首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The subcellular distribution of newly absorbed iron in isolated mouse duodenal enterocytes was investigated by analytical subcellular fractionation using sucrose density gradient centifugation. Two major peaks of mucosal 59Fe activity were observed: one soluble and one particulate (density 1.18-1.20 g ml-1). The latter was increased following prior exposure of animals to chronic hypoxia. The particulate 59Fe was localized to the basolateral membranes using the marker enzyme Na+, K+ activated, Mg2+ dependent, ATPase and by washing intact enterocytes with the selective plasma membrane perturbant digitonin. The basolateral membrane can be selectively labelled by in vitro incubation of intact enterocytes at 0 degrees C with 59Fe(III)-nitrilotriacetate complex, confirming the presence of a 59Fe binding site on this membrane. No significant difference in in vitro iron binding to this site was observed between normal and chronically hypoxic animals. Iron binding to the basolateral membrane was significantly higher in disrupted, compared to intact enterocytes, indicating that this site is present on both sides of the basolateral membrane. It is therefore suggested that the increased labelling of this site in hypoxia, in vivo, is a consequence of an increase in a mucosal Fe pool which is available for binding to a membrane receptor.  相似文献   

2.
The mechanism of transferrin uptake by reticulocytes was investigated using rabbit transferrin labelled with 125I and 59Fe and rabbit reticulocytes which had been treated with trypsin, Pronase or neuraminidase. Low concentrations of the proteolytic enzymes produced a small increase in transferrin and iron uptake by the cells. However, higher concentrations or incubation of the cells with the enzymes for longer periods caused a marked fall in transferrin and iron uptake. This fall was associated with a reduction in the proportion of cellular transferrin which was bound to a cell membrane component solubilized with the non-ionic detergent, Teric 12A9. The effect of trypsin and Pronase on transferrin release from the cells was investigated in the absence and in the presence of N-ethylmaleimide which inhibits the normal process of transferrin release. It was found that only a small proportion of transferrin which had been taken up by reticulocytes at 37 degrees C but nearly all that taken up 4 degrees C was released when the cells were subsequently incubated with trypsin plus N-ethylmaleimide, despite the fact that about 80% of the 59Fe in the cells was released in both instances. Neuraminidase produced no change in transferrin and iron uptake by the cells. These experiments provide evidence that transferrin uptake by reticulocytes requires interaction with a receptor which is protein in nature and that following uptake at 37 degrees C, most of the transferrin is located at a site unavailable to the action of proteolytic enzymes. The results support the hypothesis that transferrin enters reticulocytes by endocytosis.  相似文献   

3.
The potential roles of vesicular transport and apotransferrin (entering from the blood) in intestinal Fe absorption were investigated using Caco-2 cell monolayers with tight junctions in bicameral chambers as a model. As shown previously, addition of 39 microM apotransferrin (apoTf) to the basolateral fluid during absorption studies markedly stimulated overall transport of 1 microM (59)Fe from the apical to the basal chamber and stimulated its basolateral release from prelabeled cells, implicating endo- and exocytosis. Rates of transport more than doubled. Uptake was also stimulated, but only 20%. Specific inhibitors of aspects of vesicular trafficking were applied to determine their potential effects on uptake, retention, and basolateral (overall) transport of (59)Fe. Nocodazole and 5'-(4-fluorosulfonylbenzoyl)-adenosine each reduced uptake and basolateral transport up to 50%. Brefeldin A inhibited about 10%. Tyrphostin A8 (AG10) reduced uptake 35% but markedly stimulated basolateral efflux, particularly that dependent on apoTf. Cooling of cells to 4 degrees C (which causes depolymerization of microtubules and lowers energy availability) profoundly inhibited uptake and basolateral transfer of Fe (7- to 12-fold). Apical efflux (which was substantial) was not temperature affected. Our results support the involvement of apoTf cycling in intestinal Fe absorption and indicate that as much as half of the iron uses apoTf and non-apoTf-dependent vesicular pathways to cross the basolateral membrane and brush border of enterocytes.  相似文献   

4.
The uptake of transferrin and iron by the rat liver was studied after intravenous injection or perfusion in vitro with diferric rat transferrin labelled with 125I and 59Fe. It was shown by subcellular fractionation on sucrose density gradients that 125I-transferrin was predominantly associated with a low-density membrane fraction, of similar density to the Golgi-membrane marker galactosyltransferase. Electron-microscope autoradiography demonstrated that most of the 125I-transferrin was located in hepatocytes. The 59Fe had a bimodal distribution, with a larger peak at a similar low density to that of labelled transferrin and a smaller peak at higher density coincident with the mitochondrial enzyme succinate dehydrogenase. Approx. 50% of the 59Fe in the low-density peak was precipitated with anti-(rat ferritin) serum. Uptake of transferrin into the low-density fraction was rapid, reaching a maximal level after 5-10 min. When livers were perfused with various concentrations of transferrin the total uptakes of both iron and transferrin and incorporation into their subcellular fractions were curvilinear, increasing with transferrin concentrations up to at least 10 microM. Analysis of the transferrin-uptake data indicated the presence of specific transferrin receptors with an association constant of approx. 5 X 10(6) M-1, with some non-specific binding. Neither rat nor bovine serum albumin was taken up into the low-density fractions of the liver. Chase experiments with the perfused liver showed that most of the 125I-transferrin was rapidly released from the liver, predominantly in an undegraded form, as indicated by precipitation with trichloroacetic acid. Approx. 40% of the 59Fe was also released. It is concluded that the uptake of transferrin-bound iron by the liver of the rat results from endocytosis by hepatocytes of the iron-transferrin complex into low-density vesicles followed by release of iron from the transferrin and recycling of the transferrin to the extracellular medium. The iron is rapidly incorporated into mitochondria and cytosolic ferritin.  相似文献   

5.
The uptake of transferrin-bound iron by receptor-mediated endocytosis has been the subject of extensive experimental investigation. However, the path followed by iron (Fe) after release from transferrin (Tf) remains obscure. Once Fe is released from Tf within the endosome, it must be transported across the endosomal membrane into the cell. The present investigation describes the presence of a cytoplasmic Tf-free Fe pool which is detectable only when cells are detached from their culture dishes at low temperature, after initial incorporation of diferric transferrin at 37 degrees C. This cellular iron pool was greatly reduced if incubation temperatures were maintained at 37 degrees C or if cells were treated with pronase. Human melanoma cells (SK-MEL-28) in culture were prelabeled by incubation with human 125I-59Fe-transferrin for 2 h, washed, and reincubated at 4 degrees C or 37 degrees C in balanced salt solution in the presence or absence of pronase. The cells were then mechanically detached from the plates and separated into "internalized" and supernatant fractions by centrifugation. Approximately 90% of cellular 59Fe and 20% of 125I-Tf remained internalized when this reincubation procedure was carried out in balanced salt solution at 37 degrees C. However, at 4 degrees C, cellular internalized iron was reduced to approximately 50% of the initial value. The release of this component of cellular 59Fe (approximately 40% of total cell 59Fe) at 4 degrees C was completely inhibited in the presence of pronase and other general proteinases at 4 degrees C and at 37 degrees C, without affecting internalized transferrin levels. Similar results were obtained in fibroblasts and hepatoma cells, indicating that this phenomenon is not unique to melanoma cells. The characterization of this Tf-free cellular Fe pool which is detectable at low temperature may yield valuable insights into the metabolic fate of iron following its transport across the membrane of the endocytotic vesicle.  相似文献   

6.
The release of iron and transferrin from the human melanoma cell   总被引:3,自引:0,他引:3  
The role of the transferrin homologue, melanotransferrin (p97), in iron metabolism has been studied using the human melanoma cell line, SK-MEL-28, which expresses this antigen in high concentrations. The release of iron and transferrin were studied after prelabelling cells with human transferrin doubly labelled with iron-59 and iodine-125. Approx. 45% of internalised iron was in ferritin with little redistribution during reincubation. Iron release was linear with time, while transferrin release was biphasic, suggesting that iron was leaving the cell independently of transferrin. Unlabelled diferric transferrin increased transferrin release, implying a degree of coupling between cell surface binding, internalisation and release of transferrin. Increasing the preincubation time increased the amount of transferrin which remained internalised within the cell. A membrane-bound, iron-binding component with properties consistent with melanotransferrin was observed. Desferrioxamine or pyridoxal isonicotinoyl hydrazone could not remove iron from this compartment, suggesting a high affinity for iron. The number of membrane iron-binding molecules per cell was estimated to be 387,000 +/- 7000 . The non-transferrin-bound membrane Fe did not decrease during reincubation periods up to 5 h, suggesting that the cell was not utilising it. Hence, melanotransferrin may not have a role in internalising iron in melanoma cells.  相似文献   

7.
The uptake and processing of 125I-59Fe labelled diferric transferrin was studied with the single bolus technique using the isolated guinea-pig placenta. Following preperfusion of the placenta with the SH-alkylating agent N-ethylmaleimide preferential iron uptake was inhibited and a total blockade of transplacental iron transfer was obtained. It can be shown by means of subcellular fractionation studies that neither transferrin binding nor endocytosis of the transferrin receptor complex were affected by N-ethylmaleimide. Additional experiments performed with microvillous membrane vesicles isolated from control placentas or from placentas preperfused with N-ethylmaleimide demonstrated that N-ethylmaleimide does not affect the affinity of the transferrin receptor for its ligand. The number of receptors per mg membrane protein remains unchanged as well. Ka = 1.4 x 10(8) M-1, n = 3.6 x 10(12). The results show that the blockade is located at the level of endosomal iron release. Since it is known that N-ethylmaleimide inhibits the endosomal proton pump, our results strongly suggest that the endocytotic pathway is a necessary route in transferrin mediated transplacental iron transfer.  相似文献   

8.
The transfer of iron between the maternal and fetal circulations of an isolated perfused lobule of term human placenta was investigated using 125I-labelled or 59Fe-labelled diferric transferrin. There was negligible transplacental transfer of intact transferrin whereas nearly 4 per cent of the added 59Fe was transferred into the fetal circulation after 2 h, where it became associated with fetal transferrin. Over 20 per cent of the added 59Fe radioactivity was sequestered within the placental tissue during this period, associated with transferrin, ferritin and other uncharacterized molecules. This suggests an important role for an intracellular pool in regulating transfer. The presence of 10 mM chloroquine in the maternal circulation substantially reduced tissue accumulation of 59Fe and totally inhibited transfer to the fetus. It is concluded that the initial stages of iron transfer to the fetus involve the internalization of maternal iron-saturated transferrin bound to membrane receptors by receptor-mediated endocytosis, which can be inhibited by the drug chloroquine. Subsequently, the transplacental transfer of iron to the fetus does not involve the concomitant movement of transferrin.  相似文献   

9.
Preparative isoelectric focusing of human diferric transferrin preparations yielded seven bands with different isoelectric points, due to differences in sialic acid content. Incubation of rat reticulocytes at 37 and 4 degrees C with differic preparations of four of these transferrin forms labeled with 59Fe and 125I show no differences in membrane binding of iron and transferrin and in iron uptake. Hence it is concluded that the carbohydrate chains are not directly involved in the process of iron delivery to reticulocytes.  相似文献   

10.
The effect of concanavalin A on transferrin and iron uptake by reticulocytes was determined using rabbit reticulocytes and rabbit transferrin labelled with 59Fe and 125I and concanavalin A (ConA) labelled with 131I. In concentrations of 50–200 μg/ml ConA markedly inhibited iron uptake but did not inhibit transferrin uptake or release from the cells. ConA was itself taken up by rabbit blood cells in a manner similar to that of transferrin except that the uptake was not specific for reticulocytes but occurred also with mature erythrocytes. The inhibition of iron uptake by concanavalin and the uptake of concanavalin by the cells were both inhibited by α-methyl-d-mannoside. It is concluded that the effects observed were due to the binding of concanavalin to glycoproteins of the cell membrane, either by a direct interaction with transferrin receptors or by the production of a non-specific change in the structure of the membrane.  相似文献   

11.
The ability of a range of homologous transferrin-like proteins to donate iron to pieces of human duodenal mucosa, was examined with an in vitro incubation technque. In contrast to serum transferrin and ovotransferrin, only lactotransferrin was able to yield its iron to intestinal tissue, but in an autologous system this protein was unable to donate iron to human reticulocyte preparations. Studies with 125I-labelled lactotransferrin and lactotransferrin dual-labelled with 59Fe and 125I, indicated that the intact protein is excluded from entry into the enterocytes. The experiments suggest that iron may be transported across the brush border after delivery to specific protein binding sites at the cell surface.  相似文献   

12.
The effects of various maneuvers on the handling of 59Fe-labeled heat-damaged red cells (59Fe HDRC) by the reticuloendothelial system were studied in rats. Raising the saturation of transferrin with oral carbonyl iron had little effect on splenic release of 59Fe but markedly inhibited hepatic release. Splenic 59Fe release was, however, inhibited by the prior administration of unlabeled HDRC or by the combination of carbonyl iron and unlabeled HDRC. When carbonyl iron was administered with unlabeled free hemoglobin, the pattern of 59Fe distribution was the same as that observed when carbonyl iron was given alone. 59Fe ferritin was identified in the serum after the administration of 59Fe HDRC but the size of the fraction was not affected by raising the saturation of transferrin. Sizing column analyses of tissue extracts from the spleen at various times after the administration of 59Fe HDRC revealed a progressive shift from hemoglobin to ferritin, with only small amounts present in a small molecular weight fraction. The small molecular weight fraction was greater in hepatic extracts, with the difference being marked in animals that had received prior carbonyl iron. The increased hepatic retention of 59Fe associated with a raised saturation of transferrin was reduced by a hydrophobic ferrous chelator (2,2'-bipyridine), a hydrophilic ferric chelator (desferrioxamine), and an extracellular hydrophilic ferric chelator (diethylene-triaminepentacetic acid). Transmembrane iron transport did not seem to be a rate-limiting factor in iron release, since no differences in 59Fe membrane fractions were noted in the different experimental settings. These findings are consistent with a model in which RE cells release iron from catabolized red cells at a relatively constant rate. When the saturation of transferrin is raised, a significant proportion of the iron is transported from the spleen to the liver either in small molecular weight complexes or in ferritin. Although a saturated transferrin had no effect on the release of iron from reticuloendothelial cells, prior loading with HDRC conditions them to release less iron.  相似文献   

13.
Summary The ability of unlabelled heterologous transferrin to interact with transferrin receptors on developing chick myogenic cells was investigated by measuring their capacity to inhibit the surfacebinding and internalization of125I-and59Fe-labelled ovotransferrin. Transferrins from rat, rabbit, human, and a species of kangaroo (Macropus fuliginosus) were unable to inhibit either surfacebinding or internalization of labelled ovotransferrin even at concentrations ten times the molar concentration of the ovotransferrin. Transferrins isolated from the serum of a toad (Bufo marinus) and a lizard (Teliqua rugosa), when added at high concentrations, were found to reduce surface-binding of125I-Tf by 20–25% but did not inhibit internalization of either125I-Tf or59Fe. This suggests that the effects of toad and lizard transferrins are due to non-specific binding to the myogenic cells. In contrast, inhibition of both surface-binding and internalization of labelled ovotransferrin was found when myogenic cells were incubated in the presence of the homologous transferrin (ovotransferrin). The species-specificity of transferrin binding, endocytosis and iron internalization did not vary with the state of proliferation or differentiation of the myogenic cells. However, the intracellular iron utilization was found to differ between differentiating presumptive and terminally differentiated myotubes. Internalized59Fe was fractioned by gel filtration. In dividing and non-dividing presumptive myoblasts59Fe was found to elute in three peaks, two with elution volumes corresponding to ferritin and transferrin and one at greater elution volume than that of myoglobin. In myotubes the same fractions occurred, and in addition some59Fe was eluted at the same volume as myoglobin.Abbreviations Tf-Fe 2 differic transferrin - BSA bovine serum albumin - BSS balanced salt solution - MEM Eagle's modified minimum essential medium - MW molecular weight - BUdR bromodeoxyuridine - Ara-C cytosine arabinoside  相似文献   

14.
The mechanism of transferrin uptake by reticulocytes was investigated using rabbit transferrin labelled with 125I and 59Fe and rabbit reticulocytes which had been treated with trypsin, Pronase or neuraminidase. Low concentrations of the proteolytic enzymes produced a small increase in transferrin and iron uptake by the cells. However, higher concentrations or incubation of the cells with the enzymes for longer periods caused a marked fall in transferrin and iron uptake. This fall was associated with a reduction in the proportion of cellular transferrin which was bound to a cell membrane component solubilized with the non-ionic detergent, Teric 12A9. The effect of trypsin and Pronase on transferrin release from the cells was investigated in the absence and in the presence of N-ethylmaleimide which inhibits the normal process of transferrin release. It was found that only a small proportion of transferrin which had been taken up by reticulocytes at 37°C but nearly all that taken up 4°C was released when the cells were subsequently incubated with trypsin plus N-ethylmaleimide, despite the fact that about 80% of the 59Fe in the cells was released in both instances. Neuraminidase produced no change in transferrin and iron uptake by the cells.These experiments provide evidence that transferrin uptake by reticulocytes requires interaction with a receptor which is protein in nature and that following uptake at 37°C, most of the transferrin is located at a site unavailable to the action of proteolytic enzymes. The results support the hypothesis that transferrin enters reticulocytes by endocytosis.  相似文献   

15.
The subcellular localization of 3H-labelled 59Fe-loaded transferrin accumulated by the liver has been studied by means of cell fractionation techniques. More than 96% of the 59Fe present in the liver of rats perfused with 59Fe-labelled transferrin is recovered in the parenchymal cells. Rat livers were perfused with 10 micrograms/ml 3H-labelled 59Fe-saturated transferrin, homogenized separated in nuclear (N), mitochondrial (M), light mitochondrial (L), microsomal (P) and supernatant (S) fractions; M, L and P fractions were further analysed by isopycnic centrifugation in sucrose gradients. 3H label distributes essentially around densities of 1.13-1.14 g/ml overlapping to a large extent with the distribution of galactosyltransferase, the marker enzyme of the Golgi complex. However, after treatment with low concentrations of digitonin the 3H label dissociates from galactosyltransferase and is shifted to higher densities, suggesting an association of transferrin with cholesterol-rich endocytic vesicles which could derive from the plasma membrane. 59Fe is mostly found in the supernatant fraction largely in the form of ferritin, as indicated by its reaction with antiferritin antibodies. In the mitochondrial fraction the density distribution of 59Fe suggests an association with lysosomes and/or mitochondria. In contrast to the lysosomal enzyme cathepsin B, the density distribution of 59Fe was only slightly affected by pretreatment of the rats with Triton WR 1339, suggesting its association with the mitochondria. At 15 degrees C, 59Fe and 3H labels are recovered together in low-density endocytic vesicles. On the basis of our results we suggest that, at low extracellular transferrin concentration, iron uptake by the liver involves endocytosis of the transferrin protein. The complex is interiorized in low-density acidic vesicles where iron is released. The iron passes into the cytosol, where it is incorporated into ferritin and into the mitochondria. The iron-depleted transferrin molecule would then be returned to the extracellular medium during the recycling of the plasma membrane.  相似文献   

16.
The ability of a range of homologous transferrin-like proteins to donate iron to pieces of human duodenal mucosa, was examined with an in vitro incubation technique. In contrast to serum transferrin and ovotransferrin, only lactotransferrin was able to yield its iron to intestinal tissue, but in an autologous system this protein was unable to donate iron to human reticulocyte preparations. Studies with 125I-labelled lactotransferrin and lactotransferrin dual-labelled with 59Fe and 125I, indicated that the intact protein is excluded from entry into the enterocytes. The experiments suggest that iron may be transported across the brush border after delivery to specific protein binding sites at the cell surface.  相似文献   

17.
Effect of iron chelators on the transferrin receptor in K562 cells   总被引:16,自引:0,他引:16  
Delivery of iron to K562 cells by diferric transferrin involves a cycle of binding to surface receptors, internalization into an acidic compartment, transfer of iron to ferritin, and release of apotransferrin from the cell. To evaluate potential feedback effects of iron on this system, we exposed cells to iron chelators and monitored the activity of the transferrin receptor. In the present study, we found that chelation of extracellular iron by the hydrophilic chelators desferrioxamine B, diethylenetriaminepentaacetic acid, or apolactoferrin enhanced the release from the cells of previously internalized 125I-transferrin. Presaturation of these compounds with iron blocked this effect. These chelators did not affect the uptake of iron from transferrin. In contrast, the hydrophobic chelator 2,2-bipyridine, which partitions into cell membranes, completely blocked iron uptake by chelating the iron during its transfer across the membrane. The 2,2-bipyridine did not, however, enhance the release of 125I-transferrin from the cells, indicating that extracellular iron chelation is the key to this effect. Desferrioxamine, unlike the other hydrophilic chelators, can enter the cell and chelate an intracellular pool of iron. This produced a parallel increase in surface and intracellular transferrin receptors, reaching 2-fold at 24 h and 3-fold at 48 h. This increase in receptor number required ongoing protein synthesis and could be blocked by cycloheximide. Diethylenetriaminepentaacetic acid or desferrioxamine presaturated with iron did not induce new transferrin receptors. The new receptors were functionally active and produced an increase in 59Fe uptake from 59Fe-transferrin. We conclude that the transferrin receptor in the K562 cell is regulated in part by chelatable iron: chelation of extracellular iron enhances the release of apotransferrin from the cell, while chelation of an intracellular iron pool results in the biosynthesis of new receptors.  相似文献   

18.
Summary The involvement of membrane phospholipids in the utilization of transferrinbound iron by reticulocytes was investigated using [59Fe]- and [125I]-labelled transferrin and rabbit reticulocytes which had been incubated with phospholipas A. Transferrin and iron uptake and release were all inhibited by phospholipas A which produced a marked decrease in the relative abundance of phosphatidylcholine and phosphatidylethanolamine and equivalent increases in their lyso-compounds in the reticulocyte plasma membrane. There was a close correlation between the iron uptake rate and the rate and amount of transferrin uptake and the amount of the lysophospholipids in the membrane. Incubation of the cells with exogenous lysophosphatidylethanolamine or lysophosphatidylcholine also produced inhibition of iron and transferrin uptake. The reduced uptake produced by phospholipase A could be reversed if the lyso-compounds were removed by fatty acid-free bovine serum albumin or by reincubation in medium 199. Treatment with phospholipase A was shown to increase the amount of transferrin bound by specific receptors on the reticulocyte membrane but to inhibit the entry of transferrin into the cells.The present investigation provides evidence that the phospholipid composition of the cell membrane influences the interaction of transferrin with its receptors, the processes of endocytosis and exocytosis whereby transferrin enters and leaves the cells, and the mechanism by which iron is mobilized between its binding to transferrin and incorporation into heme. In addition, the results indicate that phosphatidylethanolamine is present in the outer half of the lipid bilayer of reticulocyte membrane.  相似文献   

19.
Iron is transported across intestinal brush border cells into the circulation in at least two distinct steps. Iron can enter the enterocyte via the apical surface through several paths. However, iron egress from the basolateral side of enterocytes converges on a single export pathway requiring the iron transporter, ferroportin1, and hephaestin, a ferroxidase. Copper deficiency leads to reduced hephaestin protein expression and activity in mouse enterocytes and intestinal cell lines. We tested the effect of copper deficiency on differentiated Caco2 cells grown in transwells and found decreased hephaestin protein expression and activity as well as reduced ferroportin1 protein levels. Furthermore, the decrease in hephaestin levels correlates with a decrease of 55Fe release from the basolateral side of Caco2 cells. Presence of ceruloplasmin, apo‐transferrin or holo‐transferrin did not significantly alter the results observed. Repletion of copper in Caco2 cells leads to reconstitution of hephaestin protein expression, activity, and transepithelial iron transport. J. Cell. Biochem. 107: 803–808, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
Mouse peritoneal macrophages were allowed to ingest 59Fe, 125I-labelled transferrin-antitransferrin immune complexes, and the release of 59Fe and degraded transferrin was studied. Some iron was released as ferritin, but a major portion was bound by bovine transferrin present in the culture medium, which contained fetal calf serum. If the medium was saturated with iron prior to incubation with the cells, little of the released iron was then bound by transferrin but appeared either as a high molecular weight fraction or, if nitrilotriacetate was present in the medium, some also appeared as a low molecular weight fraction. The release of non-ferritin iron was biphasic, the early, rapid phase being more prolonged with resident cells than with stimulated cells. The rate of release in the late phase did not differ significantly between resident and stimulated cells. Incubation at 0°C completely suppressed the release of degraded transferrin, but iron release continued at about 30% of the rate seen in control cultures at 37°C. A model for the intracellular handling of ingested iron is proposed to take account of the different release patterns of resident and stimulated macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号