首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. In this study, DNA from haemolymph cells of Mytilus galloprovincialis Lam., as well as from L1210 (murine leukemia) mouse cells was investigated utilizing the technique of the alkaline unwinding of the double stranded DNA molecule. 2. The data show that DNA of haemolymph cells from the marine invertebrate has an unwinding time and, therefore, a molecular weight considerably lower than that of DNA of mammalian cells. 3. The exposure of the cells from mussel haemolymph and from mouse L1210 to a genotoxic compound such as dimethylsulfate results in DNA damage and consequently in a reduction of the unwinding time. 4. These results suggest that the fluorimetric DNA unwinding assay can be used in studies concerning the damage of DNA of marine organisms induced by genotoxic compounds or environmental factors.  相似文献   

2.
To study the mechanisms of formation and repair of DNA-protein crosslinks in mammalian cells, the best general method to assay these lesions is the Kohn membrane alkaline elution procedure. Use of this sensitive technique requires the introduction of random strand breaks in the DNA by X-irradiation to reduce the very high molecular weight so that it elutes off the filter at an appropriate rate. This report describes an alternative method for fragmenting the DNA in the absence of X-irradiation equipment. Convenient reproducible elution rates of DNA from various mouse and human cells in culture without X-irradiation result from elution through polyvinyl chloride filters with 75 mM sodium hydroxide (0.33 ml/min) instead of the standard 20 mM EDTA-tetrapropylammonium hydroxide, pH 12.2 (0.03 to 0.04 ml/min). Dose-dependent retardation of the DNA elution was observed over the range 0 to 30 microM trans-platinum(II)diamminedichloride, and proteinase K treatment during cell lysis restored the elution rate to that of the untreated control cell DNA. In the absence of X-irradiation, this elution method measures DNA-protein crosslinks with higher sensitivity and equivalent reproducibility as the air-burst procedure.  相似文献   

3.
Bihari N  Fafandel M 《Mutation research》2004,552(1-2):209-217
The presence of DNA single strand breaks in untreated specimens of selected species, mosquito fish Gambusia affinis, painted comber Serranus scriba, blue mussel Mytilus galloprovincialis, spiny crab Maja crispata and sea cucumber Holothuria tubulosa as well as in 10 microg/g benzo(a)pyrene (BaP) treated mosquito fish, blue mussel and spiny crab was measured, using alkaline filter elution. Interspecies differences in alkaline elution profiles were observed and attributed to different lengths of DNA from different sources and to differences in the number of strand breaks present during normal cellular events in different phyla. Spiny crab hemocytes are more sensitive to action of BaP then blue mussel hemocytes and mosquito fish hepatocytes that could be explained by differences in the rates of distinct metabolic reactions and DNA repair among the investigated species. In field study, DNA single strand breaks were measured in hepatocytes of painted comber and in hemocytes of blue mussel and spiny crab from natural population specimens collected at eight sampling sites along Istrian coast, Croatia. Spatial variations in DNA integrity for each species were detected and revealed for the first time that spiny crab is responsive to different environmental conditions. Interspecies variations in the DNA integrity due to environmental conditions, confirmed species specific susceptibility to genotoxicity of certain environment that in long-term may modify the structure of marine communities. The multi-species approach in designing biomonitoring studies was suggested.  相似文献   

4.
We used the filter elution technique to study DNA single- and double-strand scission under denaturing alkaline and nondenaturing conditions in X-irradiated 9L rat brain tumor cells. The amount of DNA damage determined by the alkaline elution assay was similar for different lysis conditions (sodium dodecyl sulfate and sarkosyl) and DNA fluorometric assays (Hoechst 33258 and 3,5-diaminobenzoic acid dyes). Therefore, results of the filter elution assay obtained with the various methods can be compared directly. Using these assays, we found that there was no significant change in the susceptibility to X-ray-induced DNA damage, measured either as single- or double-strand breaks, in 9L cells depleted of polyamines by treatment with alpha-difluoromethylornithine. Results obtained by filter elution are different from results obtained with viscoelastometry, which suggests that the two methods may resolve the effects of changes in DNA structure in different ways.  相似文献   

5.
Automated determination of DNA using the fluorochrome Hoechst 33258   总被引:1,自引:0,他引:1  
An automated method for the determination of DNA content in fractions from the alkaline filter elution assay of DNA damage has been developed. DNA-containing fractions are mixed with a fluorochrome (Hoechst 33258) and the DNA concentration is measured fluorometrically in a continuous-flow system. The lower limit of detection is 0.05 micrograms DNA/ml, and the linearity range under the conditions used is 0-8 micrograms DNA/ml. The standard deviation (n = 10) was found to be +/- 0.83%. The results are compared with the manual method.  相似文献   

6.
Many substances pollute the marine environment. There is today a growing evidence on the increased risk of disease in marine organisms, especially fish, that inhabit contaminated waters. Different types of tumours have been evidenced in fish and shellfish populations. Different short-term biomarkers are available to predict the impact of carcinogens on marine organisms. Their endpoints are different effects at the molecular and cellular level such as gene mutation, chromosome alteration and induction of DNA damage and repair. We have applied two different assays: alkaline elution to measure DNA single strand breaks and micronucleus assay as an index of a chromosomal damage. In order to select an aquatic organism as an indicator of water pollution by carcinogenic agents, we have focused on the mussel. A program of validation of genotoxicity was conducted in aquarium using DMBA. A time-dependence increase of micronuclei was evident after the exposure to 100 ppb/animal. For alkaline elution the effect was 4 times the level of the controls. Experiments in the fields were conducted on adult specimens of Mytilus gdlloprovincialis collected from natural substrates. Our sampling stations were located in the La Spezia gulf, Ligurian sea. Genotoxic effects were evaluated in gill cells. A significant increment of the two parameters in polluted, in comparison with the unpolluted sites has been observed. High frequencies of micronuclei (the highest value was 42 ± 13 with respect to control value 3 ± 2) were scored in mussels from polluted stations. The extent of DNA damage was also relevant with respect to clastogenic damage as revealed by micronucleus test. The greatest value of K (constant of elution) was 8-fold higher with respect to the value of K obtained in the same tissue of mussel from reference areas. Evidence of DNA damage could reflect a recent pollution status, since DNA strand breaks can be rapidly repaired by different mechanisms. On the contrary animals exposed to clastogenic compounds may exhibit elevated micronucleus frequency long after the exposure has ceased. The evaluation of both parameters could provide information of great significance about the pollution status of the water.  相似文献   

7.
《Free radical research》2013,47(6):381-389
DNA damage in X-irradiated CHO cells was measured by alkaline filter elution and compared to fluorometric analysis of DNA unwinding (FADU). The FADU method proved to be as sensitive as the alkaline filter elution technique in detecting X-ray induced DNA breaks. Strand break induction was also measured after treatment with four radical generating chemicals (hydrogen peroxide, bleomycin, mitomycin C and methyl viologen) using the FADU technique.  相似文献   

8.
DNA damage in X-irradiated CHO cells was measured by alkaline filter elution and compared to fluorometric analysis of DNA unwinding (FADU). The FADU method proved to be as sensitive as the alkaline filter elution technique in detecting X-ray induced DNA breaks. Strand break induction was also measured after treatment with four radical generating chemicals (hydrogen peroxide, bleomycin, mitomycin C and methyl viologen) using the FADU technique.  相似文献   

9.
We investigated the repair kinetics of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) in unstimulated normal human peripheral blood lymphocytes (HPBL). SSBs and DSBs induced by gamma-irradiation (at 0 degree C) were assayed without radiolabel by alkaline and neutral filter elution, respectively. Incubation of irradiated cells at 37 degrees C for various lengths of time demonstrated that the percent DNA rejoined increased until it reached a plateau at approximately 60 min; this repair plateau underwent no substantial change when incubation continued for 20-24 h. The level of the plateau indicated how closely the elution profile of DNA from cells irradiated and incubated (experimental) resembled the elution profile of DNA from unirradiated cells (control). After 6 Gy and 60 min incubation, the alkaline elution profile of DNA from experimental cells from 5 donors was indistinguishable from that seen in DNA from control cells, suggesting that rejoining of SSBs was complete. In contrast after 100 Gy and 60 min incubation the neutral elution profile of DNA from cells from the same donors demonstrated that, compared to DNA from control cells, rejoining of DSBs was approximately two-thirds complete. In the range of 2-8 Gy, 85-104% of SSBs were rejoined after 60 min incubation; in the range of 30-120 Gy, 46-80% of DSBs were rejoined after 60 min incubation. These unexpected results stand in contrast to our previous studies with confluent normal human diploid fibroblasts (HDF), in which rejoining of both SSBs and DSBs was greater than 90% complete by 60 min repair incubation and 100% complete after 18-24 h.  相似文献   

10.
The effects of the sulfhydryl-containing compound dithiothreitol (DTT) on radiation-induced DNA damage have been studied using two different assays: DNA unwinding hydroxyapatite chromatography and alkaline filter elution. DNA damage as measured by both assays for cells irradiated in air shows drug concentration-dependent radioprotection reaching high levels (dose reduction factor, DRF = 3) at high DTT concentrations. The pattern and degree of protection against DNA damage are the same as shown previously for cell survival. However, when cells are irradiated in hypoxia, DNA damage as measured by the unwinding technique is decreased less by low DTT concentrations than is survival, but DNA damage is decreased to a much greater extent (DRF = 3) at high concentrations of DTT (compared to DRF = 1.5 for cell survival). DNA damage as measured by the alkaline elution assay after hypoxic irradiation is decreased to a much greater extent at all concentrations of DTT with DRF = 1.6 at 1 mM and increasing to DRF = 4.5 at high levels of DTT. These results are discussed in terms of the different types of DNA damage produced in cells irradiated in air versus hypoxia and the differences in types of damage measured by the two different DNA assays and cell survival.  相似文献   

11.
The alkaline elution assay was used to monitor DNA single-strand breaks in embryonic tissue following exposure to the DNA-damaging teratogen N-methyl-N-nitrosourea (MNU, CAS No. 694-93-5). An animal model was developed in which nearly every fetus exposed to the highest dose of MNU had malformations of the hindlimbs while the fetuses exposed to the lowest dose of MNU had none. Hindlimbs pooled within litters were analyzed for DNA single-strand breaks by alkaline elution conducted at rapid (0.35 ml/min) and slow (0.35 ml/min) speeds. Breaks in the DNA of hindlimbs exposed to teratogenic doses of MNU were readily detected by alkaline elution only if slower speeds were used in the assay. Using the more sensitive procedure, DNA breakage was monitored over a 24-h period. DNA breakage peaked in the MNU-exposed hindlimbs in a dose-dependent manner 4 h after injection. While the elution profiles of hindlimbs exposed to the lower doses of MNU returned to control levels 8 h after injection, single-strand breaks persisted in the hindlimbs exposed to the highest dose of MNU for at least 20 h. These latter data suggest that the highly teratogenic dose of MNU induced DNA damage that was more slowly repaired than that produced at lower doses, possibly by saturation of DNA repair systems. Although some necrosis did occur in hindlimbs exposed at teratogenic dose levels, it was not severe and it did not appear to influence the alkaline elution results. These experiments show that alkaline elution is a sensitive assay for the detection of DNA damage in embryonic tissues.  相似文献   

12.
DNA damage is an inescapable aspect of life in the biosphere. The presented investigations were an attempt to examine the response of a DNA damage as a biomarker of environmental quality in the mussels Mytilus galloprovincialis sampled at differently contaminated areas of Istrian coast, Northern Adriatic. The investigations were performed in order to get information about the genotoxic risk for marine organisms exposed to mixed environmental pollution, as well as the information about the presence of unknown mixture of genotoxic contaminants in the marine environment. Types of DNA damage detected are alkali-labile sites and single-strand breaks measured by Fast Micromethod, interstrand cross-links and DNA protein cross-links by alkaline filter elution and cell cycle disturbation by flow cytometry. The applicability of all three methods for marine quality control is discussed.  相似文献   

13.
The alkaline and neutral (or nondenaturing) filter elution assays are popular methods for the measurement of DNA strand breakage and its repair in eukaryotic cells. In both alkaline and neutral elution, it is recommended practice to wash the filter support after removal of the filter and to analyze the DNA recovered by this procedure together with that remaining on the filter as uneluted DNA, although it is not obvious why the DNA in the filter support wash should be so interpreted. We have observed that the sum of the DNA on the filter and that recovered in the filter support wash is approximately constant when the pH of the alkaline filter elution assay for total strand breaks is increased from 12.1 to 12.6, whereas the fraction on the filter itself is markedly smaller at the higher pH. This behavior characterized DNA elution from undamaged cells, as well as from cells treated with various DNA-damaging agents. These findings are consistent with the "tug-of-war" mechanism that has been proposed for alkaline elution, but are inconsistent with the simplest mechanism of the "sieve" class. In the neutral filter elution assay for double-strand breaks, by contrast, the distribution of DNA between the filter and the filter support wash is pH-independent. This suggests that single- and double-stranded DNA segments traverse a filter by different physical mechanisms. Our observations underscore the importance of carrying out the filter support wash and the analysis of the DNA it contains as uneluted DNA in alkaline elution, while indicating that a different analysis of this DNA might be appropriate for neutral elution.  相似文献   

14.
A biomonitoring programme of wild and caged mussels (Mytilus galloprovincialis) was carried out at four selected sites along the Ligurian coast: Cornigliano, Voltri, Zinola, and Sanremo (Italy). Mussels of a very narrow size range were left in situ for 30 days. Adult specimen of mussels from natural substrates were collected in the same areas. Animals from a mussel farm located in La Spezia were used as controls. Micronucleus frequency and DNA single strand breaks, evaluated by alkaline elution, were used as biomarkers of genotoxicity. Mussels were also analyzed for polycyclic aromatic hydrocarbons (PAH) and heavy metals (Hg and Cd). Different gradients of PAH and metal concentrations were detected in tissues of mussels from different samplings sites. A weak correlation was found between single strand breaks and PAH content while MN frequency correlated with Hg concentration (r = 0.28, P < 0.002). A clear distinction between the sites, allowing classification along a pollution gradient (Sanremo < Zinola < Voltri < Cornigliano) was demonstrated by the analysis of genotoxicity parameters. The obtained results suggested that the micronucleus assay compared with DNA damage determination by alkaline elution allow to better discriminate the selected sites. DNA damage expressed as constant of elution (k ml(-1) x 10(3)) ranges from 30 +/- 9.6 to 89.60 +/- 40.10, and micronuclei frequency from 1.78 +/- 1.04 to 24.4 +/- 12.9, in control animals and in mussels from the most polluted site, respectively. Wild mussels accumulated significant concentrations of chemicals and showed a higher induction of chromosomal damage than caged mussels, expressed as micronuclei frequency. Caged mussels showed higher level of DNA damage than wild mussels, probably as a result of recent exposure. DNA damage was higher in September than in May, as opposed to micronuclei frequency being higher in May than in September. Endogenous and exogenous factors, such as change of pollutant input levels or compositions, could be considered the cause of such variability.  相似文献   

15.
Skin fibroblasts from normal human subjects were exposed in vitro to long-wave ultraviolet radiation (UVA, 320–400 nm) alone, or in combination with 8-methoxypsoralen (8-MOP). DNA damage was analysed with the alkaline elution technique before and after post-treatment incubation of the cells at 37°C for various times.Cells treated with UVA at 1.1 J/cm2 showed an increased DNA elution rate, which returned to the normal level within 30 min of post-treatment incubation. In cells treated with PUVA (8-MOP at 20 μg/ml plus UVA at 0.04 J/cm2), the alkaline elution rate was not different from untreated control cells, either before or after post-treatment incubation for times up to 7 days.When the PUVA treatment was followed first by a washing, to remove any unbound 8-MOP, and then by UVA (PUVA + UVA) at 1.1 J/cm2, the alkaline elution rate decreased below the control level. During the post-treatment incubation of the PUVA + UVA-treated cells there was a gradual increase of the alkaline elution rate to a level significantly above that in control cells. This increase was observed after 30 min. It reached a miaximum after 24 h and remained after 7 days of post-treatment incubation. Cells from a patient with xeroderma pigmentosum of complementation group A, which were given the same PUVA + UVA treatment, did not show any change in the alkaline elution rate during the post-treatment incubation.If, as seems likely, an increased alkaline elution rate indicates an increase of DNA breaks, and a decreased alkaline elution rate indicates the sealing of breaks and/or the formation of cross-links, the results would suggest the following: (1) UVA irradiation in itself is capable of inducing DNA breaks, which are rapidly sealed during post-treatment incubation; (2) PUVA treatment induces mono-adducts, some of which appear to remain in the DNA for at least 7 days of post-treatment incubation and can be activated to form DNA cross-links by a second dose of UVA; (3) DNA cross-links induced by PUVA + UVA can be recognized by a repair process that involves the formation of DNA breaks. This process is not observed in xeroderma pigmentosum cells of group A.  相似文献   

16.
The alkaline elution technique was used to measure DNA damage in the rat testis after intraperitoneal injection of 3 chemicals known to cause heritable mutations in rodents. These 3 chemicals are triethylenemelamine (TEM), mitomycin C, and cyclophosphamide. All three of these chemicals produced DNA damage which was readily detectable by alkaline elution. Both TEM and mitomycin C produced DNA interstrand cross-links, although TEM was a more potent cross-linker on an equimolar basis than mitomycin C. Cyclophosphamide produced both DNA cross-links and DNA strand breaks. Alkaline elution in the absence of proteinase K indicated that some of the strand breaks appeared to be closely associated with protein. These studied indicate that the alkaline elution technique is capable of detecting DNA damage in mammalian germ cells produced by chemical mutagens. This technique may prove useful as a screening tool for identifying chemicals which cause heritable mutations in mammals.  相似文献   

17.
DNA damage induced in mammalian cells (CHO-K1) by one hour treatment with several concentrations of N-diazoacetylglycine amide (DGA) was evaluated by the method of DNA denaturation in alkali and successive neutralization followed by separation of single from double stranded DNA with the recently described technique of hydroxylapatite chromatography performed in batch. This latter technique does not need complex apparatus and simplifies the simultaneous handling of large number of samples; it also appears as sensitive and reliable as the DNA alkaline elution on filter, to which it can be regarded as both alternative and complementary.  相似文献   

18.
Murine mammary carcinoma cells (line 67) were grown in unfed cultures for up to 9 days. In cultures (day 2-3) in which cells were proliferatively active and in day 3-5 (transition) cells, a large fraction of nuclear DNA was retained on polycarbonate filters when assayed by the alkaline filter elution technique. In contrast, the fraction of DNA retained on filters was significantly reduced for nonproliferating (Q, quiescent) cells from unfed 7-9 day cultures. The increase in endogenous DNA breaks followed both the decrease in proliferative state and clonogenicity in these cells. When day 7 Q cells were refed these endogenous DNA breaks were removed with a half-time of about 2.5 h. When the cells were exposed to X-irradiation and the integrity of their nuclear DNA measured by the alkaline filter elution assay, as much as a 2-fold greater frequency of radiation-induced DNA breaks was produced in Q versus P cells. DNA breaks were also removed from irradiated Q cells at a rate which was 0.23 that observed in P cells. We suggest that the depressed capacity for DNA damage removal in Q cells is responsible for their greater radiosensitivity, and the impaired DNA damage repair is probably due to a reduced level of energy sources in these unfed Q cell cultures.  相似文献   

19.
Measurement of infrequent DNA double-strand breaks (DSB) in mammalian cells is essential for the understanding of cell damage by ionizing radiation and many DNA-reactive drugs. One of the most important assays for measuring DSB in cellular DNA is filter elution. This study is an attempt to determine whether standard concepts of fluid mechanics can yield a self-consistent model of this process. Major assumptions of the analysis are reptation through a channel formed by surrounding strands, with only strand ends captured by filter pores. Both viscosity and entanglement with surrounding strands are considered to determine the resistance to this motion. One important result is that the average elution time of a strand depends not only on its length, but also on the size distribution of the surrounding strands. This model is consistent with experimental observations, such as the dependence of elution kinetics upon radiation dose, but independence from the size of the DNA sample up to a critical filter loading, and possible overlap of elution times for strands of different length. It indicates how the dependence of elution time on the flow rate could reveal the relative importance of viscous and entanglement resistance, and also predicts the consequences of using different filters.  相似文献   

20.
The repair of DNA alkylation damage in human cells is poorly understood. We have adapted the alkaline elution technique for use with human peripheral blood lymphocytes in culture. We have also established conditions necessary for short-term culture of human lymphocytes. Lymphocyte growth which can be maintained for up to 30 days is dependent upon irradiated TK6 feeder cells and T-cell growth factor (crude TCGF). The amount of damage induced by a given concentration of methyl methane-sulfonate (MMS) is dependent upon cell number per ml of growth medium. The DNA damage measured, in lymphocytes, by alkaline elution is a composite of single strand breaks and alkali-labile lesions. Repair of this damage after appropriate recovery periods is also detectable. The irradiated feeder TK6 cells do not contribute to the number of strand breaks detected or the amount of recovery after treatment. This method offers a quick and reproducible means of detecting DNA damage and repair in human T-lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号