首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E Sh Ismailov 《Biofizika》1976,21(5):940-942
No beta-structures of protein molecules were observed by IR-spectra of intact erythrocyte shadows. Ultra high frequency irradiation in the range of 1009 mHz intensity of 45 mW/cm3 results in small conformational reconstructions of molecules in the membrane, but it does not induce a notable transition of alpha-helix or coil into beta-structure. A decrease of the intensity of lipid band by 1740 cm-1 is shown up at the spectra. Deuterium exchange for 36--38 min shows that the transition of the band amide II near 1540 cm-1 into the band 1450 cm-1 proceeds faster under UHF irradiation than in the control. The effects observed are in a direct relation-ship with the intensity of UHF-field and disappear at the intensities of 5--8 mW/cm3 and lower.  相似文献   

2.
E A Nigg  R J Cherry 《Biochemistry》1979,18(16):3457-3465
Band 3 rotation in the human erythrocyte membrane is measured by observing flash-induced dichroism of eosin probes. The decay of the absorption anisotropy is found to be strongly dependent on temperature. The results are analyzed on the assumption that rotation of band 3 only occurs about the membrane normal. It is deduced that both fast and slowly rotating forms of band 3 coexist in the membrane. The equilibrium between these forms is temperature dependent, the slowly rotating species becoming increasingly dominant as the temperature is reduced. Plots of the fractional distribution of the different species against temperature show a marked change of slope at around 37--40 degrees C. The effects are essentially reversible over the range 1--45 degrees C and independent of the presence of the spectrin--actin network. The results could be due to temperature-dependent protein--protein associations mediated either by a protein conformational change or by lipid phase segregation. In further experiments, the cholesterol content of the erythrocyte membrane is varied by incubation with lipid vesicles. No significant changes in the rotational diffusion of band 3 are observed following variation of membrane cholesterol/phospholipid mole ratios over the range 0.34--1.66. This is a surprising result in view of the well-known effects of cholesterol on lipid fluidity.  相似文献   

3.
Excitation energy transfer in the light-harvesting chlorophyll a/b.protein   总被引:3,自引:0,他引:3  
The "light-harvesting chlorophyll a/b.protein" described by Thornber has been prepared electrophoretically from spinach chloroplasts. The optical properties relevant to energy transfer have been measured in the red region (i.e. 600-700 nm). Measurements of the absorption spectrum, fluorescence excitation spectrum and excitation dependence of the fluorescence emission spectrum of this protein confirm that energy transfer from chlorophyll b to chlorophyll a is highly efficient, as is the case in concentrated chlorophyll solutions and in vivo. The excitiation dependence of the fluorescence polarization shows a minimum polarization of 1.9% at 650 nm which is the absorption maximum of chlorophyll b in the protein and rises steadily to a maximum value of 13.8% at 695 nm, the red edge of the chlorophyll a absorption band. Analysis of these measurements shows that at least two unresolved components must be responsible for the chlorophyll a absorption maximum. Comparison of polarization measurements with those observed in vivo shows that most of the depolarization observed in vivo can take place within a single protein. Circular dichroism measurements show a double structure in the chlorophyll b absorption band which suggest an exciton splitting not resolved in absorption. Analysis of these data yields information about the relative orientation of the So leads to S1 transition moments of the chlorophyll molecules within the protein.  相似文献   

4.
The redox potential dependency of the light-induced absorption changes of bacteriochlorophyll in the chromatophores and subchromatophore particles from Rhodospirillum rubrum has been studied. The highest values of the absorption changes due to the bleaching of P870 and the blue shift of P800 are observed within the redox potential range of 360--410. At the potential values below 300 mV the 880 nm band of bacteriochlorophyll shifts to shorter wavelengths in the subchromatophore particles and to longer wavelengths in the chromatophores. Redox titration revealed that the red and blue shifts of 880 nm bacteriochlorophyll band are caused by the functioning of a non-identified component (X) which has an oxidation -- reduction midpoint potential close to 340 mV (n = 1) within the pH range of 6,0--7,6. The Em for this component decreases by 60 mV/pH unit within the pH range of 7.6--9,2. The results obtained suggest that the red shift is due to the transmembrane, while the blue shift -- to the local intramembrane electric field. The generation of both the transmembrane and local intramembrane electric fields apparently depends on redox transitions of the component X.  相似文献   

5.
A number of breaks were recorded on the curve of Arrhenius relationship of the rate constant of the dye 1-anilino-8-naphthalenesulphonate sodium salt (ANS) input into human erythrocytes of 20, 28, 36, 42 and 46 degrees C. Variations in the values of activation energies within the temperature range of 28-36 degrees and 42-46 degrees C obtained in various blood samples allow to consider these temperatures as those at which structural changes of the membranes take place. The values of activation energy of the process for temperature "conformers" of the erythrocyte membrane are 12(10-20 degrees C), 26.5 (20-28 degrees C), 34.2(36-42 degrees C) and 47 kcal/mol (t is greater than 46 degrees C). Within the temperature range of 28-36 degrees and 42-46 degrees C an irreversible decrease of permeability to ANS of the erythrocyte ghost after their incubation for 10 min at increased temperatures were observed. Thus the temperature regions of the change in erythrocyte permeability correspond to those at which the resealing of ghost takes place. The break in Arrhenius graph at 20 degrees C seems to characterize a highly cooperative "point" transition. The lipid nature of the initiator of structural transition within 28-36 degrees C is proved by a sharp increase of the permeability of liposomes prepared from erythrocyte membrane lipids to ANS at 28 degrees C. The nature of the initiators of two other thermal transitions is discussed.  相似文献   

6.
Ion permeability of black lipid membranes formed from synthetic phospholipids has been studied. The resistance of BLM formed from phosphatidylcholine, tiophosphatidylcholine, threealkylphosphate and threealkyltiophosphate was 10(7)--10(8) Ohm.cm2. It was shown that the membrane potential of the 10--30 mV arised in KCl gradient indicating the preference cation conductance in synthetic lipid membranes. A sharp decrease of the membrane conductance near to the phase transition temperature was discovered. The change of conductance by phase transition temperature was sensitive to chemical nature of the polar head of phospholipids used.  相似文献   

7.
The effect of diamide on the physicochemical state of proteins and lipids of human erythrocyte membrane was studied. It was found that diamide at a concentration of 1 mM decreases the content of the SH-groups of membrane proteins by approximately 50%, resulting in enhanced vesiculation of erythrocytes upon metabolic exhaustion of cells. It was shown using fluorescein isothiocyanate-labeled concanavalin A and 4,4'-diisothiocyano-2,2'-stilbene disulfonate that diamide changes the structural state of the main integral protein of erythrocyte membranes, the band 3 protein. Changes in the microviscosity of the membrane lipid bilayer depending on diamide concentration were determined from the changes in the fluorescence parameters of the lipophilic probes (pyrene and 1,6-diphenyl-3,5-hexatriene). The level of lipid peroxidation products in membranes remained unchanged. It follows from these data that the SH-oxidizing agent diamide does not directly interact with the lipid bilayer of membrane and produces changes in the physicochemical state of lipids presumably by disrupting protein-lipid interactions that take place upon oxidation of the SH-groups and cross-linking of membrane proteins.  相似文献   

8.
T Heimburg  P Hildebrandt  D Marsh 《Biochemistry》1991,30(37):9084-9089
The interaction of cytochrome c with negatively charged lipids has been studied by resonance Raman spectroscopy of the protein heme group and 31P NMR of the phospholipid headgroups. The gel-to-fluid-phase transition of dimyristoylphosphatidylglycerol induces shifts in the conformational and coordination equilibria of the bound cytochrome c, as recorded by the resonance Raman spectra in the fingerprint and marker band regions. Conformational and coordination shifts of the bound cytochrome are also induced on admixture of dioleoylglycerol or dioleoylphosphatidylcholine with dioleoylphosphatidylglycerol. In the case of dioleoylglycerol, significant changes take place even at levels as low as 5 mol %. Binding of cytochrome c induces or increases the content of near isotropically diffusing lipid registered by the 31P NMR spectra of the different lipids studied. Admixture of dioleoylglycerol also increases the bilayer curvature of dioleoylphosphatidylglycerol, inducing an inverted hexagonal phase at 50 mol % concentration; the tendency to spontaneous curvature in the lipid appears to relax the conformational change detected in the protein.  相似文献   

9.
Lipid bilayers can be induced to adhere to each other by molecular mediators, and, depending on the lipid composition, such adhesion can lead to merging of the contacting monolayers in a process known as hemifusion. Such bilayer-bilayer reactions have never been systematically studied. In the course of our studies of membrane-active molecules, we encountered such reactions. We believe that they need to be understood whenever bilayer-bilayer interactions take place, such as during membrane fusion. For illustration, we discuss three examples: spontaneous adhesion between phospholipid bilayers induced by low pH, polymer-induced osmotic depletion attraction between lipid bilayers, and anionic lipid bilayers cross-bridged by multicationic peptides. Our purpose here is to describe a general method for studying such interactions. We used giant unilamellar vesicles, each of which was aspirated in a micropipette so that we could monitor the tension of the membrane and the membrane area changes during the bilayer-bilayer interaction. We devised a general method for measuring the free energy of adhesion or hemifusion. The results show that the energies of adhesion or hemifusion of lipid bilayers could vary over 2 orders of magnitude from −1 to −50 × 10−5 J/m2 in these examples alone. Our method can be used to measure the energy of transition in each step of lipid transformation during membrane fusion. This is relevant for current research on membrane fusion, which focuses on how fusion proteins induce lipid transformations.  相似文献   

10.
Freeze fracture electron microscopy studies were performed on samples of Anacystis nidulans quenched from different temperatures. Membrane lipid phase separations were observed to take place over the ranges 15--30 degrees C, 5--25 degrees C and -5--15 degrees C for cultures grown at 38, 28 and 18 degrees C, respectively. Differential scanning calorimetry heating curves showed endotherms which coincided with these temperature ranges. Variations of phase separation temperatures with growth temperature, and hysteresis effects in the calorimetric measurements, were related to changes in the fatty acid composition of membrane lipids.  相似文献   

11.
The interaction between dipalmitoylphosphatidylcholine (DPPC) and the aqueous form of the myelin proteolipid apoprotein (PLA) has been investigated. Lyophilization was found to be an efficient and nonperturbing method for membrane reconstitution. Mixtures of different lipid/protein ratios were analyzed by means of differential calorimetry, fluorescence polarization, and sucrose gradient centrifugation. The presence of two coexisting lipid populations, termed "bulk" and "interacting" lipids, was demonstrated by these three techniques. By differential calorimetry, 23 DPPC molecules per molecule of protein (30 kDa) were shown to be excluded from the lipid phase transition. By fluorescence polarization, we detected above the phase-transition temperature a large perturbation of the lipid acyl chain dynamics induced by the aqueous form of PLA. Increasing the protein content above 35% by weight within the recombinants caused drastic changes in both delta H values and the fluorescence anisotropy parameter, which could stem from protein aggregation.  相似文献   

12.
The isomerization of horse-heart ferricytochrome c caused by varying pH was kinetically studied by using circular dichroism (CD) and optical absorption stopped-flow techniques. In the pH range of 7--13, the existence of the three different forms of ferricytochrome c (pH less than 10, pH 10--12, and pH greater than 12) was indicated from the statistical difference CD spectra. On the basis of analyses of the stopped-flow traces in the near-ultraviolet and Soret wavelength regions, the isomerization of ferricytochrome c from neutral form to the above three alkaline forms was interpreted as follows (1) below pH 10, the replacement of the intrinsic ligand of methionine residue by lysine residue occurs; (2) between pH 10 and 12, the uncoupling of the polypeptide chain from close proximity of the heme group occurs first, followed by the interconversion of the intrinsic ligands; and (3) above pH 12, hydroxide form of ferricytochrome c is formed, though the replacement of the intrinsic ligand by extrinsic ligands may occur via different routes from those below pH 12. The CD changes at 288 nm and in the Soret region caused by the pH-jump (down) from pH 6.0 to 1.6 were compared with the appearance of the 620-nm absorption band ascribed to the formation of the high-spin form of ferricytochrome c. Both CD and absorption changes indicated that the isomerization at pH 1.6 consisted of two processes: one proceeded within the dead-time (about 2 ms) of the stopped-flow apparatus and the other proceeded at a determinable rate with the apparatus. On the basis of these results, the isomerization of ferricytochrome c at pH 1.6 was explained as follows: (1) the transition from the low-spin form to the high-spin forms occurs within about 2 ms, the dead-time of the stopped-flow apparatus; and (2) the polypeptide chain is unfolded after the formation of the high-spin form.  相似文献   

13.
Richard L. Van Metter   《BBA》1977,462(3):642-658
The “light-harvesting chlorophyll a/b · protein” described by Thornber has been prepared electrophoretically from spinach chloroplasts. The optical properties relevant to energy transfer have been measured in the red region (i.e. 600–700 nm). Measurements of the absorption spectrum, fluorescence excitation spectrum and excitation dependence of the fluorescence emission spectrum of this protein confirm that energy transfer from chlorophyll b to chlorophyll a is highly efficient, as is the case in concentrated chlorophyll solutions and in vivo. The excitation dependence of the fluorescence polarization shows a minimum polarization of 1.9 % at 650 nm which is the absorption maximum of chlorophyll b in the protein and rises steadily to a maximum value of 13.8 % at 695 nm, the red edge of the chlorophyll a absorption band. Analysis of these measurements shows that at least two unresolved components must be responsible for the chlorophyll a absorption maximum. Comparison of polarization measurements with those observed in vivo shows that most of the depolarization observed in vivo can take place within a single protein. Circular dichroism measurements show a doublet structure in the chlorophyll b absorption band which suggests an exciton splitting not resolved in absorption. Analysis of these data yields information about the relative orientation of the S0→S1 transition moments of the chlorophyll molecules within the protein.  相似文献   

14.
The behavior of phosphatidylethanolamine (PE) liposomes has been studied as a function of temperature, pH, ionic strength, lipid concentration, liposome size, and divalent cation concentration by differential scanning calorimetry (DSC), by light scattering, by assays measuring liposomal lipid mixing, contents mixing, and contents leakage, and by a new fluorometric assay for hexagonal (HII) transitions. Liposomes were either small or large unilamellar, or multilamellar. Stable (impermeable, nonaggregating) liposomes of egg PE (EPE) could be formed in isotonic saline (NaCl) only at high pH (greater than 8) or at lower pH in the presence of low ionic strength saline (less than 50 mOsm). Bilayer to hexagonal (HII) phase transitions and gel to liquid-crystalline transitions of centrifuged multilamellar liposomes were both detectable by DSC only at pH 7.4 and below. The HII transition temperature increased, and the transition enthalpy decreased, as the pH was raised above 7.4, and it disappeared above pH 8.3 where PE is sufficiently negatively charged. HII transitions could be detected at high pH following the addition of Ca2+ or Mg2+. No changes in light scattering and no lipid mixing, mixing of contents, or leakage of contents were noted for EPE liposomes under nonaggregating conditions (pH 9.2 and 100 mM Na+ or pH 7.4 and 5 mM Na+) as the temperature was raised through the HII transition region. However, when aggregation of the liposomes was induced by addition of Ca2+ or Mg2+, or by increasing [Na+], it produced sharp increases in light scattering and in leakage of contents and also changes in fluorescent probe behavior in the region of the HII transition temperature (TH). Lipid mixing and contents mixing were also observed below TH under conditions where liposomes were induced to aggregate, but without any appreciable leakage of contents. We conclude that HII transitions do not occur in liposomes under conditions where intermembrane contacts do not take place. Moreover, fusion of PE liposomes at a temperature below TH can be triggered by H+, Na+, Ca2+, or Mg2+ or by centrifugation under conditions that induce membrane contact. There was no evidence for the participation of HII transitions in these fusion events.  相似文献   

15.
The pH-dependent changes in structure of submitochondrial vesicles prepared from rat liver have been investigated by a variety of structural probes. The main changes are: (a) the volume of the vesicles as assessed by electron microscopy and packed volume is dependent upon pH, being a minimum at pH 5. Between pH 5 and pH 9 the changes are reversible; (b) the accompanying light-scattering changes are also sensitive to divalent cations; (c) the binding characteristics of 8-anilinonaphthalene-1-sulfonic acid indicate pH-dependent changes in the amount of net charge on the membrane; (d) above pH 4, circular dichroism spectra show alterations characteristic of changes in quaternary protein structure; (e) below pH 4, infrared studies indicate changes in protein secondary conformation are also taking place. From these results, the nature and limits of conformational (molecular) and configurational (morphological) changes in mitochondrial membranes following changes in H+ activity are better defined. In the physiological range, pH-dependent conformational changes are confined to reversible changes in quaternary structure resulting from alterations in membrane charge.  相似文献   

16.
The molecular activity of Na,K-ATPase and other P2 ATPases like Ca2 +-ATPase is influenced by the lipid environment via both general (physical) and specific (chemical) interactions. Whereas the general effects of bilayer structure on membrane protein function are fairly well described and understood, the importance of the specific interactions has only been realized within the last decade due particularly to the growing field of membrane protein crystallization, which has shed new light on the molecular details of specific lipid–protein interactions. It is a remarkable observation that specific lipid–protein interactions seem to be evolutionarily conserved, and conformations of specifically bound lipids at the lipid–protein surface within the membrane are similar in crystal structures determined with different techniques and sources of the protein, despite the rather weak lipid–protein interaction energy. Studies of purified detergent-soluble recombinant αβ or αβFXYD Na,K-ATPase complexes reveal three separate functional effects of phospholipids and cholesterol with characteristic structural selectivity. The observations suggest that these three effects are exerted at separate binding sites for phophatidylserine/cholesterol (stabilizing), polyunsaturated phosphatidylethanolamine (stimulatory), and saturated PC or sphingomyelin/cholesterol (inhibitory), which may be located within three lipid-binding pockets identified in recent crystal structures of Na,K-ATPase. The findings point to a central role of direct and specific interactions of different phospholipids and cholesterol in determining both stability and molecular activity of Na,K-ATPase and possible implications for physiological regulation by membrane lipid composition. This article is part of a special issue titled “Lipid–Protein Interactions.”  相似文献   

17.
The effect of pH on the circular dichroism spectra of phenylmethanesulfonyl-mesentericopeptidase (peptidyl peptide hydrolase, EC 3.4.21) was studied. The ellipticity of the bands below 250 nm, which reflects the backbone conformation of the protein molecule, remains almost unchanged in the pH range 6.2--10.4. However, below pH 6.2 and above pH 10.4 a conformational transition occurs. The pH-dependent changes above 250 nm were also studied. The titration of the CD band at 296 nm reflects the ionization of the "exposed" tyrosines, which phenolic groups are fully accessible to the solvent. An apparent pK of 9.9 is calculated from the titration curve. It is concluded that ionization of the tyrosyl residues with normal pK's is complete before conformational changes in the protein molecule occur.  相似文献   

18.
The hypothesis of a correlation between a 10°–20°C lipid phase transition and the resealing process of human erythrocyte membrane has been investigated. The conditions required to reseal human erythrocyte ghosts have been studied by measuring the amount of fluorescein-labeled dextran (FD) that is trapped into the membrane. Temperature per se was sufficient to induce membrane resealing: (1) at 5 mM sodium phosphate, pH 7.8 (5P8), resealing began at 12°C; (2) at salt concentrations above 8 mM sodium phosphate, it occurred at lower temperature; and (3) in isotonic saline was detected just above 5°C. The removal of peripheral membrane proteins from unsealed membranes by chymotrypsin at 0°C in 5P8 was followed by membrane resealing. This seems to imply that the presence of proteins is necessary to maintain the membrane unsealed. Protein-induced lateral phase separation of lipids may be a reasonable mechanism for the observed phenomena. In fact, the permeability of phosphatidylserine-phosphatidylcholine mixed liposomes to FD is modified by lipid lateral phase separation induced by pH or poly-L-lysine. Electron spin resonance studies of membrane fluidity by a spin labeled stearic acid showed a fluidity break around 11°C, which may be due to a gel–liquid phase transition. Fluidity changes are abolished by chymotrypsin treatment. It is suggested that a lateral phase separation is responsible for the permeability of open ghosts to FD. Accordingly, disruption of phase separation apparently produces membrane reconstitution. In this respect peripheral proteins and particularly the spectrin-actin network, may play a major role in membrane resealing.  相似文献   

19.
Colicin E1 is a plasmid-encoded bacteriocidal protein which, though water soluble when secreted by its host bacterium, spontaneously interacts with planar lipid bilayers to form voltage-gated ion channels. In asolectin bilayers, the preference for anions over cations exhibited by these channels at low pH can be reversed by raising the pH on either side of the membrane. When incorporated into membranes composed of either of the two zwitterionic lipids, bacterial phosphatidylethanolamine and diphytanoyl phosphatidylcholine, colicin E1 channels were nearly ideally anion selective in the limit of low pH and moderately cation selective at the high pH limit. In phosphatidylcholine membranes, however, the response of these channels to changes in pH exhibited a pattern of behavior peculiar to this lipid. If the side of the membrane on which the protein had been introduced (the cis side) was exposed to pH 4.0, all the channels in the bilayer, whether opened or closed, became refractory to further changes in pH. This irreversibility has been interpreted as evidence that the selectivity of colicin E1 is under the control of a pH-sensitive conformational change. Protonation of groups on the cis side of the membrane appear to be essential to the conversion to the anion-selective state. These groups are rendered kinetically inaccessible to the aqueous phase when the transition takes place in phosphatidylcholine membranes.  相似文献   

20.
The thermal stability of umecyanin, a stellacyanin from horseradish roots, has been investigated by differential scanning calorimetry, optical absorption and fluorescence spectroscopy at neutral and alkaline pH. Above pH 9 the Cu(II) protein experiences a blue shift of the main visible absorption band at approximately 600 nm and changes colour from blue to violet. The thermal transition of the protein is irreversible and occurs between 61.4 and 68.8 degrees C at pH 7.5 and between 50.7 and 57.4 degrees C at pH 9.8. The calorimetric data indicates that at both pH values the thermally induced transition of the protein between the native and denaturated states can be described in terms of the classical Lumry-Eyring unfolding model Native<-->Unfolded-->Final. The analysis of the reversible step in the unfolding pathway demonstrates a significant reduction in conformational stability (DeltaG) of the alkaline form of the protein. Such a reduction is consistent with an enhanced flexibility of UMC at high pH and has mainly entropic character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号