首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Although Ag-specific B lymphocytes can process Ag and express peptide-class II complexes as little as 1 h after Ag exposure, it requires 3-5 days for the immune system to develop a population of Ag-specific effector CD4 T lymphocytes to interact with these complexes. Presently, it is unclear how B cells maintain the expression of cell surface antigenic peptide-class II complexes until effector CD4 T lymphocytes become available. Therefore, we investigated B cell receptor (BCR)-mediated Ag processing and presentation by normal B lymphocytes to determine whether these cells have a mechanism to prolong the cell surface expression of peptide-class II complexes derived from the processing of cognate AG: Interestingly, after transit of early endocytic compartments, internalized Ag-BCR complexes are delivered to nonterminal late endosomes where they persist for a prolonged period of time. In contrast, Ags internalized via fluid phase endocytosis are rapidly delivered to terminal lysosomes and degraded. Moreover, persisting Ag-BCR complexes within nonterminal late endosomes exhibit a higher degree of colocalization with the class II chaperone HLA-DM/H2-M than with the HLA-DM/H2-M regulator HLA-DO/H2-O. Finally, B cells harboring persistent Ag-BCR complexes exhibit prolonged cell surface expression of antigenic peptide-class II complexes. These results demonstrate that B lymphocytes possess a mechanism for prolonging the intracellular persistence of Ag-BCR complexes within nonterminal late endosomes and suggest that this intracellular Ag persistence allows for the prolonged cell surface expression of peptide-class II complexes derived from the processing of specific AG:  相似文献   

2.
3.
Engagement of immune receptors by antigen may lead to activation, cell proliferation, differentiation and effector functions. It has recently been proposed that the initiation and propagation of the signaling events taking place in immune cells occur in specialized membrane regions called lipid rafts. These detergent-insoluble glycolipid domains are specialized membrane compartments enriched in cholesterol and glycolipids. They also contain many lipid-modified signaling proteins such as tyrosine kinases of the Src family, GPI (glycosylphosphatidylinositol)-linked proteins as well as adaptor proteins. The confinement of signaling molecules in membrane subdomains suggests that lipid rafts function as platforms for the formation of multicomponent transduction complexes. Indeed, upon receptor binding, immune receptors become raft-associated and additional components of the signaling pathways are recruited to rafts in order to form signaling complexes. It has been speculated that the entry of immune receptors into rafts can regulate cell activation. Accordingly, numerous experiments have provided substantial evidence that raft integrity is crucial for the initiation and maintenance of intracellular signals. Recent studies have also shown that the access and translocation of immune receptors to lipid rafts are developmentally regulated (immature versus mature cells, Th1 versus Th2 lymphocytes) and sensitive to pharmacological agents. The aim of the present review is to summarize the current knowledge of immune receptor signal transduction with particular emphasis on the role of membrane compartments in immune activation. Finally, experimental evidences indicating that these membrane structures may represent clinically relevant potential targets for immune regulation, will be discussed.  相似文献   

4.
The processing of exogenous Ags is an essential step for the generation of immunogenic peptides that will be presented to T cells. This processing relies on the efficient intracellular targeting of Ags, because it depends on the content of the compartments in which Ags are delivered in APCs. Opsonization of Ags by the complement component C3 strongly enhances their presentation by B cells and increases their immunogenicity in vivo. To investigate the role of C3 in the targeting of Ags, we compared the intracellular traffic of proteins internalized by complement receptor (CR) and B cell receptor (BCR) in B lymphocytes. Whereas both receptors are able to induce efficient Ag presentation, their intracellular pathways are different. CR ligand is delivered to compartments containing MHC class II molecules (MHC-II) but devoid of transferrin receptor and Lamp-2, whereas BCR rapidly targets its ligand toward Lamp-2-positive, late endosomal MHC-II-enriched compartments through intracellular vesicles containing transferrin receptor. CR and BCR are delivered to distinct endocytic pathways, and the kinetic evolution of the protein content of these pathways is very different. Both types of compartments contain MHC-II, but CR-targeted compartments receive less neosynthesized MHC-II than do BCR-targeted compartments. The targeting induced by CR toward compartments that are distinct from BCR-targeted compartments probably participates in C3 modulation of Ag presentation.  相似文献   

5.
The BCR serves as both signal transducer and Ag transporter. Binding of Ags to the BCR induces signaling cascades and Ag processing and presentation, two essential cellular events for B cell activation. BCR-initiated signaling increases BCR-mediated Ag-processing efficiency by increasing the rate and specificity of Ag transport. Previous studies showed a critical role for the actin cytoskeleton in these two processes. In this study, we found that actin-binding protein 1 (Abp1/HIP-55/SH3P7) functioned as an actin-binding adaptor protein, coupling BCR signaling and Ag-processing pathways with the actin cytoskeleton. Gene knockout of Abp1 and overexpression of the Src homology 3 domain of Abp1 inhibited BCR-mediated Ag internalization, consequently reducing the rate of Ag transport to processing compartments and the efficiency of BCR-mediated Ag processing and presentation. BCR activation induced tyrosine phosphorylation of Abp1 and translocation of both Abp1 and dynamin 2 from the cytoplasm to plasma membrane, where they colocalized with the BCR and cortical F-actin. Mutations of the two tyrosine phosphorylation sites of Abp1 and depolymerization of the actin cytoskeleton interfered with BCR-induced Abp1 recruitment to the plasma membrane. The inhibitory effect of a dynamin proline-rich domain deletion mutant on the recruitment of Abp1 to the plasma membrane, coimmunoprecipitation of dynamin with Abp1, and coprecipitation of Abp1 with GST fusion of the dyanmin proline-rich domain demonstrate the interaction of Abp1 with dynamin 2. These results demonstrate that the BCR regulates the function of Abp1 by inducing Abp1 phosphorylation and actin cytoskeleton rearrangement, and that Abp1 facilitates BCR-mediated Ag processing by simultaneously interacting with dynamin and the actin cytoskeleton.  相似文献   

6.
Lipid rafts are plasma membrane platforms mediating signal transduction pathways for cellular proliferation, differentiation and apoptosis. Here, we show that membrane fluidity was increased in HeLa cells following treatment with ginsenoside Rh2 (Rh2), as determined by cell staining with carboxy-laurdan (C-laurdan), a two-photon dye designed for measuring membrane hydrophobicity. In the presence of Rh2, caveolin-1 appeared in non-raft fractions after sucrose gradient ultracentrifugation. In addition, caveolin-1 and GM1, lipid raft landmarkers, were internalized within cells after exposure to Rh2, indicating that Rh2 might disrupt lipid rafts. Since cholesterol overloading, which fortifies lipid rafts, prevented an increase in Rh2-induced membrane fluidity, caveolin-1 internalization and apoptosis, lipid rafts appear to be essential for Rh2-induced apoptosis. Moreover, Rh2-induced Fas oligomerization was abolished following cholesterol overloading, and Rh2-induced apoptosis was inhibited following treatment with siRNA for Fas. This result suggests that Rh2 is a novel lipid raft disruptor leading to Fas oligomerization and apoptosis.  相似文献   

7.
Physically distinct cholesterol/sphingolipid-rich plasma membrane microdomains, so-called lipid rafts, have been recognized to play an important regulatory role in various cellular processes, from membrane trafficking to signal transduction, in a number of cell types. We report here that the ability of TCR on activated, functional CD8+ T lymphocytes to efficiently bind MHC class I tetramer complexes is dependent on the integrity of lipid rafts on the T lymphocyte membrane. We further provide evidence that TCR interact (associate) with lipid raft elements on the T cell surface before receptor engagement and that the topological arrangement of TCR on the cell surface is likewise influenced by lipid raft integrity.  相似文献   

8.
Binding of Ag by B cells leads to signal transduction downstream of the BCR and to delivery of the internalized Ag-BCR complex to lysosomes where the Ag is processed and presented on MHC class II molecules. T cells that recognize the peptide-MHC complexes provide cognate help to B cells in the form of costimulatory signals and cytokines. Recruitment of T cell help shapes the Ab response by facilitating isotype switching and somatic hypermutation, and promoting the generation of memory cells and long-lived plasma cells. We have used the beige (Bg) mouse, which is deficient in endosome biogenesis, to evaluate the effect of potentially altered Ag presentation in shaping the humoral response. We show that movement of the endocytosed Ag-BCR complex to lysosomes is delayed in Bg B cells and leads to relatively poorer stimulation of Ag-specific T cells. Nevertheless, this does not affect Bg B cell activation or proliferation when competing with wild-type B cells for limiting T cell help in vitro. Interestingly, Bg B cells show more prolonged phosphorylation of signaling intermediates after BCR ligation and proliferate better to low levels of BCR cross-linking. Primary Ab responses are similar in both strains, but memory responses and plasma cell frequencies in bone marrow are higher in Bg mice. Further, Bg B cells mount a higher primary Ab response when competing with wild-type cells in vivo. Thus, the intensity and duration of BCR signaling may play a more important part in shaping B cell responses than early Ag presentation for T cell help.  相似文献   

9.
Recent biochemical evidence indicates that an early event in signal transduction by the B-cell antigen receptor (BCR) is its translocation to specialized membrane subdomains known as lipid rafts. We have taken a microscopic approach to image lipid rafts and early events associated with BCR signal transduction. Lipid rafts were visualized on primary splenic B lymphocytes from wild-type or anti-hen egg lysozyme BCR transgenic mice, and on a mature mouse B-cell line Bal 17 by using fluorescent conjugates of cholera toxin B subunit or a Lyn-based chimeric protein, which targets green fluorescent protein to the lipid raft compartment. Time-lapse imaging of B cells stimulated via the BCR with the antigen hen egg lysozyme, or surrogate for antigen anti-IgM, demonstrated that lipid rafts are highly dynamic entities, which move laterally on the surface of these cells and coalesce into large regions. These regions of aggregated lipid rafts colocalized with the BCR and tyrosine-phosphorylated proteins. Microscopic imaging of live B cells also revealed an inducible colocalization of lipid rafts with the tyrosine kinase Syk and the receptor tyrosine phosphatase CD45. These two proteins play indispensable roles in BCR-mediated signaling but are not detectable in biochemically purified lipid raft fractions. Strikingly, BCR stimulation also induced the formation of long, thread-like filopodial projections, similar to previously described structures called cytonemes. These B-cell cytonemes are rich in lipid rafts and actin filaments, suggesting that they might play a role in long-range communication and/or transportation of signaling molecules during an immune response. These results provide a window into the morphological and molecular organization of the B-cell membrane during the early phase of BCR signaling.  相似文献   

10.
Lipid rafts are detergent-resistant, liquid-ordered microdomains in plasma membranes that are enriched in cholesterol and sphingolipids and involved in intracellular signal transduction, membrane trafficking, and molecular sorting. In this study, we investigated the possibility that lipid rafts on Eimeria tenella sporozoites may act as platforms for host cell invasion. Flotillin-1, a resident protein of lipid rafts, was identified on E. tenella sporozoites and was prominently expressed at the apex of the cells, a region mediating host cell invasion. Pretreatment of sporozoites with antibody against flotillin-1 blocked parasite invasion. Furthermore, the anticoccidial drug, monensin, disrupted the localization of flotillin-1 within raft structures resulting in loss of invasion. We conclude that Eimeria sporozoites utilize lipid rafts containing flotillin-1 for internalization into host cells.  相似文献   

11.
The intracellular sites in which Ags delivered by the B cell receptor (BCR) are degraded and loaded onto class II molecules remain poorly defined. To address this issue, we generated wild-type and invariant chain (Ii)-deficient H-2k mice bearing BCR specific for hen egg lysozyme. Our results show that, 1) unlike Ags taken up from the fluid phase, Ii is required for presentation of hen egg lysozyme internalized through the BCR in a manner independent of the peptide analyzed; 2) BCR ligation induces intracellular accumulation of MHC class II molecules only in Ii-positive B cells; and 3) these class II molecules reach intracellular compartments where BCR targets exogenous Ag. No differences in expression of adhesion and costimulatory molecules or in the presentation of soluble peptides were detectable between Ii-positive and -negative B cells. Therefore, the BCR delivers its ligand to compartments containing MHC class II-Ii complexes and bypasses the Ii-independent presentation pathway. The linked roles of Ag internalization and B cell activation of the BCR leads to potent Ii-dependent presentation in splenic B cells.  相似文献   

12.
Endocytosis of cell surface receptors is an important regulatory event in signal transduction. The transforming growth factor beta (TGF-beta) superfamily signals to the Smad pathway through heteromeric Ser-Thr kinase receptors that are rapidly internalized and then downregulated in a ubiquitin-dependent manner. Here we demonstrate that TGF-beta receptors internalize into both caveolin- and EEA1-positive vesicles and reside in both lipid raft and non-raft membrane domains. Clathrin-dependent internalization into the EEA1-positive endosome, where the Smad2 anchor SARA is enriched, promotes TGF-beta signalling. In contrast, the lipid raft-caveolar internalization pathway contains the Smad7-Smurf2 bound receptor and is required for rapid receptor turnover. Thus, segregation of TGF-beta receptors into distinct endocytic compartments regulates Smad activation and receptor turnover.  相似文献   

13.
B cell receptor (BCR)-mediated antigen (Ag) processing and presentation lead to B cell-T cell interactions, which support affinity maturation and immunoglobulin class switching. These interactions are supported by generation of peptide-MHC class II complexes in multivesicular body-like MIIC compartments of B cells. Previous studies have shown that trafficking of Ag·BCR complexes to MVB-like MIIC occurs via an ubiquitin-dependent pathway and that ubiquitination of Ag·BCR complexes occurs by an Src family kinase signaling-dependent mechanism that is restricted to lipid raft-resident Ag·BCR complexes. This study establishes that downstream Syk-dependent BCR signaling is also required for BCR ubiquitination and BCR-mediated antigen processing and presentation. Knockdown studies reveal that of the two known Syk-binding E3 ubiquitin ligases c-Cbl and Cbl-b, only c-Cbl appears to have a central role in BCR ubiquitination, trafficking to MIIC, and ubiquitin-dependent BCR-mediated antigen processing and presentation. These results establish the novel role for Syk signaling and the Syk-binding ubiquitin ligase c-Cbl in the BCR-mediated processing and presentation of cognate antigen and define one mechanism by which antigen-induced BCR ubiquitination is modulated to impact the initiation and maturation of the humoral immune response.  相似文献   

14.
Glial cell line-derived neurotrophic factor family ligands act through the receptor tyrosine kinase Ret, which plays important roles during embryonic development for cell differentiation, survival, and migration. Ret signaling is markedly affected by compartmentalization of receptor complexes into membrane subdomains. Ret can propagate biochemical signaling from within concentrates in cholesterol-rich membrane microdomains or lipid rafts, or outside such regions, but the mechanisms for, and consequences of, Ret translocation between these membrane compartments remain largely unclear. Here we investigate the interaction of Shc and Frs2 phosphotyrosine-binding domain-containing adaptor molecules with Ret and their function in redistributing Ret to specialized membrane compartments. We found that engagement of Ret with the Frs2 adaptor results in an enrichment of Ret in lipid rafts and that signal transduction pathways and chemotaxis responses depend on the integrity of such rafts. The competing Shc adaptor did not promote Ret translocation to equivalent domains, and Shc-mediated effects were less affected by disruption of lipid rafts. However, by expressing a chimeric Shc protein that localizes to lipid rafts, we showed that biochemical signaling downstream of Ret resembled that of Ret signaling via Frs2. We have identified a previously unknown mechanism in which phosphotyrosine-binding domain-containing adaptors, by means of relocating Ret receptor complexes to lipid rafts, segregate diverse signaling and cellular functions mediated by Ret. These results reveal the existence of a novel mechanism that could, by subcellular relocation of Ret, work to amplify ligand gradients during chemotaxis.  相似文献   

15.
pH-independent retrograde targeting of glycolipids to the Golgi complex   总被引:2,自引:0,他引:2  
A small fractionof the molecules internalized by endocytosis reaches the Golgi complexthrough a retrograde pathway that is poorly understood. In the presentwork, we used bacterial toxins to study the retrograde pathway in Verocells. The recombinant B subunit of verotoxin 1B (VT1B)was labeled with fluorescein to monitor its progresswithin the cell by confocal microscopy. This toxin, which bindsspecifically to the glycolipid globotriaosyl ceramide, enteredendosomes by both clathrin-dependent and -independent pathways,reaching the Golgi complex. Once internalized, the toxin-receptor complex did not recycle back to the plasma membrane. The kinetics ofinternalization and the subcellular distribution of VT1B were virtuallyidentical to those of another glycolipid-binding toxin, the B subunitof cholera toxin (CTB). Retrograde transport of VT1B and CTB wasunaffected by addition of weak bases in combination with concanamycin,a vacuolar-type ATPase inhibitor. Ratio imaging confirmed that theseagents neutralized the luminal pH of the compartments where the toxinwas located. Therefore, the retrograde transport of glycolipids differsfrom that of proteins like furin and TGN38, which require an acidicluminal pH. Additional experiments indicated that the glycolipidreceptors of VT1B and CTB are internalized independently and not aspart of lipid "rafts" and that internalization is cytochalasininsensitive. We conclude that glycolipids utilize a unique,pH-independent retrograde pathway to reach compartments of thesecretory system and that assembly of F-actin is not required for thisprocess.

  相似文献   

16.
There have been many studies demonstrating that a portion of MHC class II molecules reside in detergent-insoluble membrane domains (commonly referred to as lipid rafts). We have proposed that the function of raft association is to concentrate specific MHC class II-peptide complexes in plasma membrane microdomains that can facilitate efficient T cell activation. We now show that MHC class II becomes lipid raft associated before binding antigenic peptides. Using pulse-chase radiolabeling techniques, we find that newly synthesized MHC class II and MHC class II-invariant chain complexes initially reside in a detergent-soluble membrane fraction and acquire detergent insolubility as they traffic to lysosomal Ag processing compartments. Monensin, an inhibitor of protein transport through the Golgi apparatus, blocks association of newly synthesized MHC class II with lipid rafts. Treatment of cells with leupeptin, which inhibits invariant chain degradation, leads to the accumulation of MHC class II in lipid rafts within the lysosome-like Ag-processing compartments. Raft fractionation of lysosomal membranes confirmed the presence of MHC class II in detergent-insoluble microdomains in Ag-processing compartments. These findings indicate that newly synthesized MHC class II complexes are directed to detergent-insoluble lipid raft microdomains before peptide loading, a process that may facilitate the loading of similar peptides on MHC class II complexes in these microdomains.  相似文献   

17.
Cholesterol-rich membrane domains (e.g., lipid rafts) are thought to act as molecular sorting machines, capable of coordinating the organization of signal transduction pathways within limited regions of the plasma membrane and organelles. The significance of these domains in polarized postendocytic sorting is currently not understood. We show that dimeric IgA stimulates the incorporation of its receptor into cholesterol-sensitive detergent-resistant membranes confined to the basolateral surface/basolateral endosomes. A fraction of human transferrin receptor was also found in basolateral detergent-resistant membranes. Disrupting these membrane domains by cholesterol depletion (using methyl-beta-cyclodextrin) before ligand-receptor internalization caused depolarization of traffic from endosomes, suggesting that cholesterol in basolateral lipid rafts plays a role in polarized sorting after endocytosis. In contrast, cholesterol depletion performed after ligand internalization stimulated cargo transcytosis. It also stimulated caveolin-1 phosphorylation on tyrosine 14 and the appearance of the activated protein in dimeric IgA-containing apical organelles. We propose that cholesterol depletion stimulates the coupling of transcytotic and caveolin-1 signaling pathways, consequently prompting the membranes to shuttle from endosomes to the plasma membrane. This process may represent a unique compensatory mechanism required to maintain cholesterol balance on the cell surface of polarized epithelia.  相似文献   

18.
Lipid rafts: bringing order to chaos   总被引:27,自引:0,他引:27  
Lipid rafts are subdomains of the plasma membrane that contain high concentrations of cholesterol and glycosphingolipids. They exist as distinct liquid-ordered regions of the membrane that are resistant to extraction with nonionic detergents. Rafts appear to be small in size, but may constitute a relatively large fraction of the plasma membrane. While rafts have a distinctive protein and lipid composition, all rafts do not appear to be identical in terms of either the proteins or the lipids that they contain. A variety of proteins, especially those involved in cell signaling, have been shown to partition into lipid rafts. As a result, lipid rafts are thought to be involved in the regulation of signal transduction. Experimental evidence suggests that there are probably several different mechanisms through which rafts control cell signaling. For example, rafts may contain incomplete signaling pathways that are activated when a receptor or other required molecule is recruited into the raft. Rafts may also be important in limiting signaling, either by physical sequestration of signaling components to block nonspecific interactions, or by suppressing the intrinsic activity of signaling proteins present within rafts. This review provides an overview of the physical characteristics of lipid rafts and summarizes studies that have helped to elucidate the role of lipid rafts in signaling via receptor tyrosine kinases and G protein-coupled receptors.  相似文献   

19.
Endocytosis is the membrane trafficking process by which plasma membrane components and extracellular material are internalized into cytoplasmic vesicles and delivered to early and late endosomes, eventually either recycling back to the plasma membrane or arriving at the lysosome/vacuole. The budding yeast Saccharomyces cerevisiae has proven to be an invaluable system for identifying proteins involved in endocytosis and elucidating the mechanisms underlying internalization and postinternalization events. Through genetic studies in yeast and biochemical studies in mammalian cells, it has become apparent that multiple cellular processes are linked to endocytosis, including actin cytoskeletal dynamics, ubiquitylation, lipid modification, and signal transduction. In this review, we will highlight the most exciting recent findings in the field of yeast endocytosis. Specifically, we will address the involvement of the actin cytoskeleton in internalization, the role of ubiquitylation as a regulator of multiple steps of endocytosis in yeast, and the sorting of endocytosed proteins into the recycling and vacuolar pathways.  相似文献   

20.
Ligand-induced BCR association with detergent-resistant plasma membrane compartments (lipid rafts) has been argued to be essential for initiating and/or sustaining Igalpha/Igbeta-dependent BCR signaling. Because a fraction of the BCR and an even larger fraction of the preBCR associates with lipid rafts in the apparent absence of ligand stimulation, it has been proposed that raft-associated receptor complexes mediate the ligand-independent basal signaling events observed in resting B lineage cells. However, there is no direct evidence that localization of Igalpha/Igbeta-containing complexes to detergent-resistant membrane compartments is absolutely required for the signaling events that drive B cell development. To address these issues we have designed surrogate preBCR/Igalpha/Igbeta complexes that are incapable of ligand-induced aggregation and that are preferentially targeted to either raft or nonraft compartments. An analysis of their ability to promote the preBCR-dependent proB-->preB cell transition of murine B cell progenitors revealed that expression of these surrogate receptor complexes at levels that approximate that of the conventional preBCR can drive B cell development in a manner independent of both aggregation and lipid raft localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号