nutrient and plankton dynamics in two interconnected very shallow lakes of the Pampa Plain. In order to study the impact of hydrology on the plankton biomass and community structure, we compared the summer plankton community among three consecutive years with contrasting hydrological characteristics. Water residence time varied an order of magnitude among years and this variability was correlated to strong changes in physicochemical and biological lake characteristics. Depending on the water discharge level, the hydrological regime within the lakes ranged from lentic to more lotic conditions. Nutrient and phytoplankton biomass were positively related to water discharges. During high flushing periods, nutrients import from intensive agriculture lands leads to a dramatic increase in trophic conditions. On the other hand, macrozooplankton biomass was positively related to water residence time and showed a dramatic decrease during high flushing years. Rotifers biomass was not affected by interannual water discharge variability during the study period. Our results support that in case of lakes with high flushing rates, zooplankton development is dependent on water residence time and that hydrology may have stronger effects on macrozooplankton biomass than top-down control by planktivores.  相似文献   

19.
Acidified lakes recover chemically relatively quickly following the reduction or cessation of acidic inputs. Although fish, invertebrate, and phytoplankton communities are reported to begin to return to preacidification states in chemically-improving lakes, the process and extent of biological recovery are not well-documented. The experimental acidification of Precambrian Shield Lake 223 (27.4 ha surface area; 14.4 m maximum depth) in the Experimental Lakes Area in northwestern Ontario, provides an opportunity to compare the zooplankton community prior to acidification with that during progressive acidification and during chemical recovery. Acidified with sulfuric acid from pH 6.47 (ice-free season mean) in 1976 to pH 5.0 (1981 to 1983), Lake 223 has been allowed to recover in steps of pH 5.5 (1984 to 1987), pH 5.8 (1988 to 1990), and pH 6.11 (1991). Total zooplankton biomass showed no trend to increase or decrease during the acidification and recovery, but species composition changed. Compared with species composition at pH 6.13 early in acidification in 1977, the recovering community at pH 6.11 in 1991 had the previously-dominant cladoceran species present in very low numbers and had two newly-appearing cladoceran species. The community had lost one species of calanoid and gained none and lost two species of cyclopoids and gained two. It appeared to lose four species of rotifiers and gain seven. In nearby unmanipulated reference Lake 239 (56.1 ha; 30.4 m), species shifts were recorded but they involved rarer species, not dominants as in Lake 223. Although the zooplankton community in 1991 is in a new state with respect to species composition, static measures of total community biomass, contribution to biomass by the four main taxonomic groups, per cent smilarity to the preacidification community (for crustaceans), and biomass of herbivores do not indicate impairment of community health. Lowered species diversity for both crustaceans and rotifers partially returned to preacidification levels. Nevertheless, the rotifer community in 1991 was more dissimilar to the preacidification community than was the crustacean community, and carnivore biomass appeared to be depressed in Lake 223. The Lake 223 zooplankton community at pH 6.11 in 1991 appears to be in a state of flux.  相似文献   

20.
Plankton communities and hydrochemistry of an oligotrophic lake occupying a glacial valley in Argentinian Patagonia (42 °49S; 71 °43W) were studied. Monthly samples at three stations integrated from 0 to 50 m and stratified samples at the site of maximum depth, were taken during the growing season. Transparency was always controlled by glacial silt, and not by phytoplankton. Lake water belongs to the calcium-bicarbonate type, with low conductivity (24 µS cm–1), and poor buffering capacity. Forty-five phytoplankton taxa were found. Mean phytoplankton density was 49 cells ml–1 and mean biomass 69 µg l–1. N:P relationships, inorganic nitrogen exhaustion in the photic layer, and correlations between nutrients and phytoplankton density suggests nitrogen as the main limiting factor. Fifteen zooplankton species were found. Mean zooplankton density was 12.2 ind. l–1 and mean biomass 22.9 µg l–1. Diatoms and Boeckellidae were the dominant planktonic groups. Morphometry and hydrological factors were responsible for horizontal heterogeneity in phytoplankton and chemical variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号