首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selenium (Se) is an essential micronutrient for humans and animals, with antioxidant, anti-cancer and anti-viral effects, and wheat is an important dietary source of this element. In this study, surveys of Se concentration in grain of ancestral and wild relatives of wheat, wheat landrace accessions, populations, and commercial cultivars grown in Mexico and Australia were conducted. Cultivars were also grown under the same conditions to assess genotypic variation in Se density. Eleven data sets were reviewed with the aim of assessing the comparative worth of breeding compared with fertilising as a strategy to improve Se intake in human populations. Surveys and field trials that included diverse wheat germplasm as well as other cereals found grain Se concentrations in the range 5–720μgkg−1, but much of this variation was associated with spatial variation in soil selenium. This study detected no significant genotypic variation in grain Se density among modern commercial bread or durum wheat, triticale or barley varieties. However, the diploid wheat, Aegilops tauschii and rye were 42% and 35% higher, respectively, in grain Se concentration than other cereals in separate field trials, and, in a hydroponic trial, rye was 40% higher in foliar Se content than two wheat landraces. While genotypic differences may exist in modern wheat varieties, they are likely to be small in comparison with background soil variation, at least in Australia and Mexico. Field sites that are spatially very uniform in available soil Se would be needed to allow comparison of grain Se concentration and content in order to assess genotypic variation.  相似文献   

2.
Saubidet  María I.  Fatta  Nora  Barneix  Atilio J. 《Plant and Soil》2002,245(2):215-222
Azospirillium brasilense is a rhizosphere bacteria that has been reported to improve yield when inoculated on wheat plants. However, the mechanisms through which this effect is induced is still unclear. In the present work, we have studied the effects of inoculating a highly efficient A. brasilense strain on wheat plant grown in 5 kg pots with soil in a greenhouse, under three N regimes (0, 3 or 16 mM NO3 , 50 ml/pot once or twice-a -week), and in disinfected or non-disinfected soil. At the booting stage, the inoculated roots in both soils showed a similar colonization by Azospirillum sp. that was not affected by N addition. The plants grown in the disinfected soil showed a higher biomass, N content and N concentration than those in the non-disinfected soil, and in both soils the inoculation stimulated plant growth, N accumulation, and N and NO3 concentration in the tissues.At maturity, the inoculated plants showed a higher biomass, grain yield and N content than the uninoculated ones in both soils, and a higher grain protein concentration than the uninoculated. It is concluded that in the present experiments, A. brasilenseincreased plant growth by stimulating nitrogen uptake by the roots.  相似文献   

3.
Summary Ammonium nitrate fertilizer, labelled with15N, was applied in spring to winter wheat growing in undisturbed monoliths of clay and sandy loam soil in lysimeters; the rates of application were respectively 95 and 102 kg N ha−1 in the spring of 1976 and 1975. Crops of winter wheat, oilseed rape, peas and barley grown in the following 5 or 6 years were treated with unlabelled nitrogen fertilizer at rates recommended for maximum yields. During each year of the experiments the lysimeters were divided into treatments which were either freelydrained or subjected to periods of waterlogging. Another labelled nitrogen application was made in 1980 to a separate group of lysimeters with a clay soil and a winter wheat crop to study further the uptake of nitrogen fertilizer in relation to waterlogging. In the first growing season, shoots of the winter wheat at harvest contained 46 and 58% of the fertilizer nitrogen applied to the clay and sandy loam soils respectively. In the following year the crops contained a further 1–2% of the labelled fertilizer, and after 5 and 6 years the total recoveries of labelled fertilizer in the crops were 49 and 62% on the clay and sandy loam soils respectively. In the first winter after the labelled fertilizer was applied, less than 1% of the fertilizer was lost in the drainage water, and only about 2% of the total nitrogen (mainly nitrate) in the drainage water from both soils was derived from the fertilizer. Maximum annual loss occurred the following year but the proportion of tracer nitrogen in drainage was nevertheless smaller. Leaching losses over the 5 and 6 years from the clay and sandy loam soil were respectively 1.3 and 3.9% of the original application. On both soils the percentage of labelled nitrogen to the total crop nitrogen content was greater after a period of winter waterlogging than for freely-drained treatments. This was most marked on the clay soil; evidence points to winter waterlogging promoting denitrification and the consequent loss of soil nitrogen making the crop more dependent on spring fertilizer applications.  相似文献   

4.
Accumulation of cadmium (Cd) in crop plants is of great concern due to the potential for food chain contamination through the soil-root interface. Although Cd uptake varies considerably with plant species, the processes which determine the accumulation of Cd in plant tissues are affected by soil factors. The influence of soil type on Cd uptake by durum wheat (Triticum turgidum var. durum L.) and flax (Linum usitatissimum L.) was studied in a pot experiment under environmentally controlled growth chamber conditions. Four cultivars/lines of durum wheat (Kyle, Sceptre, DT 627, and DT 637) and three cultivars/lines of flax (Flanders, AC Emerson, and YSED 2) were grown in two Saskatchewan soils: an Orthic Gray Luvisol (low background Cd concentration; total/ABDTPA extractable Cd: 0.12/0.03 mg kg-1, respectively) and a Dark Brown Chernozem (relatively high background Cd concentration; total/ABDTPA Cd: 0.34/0.17 mg kg-1 respectively). Plant roots, stems, newly developed heads, and grain/seeds were analyzed for Cd concentration at three stages of plant growth: two and seven weeks after germination, and at plant maturity. The results showed that Cd bioaccumulation and distribution within the plants were strongly affected by both soil type and plant cultivar/line. The Cd concentration in roots leaves and stems varied at different stages of plant growth. However, all cultivars of both plant species grown in the Chernozemic soil accumulated more Cd in grain/seeds than plants grown in the Orthic Gray Luvisol soil. The different Cd accumulation pattern also corresponded to the levels of ABDTPA extractable and metal-organic complex bound soil Cd found in both soils. Large differences were found in grain Cd among the durum wheat cultivars grown in the same soil type, suggesting the importance of rhizosphere processes in Cd bioaccumulation and/or Cd transport processes within the plant. Distribution of Cd in parts of mature plants showed that durum grain contained up to 21 and 36% of the total amount of Cd taken up by the plants for the Orthic Gray Luvisol and Chernozemic soils, respectively. These results indicate the importance of studying Cd speciation, bioaccumulation and cycling in the environment for the management of agricultural soils and crops.  相似文献   

5.
The fertilisation of wheat crops with Se is a cost-effective method of enhancing the concentration of organic Se in grain, in order to increase the Se intake of animals and humans. It is important to avoid phytotoxicity due to over-application of Se. Studies of phytotoxicity of Se in wheat grown in Australia, where rainfall and grain yield are usually relatively low, have not been reported previously, and overseas studies have had varied results. This study used trials conducted in the field, glasshouse and laboratory to assess Se phytotoxicity in wheat. In field trials that used rates of up to 120 g ha–1Se as selenate, and in pilot trials that used up to 500 g ha–1 Se soil-applied or up to 330 g ha–1 Se foliar-applied, with soils of low S concentrations (2–5 mg kg–1), no Se toxicity symptoms were observed. In pot trials of four weeks duration, the critical tissue level for Se toxicity was around 325 mg kg–1 DW, a level attained by addition to the growth medium of 2.6 mg kg–1 Se as selenate. Solution concentrations above 10 mg L–1 Se inhibited early root growth of wheat in laboratory studies, with greater inhibition by selenite than selenate. For selenite, Se concentrations around 70 mg L–1 were required to inhibit germination, while for selenate germination % was unaffected by a solution concentration of 150 mg L–1 Se. Leaf S concentration and content of wheat increased three-fold with the addition of 1 mg kg–1 Se as selenate to the growth medium. This effect is probably due to the induction of the S deficiency response of the main sulphate transporter. This study found wheat to be more Se-tolerant than did earlier studies of tobacco, soybeans and rice. We conclude that Se phytotoxicity in wheat will not be observed at the range of Se application rates that would be used to increase grain Se for human consumption (4–200 g ha–1 Se as selenate, which would result in soil and tissue levels well below those seen in the above studies), even when – as is common in Australia – soil S concentration and grain yield are low.  相似文献   

6.
Summary The allelopathic effect of alfalfa (Medicago media Pers.) and red clover (Trifolium pratense L.) root saponins on winter wheat seedling growth and the fate of these chemicals in soil environments were studied. Seed germination, seedling and test fungus growth were suppressed by water and by alcohol extracts of alfalfa roots, and by crude saponins of alfalfa roots, indicating that medicagenic acid glycosides are the inhibitor. Powdered alfalfa roots inhibited wheat seedling growth when added to sand. At concentrations as low as 0.25% (w/w) the root system was completely destroyed whereas seedling shoots suffered little damage. Red clover roots caused some wheat growth inhibition when incorporated to sand, but their effect was much lower than in the alfalfa root treatment. Soil textures had a significant influence on the inhibitory effect of alfalfa roots. The inhibition of seedling growth was more pronounced on light than on heavy soils. This was attribted to the higher sorption of inhibitors by heavy soils. Incubation of alfalfa roots mixed into loose sand, coarse sand, loamy sand and clay loam for a period of 0–8 days resulted in decreased toxicity to bothT. viride and wheat seedlings. This decrease occurred more quickly in heavier soils than in loose sand, due to the hydrolysis of glycosides by soil microorganisms. Soil microbes were capable of detoxifying medicagenic acid glycosides by partial hydrolysis of sugar chain to aglycone. These findings illustrate the importance of medicagenic acid glycosides as an inhibitor of wheat seedling growth, and of their fate in different soil environments.  相似文献   

7.
The release of nonexchangeable potassium by the different particle size fractions of two soils was studied with a culture device designed to confine soil samples in the rhizosphere of rape (Brassica napus cv Drakkar). After 8 days of cropping, the contribution of nonexchangeable K to K uptake ranged from 50% in the fine clay to 80–100% in the coarser fractions. Due to their high supplying power and their relative abundance, the silt fractions provided a major part of the supply of K by these soils.  相似文献   

8.
The residual N contribution from faba bean (Vicia faba L.), pea (Pisum sativum L.) and white lupin (Lupinus albus L.) to microbial biomass and subsequent wheat (Triticum aestivum L.) and oilseed rape (Brassica napus L.) was studied in a greenhouse experiment. The grain legumes were 15N labelled in situ with a stem feeding method before incorporated into the soil, which enables the determination of N rhizodeposition. Wheat and rape were subsequently grown on the soil containing the grain legume residues (incl. 15N-labelled rhizodeposits) and were harvested either twice at flowering and at maturity or once at maturity, respectively. The average total N uptake of the subsequent crops was influenced by the legume used as precrop and was determined by the residue N input and the N2-fixation capacity of the legume species. The succeeding crops recovered 8.6–12.1% of the residue N at maturity. Similar patterns were found for the microbial biomass, which recovered 8.2–10.6% of the residue N. Wheat and rape recovered about the same amount of residue N. The absolute contribution of soil derived N to the subsequent crops was similar in all treatments and averaged 149 mg N pot–1 at maturity. At flowering 17–23% of the residue derived N was recovered in the subsequent wheat and in the microbial biomass; 70% of the residue N was recovered in the microbial biomass in the flowering stage and decreased to about 50% at maturity. In contrast, the recovery in wheat and rape constituted only 30% at flowering and increased to 50% at maturity in all treatments, indicating that the residual N uptake by the subsequent wheat was apparently supplied by mobilisation of residue N temporarily immobilised in the microbial biomass.  相似文献   

9.
This work assessed in situ, copper (Cu) uptake and phytotoxicity for durum wheat (Triticum turgidum durum L.) cropped in a range of Cu-contaminated, former vineyard soils (pH 4.2–7.8 and total Cu concentration 32–1,030 mg Cu kg−1) and identified the underlying soil chemical properties and related root-induced chemical changes in the rhizosphere. Copper concentrations in plants were significantly and positively correlated to soil Cu concentration (total and EDTA). In addition, Cu concentration in roots which was positively correlated to soil pH tended to be larger in calcareous soils than in non-calcareous soils. Symptoms of Cu phytotoxicity (interveinal chlorosis) were observed in some calcareous soils. Iron (Fe)–Cu antagonism was found in calcareous soils. Rhizosphere alkalisation in the most acidic soils was related to decreased CaCl2-extractable Cu. Conversely, water-extractable Cu increased in the rhizosphere of both non-calcareous and calcareous soils. This work suggests that plant Cu uptake and risks of Cu phytotoxicity in situ might be greater in calcareous soils due to interaction with Fe nutrition. Larger water extractability of Cu in the rhizosphere might relate to greater Cu uptake in plants exhibiting Cu phytotoxic symptoms.  相似文献   

10.
Bañuelos  G.S.  Zambrzuski  S.  Mackey  B. 《Plant and Soil》2000,224(2):251-258
This two-part study compared the efficacy of different plant species to extract Se from soils irrigated with Se-laden effluent. The species used were: Brassica napus L. (canola), Brassica juncea Czern L. and Coss (Indian mustard), and Hordeum vulgare L. (barley). In Study 1 we irrigated the plants with a saline effluent containing 0.150 mg Se L–1, while in Study 2, the same species were planted in a saline soil selenized with 2 mg Se L–1. Plants were simultaneously harvested 120 days after planting. In Study 1, there were only slight effects of treatment on dry matter (DM) yield. Plant Se concentrations averaged 21 g Se g–1DM for the Brassica species, and 4.0 g Se g–1 DM for barley. Total Se added to soils via effluent decreased by 40% for Brassica species and by 20% for barley. In Study 2, total DM decreased for all species grown in saline soils containing Se. Plant Se concentrations averaged 75 g g–1 DM for Brassica species and 12 g Se g–1 DM for barley. Total Se added to soils prior to planting decreased by 40% for Brassica species and up to 12% for barley. In both studies, plant accumulation of Se accounted for at least 50% of the Se removed in soils planted to Brassica and up to 20% in soils planted to barley. Results show that although the tested Brassica species led to a significant reduction in Se added to soil via use of Se-laden effluent, additional plantings are necessary to further decrease Se content in the soil.  相似文献   

11.
Wheat, despite its relatively low selenium (Se) concentration in the UK, is still an important dietary Se source and its biofortification by use of Se fertiliser may be an efficient means to increase the relatively low Se status of the population. We need to know more about the fate of Se applied to the soil and how to ensure the efficiency of Se application, and the three studies reported in this issue of Plant and Soil are timely and informative. Selenium in soil, both globally and locally, is notoriously variable; however, the soils in these studies yielded wheat grain Se concentrations in the narrow range of 16–44 ng/g. The low plant Se levels reported here are not surprising, given that selenite is the dominant Se form in these soils. A regression equation (which used total and extractable Se and extractable S as variables) explained a high proportion of the variance in grain Se concentration. Sulphur application (a common practice on UK wheat growing soils) had variable effects on grain Se concentration, depending on soil S status, pH and possibly other factors. A fertiliser methodology study investigated ways to optimise Se application for the purpose of biofortification. It was calculated that an application of a modest 10 g Se/ha as selenate would increase the grain Se concentration of UK wheat from around 30 ng/g to 300 ng/g. The national Se fertiliser program in Finland shows that this increase would have a large effect on population Se status. However, Se recovery in grain at this application rate is only 14%, and it can be argued that large-scale agronomic biofortification of cereals with Se would be somewhat wasteful of a relatively scarce trace element. Selenium’s effects and interactions in soil, plants, animals and humans are complex and often surprising and will keep researchers busy well into the future.  相似文献   

12.
The extent of soil microbial diversity in agricultural soils is critical to the maintenance of soil health and quality. The aim of this study was to investigate the influence of land use intensification on soil microbial diversity and thus the level of soil suppressiveness of cucumber Fusarium wilt. We examined three typical microbial populations, Bacillus spp., Pseudomonas spp. and Fuasarium oxysporum, and bacterial functional diversity in soils from three different land use types in China’s Yangtze River Delta, and related those to suppressiveness of cucumber Fusarium wilt. The land use types were a traditional rice wheat (or rape) rotation land, an open field vegetable land, and a polytunnel greenhouse vegetable land that had been transformed from the above two land use types since 1995. Results generated from the field soils showed similar counts for Bacillus spp. (log 5.87–6.01 CFU g−1 dw soil) among the three soils of different land use types, significantly lower counts for Pseudomonas spp. (log 5.44 CFU g−1 dw soil) in the polytunnel greenhouse vegetable land whilst significantly lower counts for Fusarium oxysporum (log 3.21 CFU g−1 dw soil) in the traditional rice wheat (or rape) rotation land. A significant lower dehydrogenase activity (33.56 mg TPF kg−1 dw day−1) was observed in the polytunnel greenhouse vegetable land. Community level physiological profiles (CLPP) of the bacterial communities in soils showed that the average well color development (AWCD) and three functional diversity indices of Shannon index (H′), Simpson index (D) and McIntosh index (U) at 96 h incubation in BIOLOG Eco Micro plates were significantly lower in the polytunnel greenhouse vegetable land than in both the traditional rice wheat (or rape) rotation land and the open field vegetable land. A further greenhouse experiment with the air-dried and sieved soils displayed significantly lower plant growth parameters of 10-old cucumber seedlings as well as significantly lower biomass and total fresh fruit yield at the end of harvesting at day 70 in the polytunnel greenhouse vegetable soil sources. The percentages of Fusarium wilt plant death were greatly increased in the polytunnel greenhouse vegetable plants, irrespective of being inoculated with or without Fusarium oxysporum f. sp. cucumerinum. Our results could provide a better understanding of the effects of land use intensification on soil microbial population and functional diversity as well as the level of soil suppressiveness of cucumber Fusarium wilt.  相似文献   

13.
Gill  J. S.  Sivasithamparam  K.  Smettem  K. R. J. 《Plant and Soil》2000,221(2):113-120
The effect of different soil textures, sandy (97.5% sand, 1.6% silt, 0.9% clay), loamy sand (77% sand, 11% silt, 12% clay) and a sandy clay loam (69% sand, 7% silt, 24% clay), on root rot of wheat caused by Rhizoctonia solani Kühn Anastomosis Group (AG) 8 was studied under glasshouse conditions. The reduction in root and shoot biomass following inoculation with AG-8 was greater in sand than in loamy sand or sandy clay loam. Dry root weight of wheat in the sand, loamy sand and sandy clay loam soils infested with AG-8 was 91%, 55% and 28% less than in control uninfested soils. There was greater moisture retention in the loamy sand and sandy clay loam soils as compared to the sand in the upper 10–20 cm. Root penetration resistance was greater in loamy sand and sandy clay loam than in sand. Root growth in the uninfested soil column was faster in the sand than in the loamy sand and sandy clay loam soils, the roots in the sandy soil being thinner than in the other two soils. Radial spread of the pathogen in these soils in seedling trays was twice as fast in the sand in comparison to the loamy sand which in turn was more than twice that in the sandy clay loam soil. There was no evidence that differences among soils in pathogenicity or soil spread of the pathogen was related to their nutrient status. This behaviour may be related to the severity of the disease in fields with sandy soils as compared to those with loam or clay soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The effects of kanamycin and streptomycin added to soil on the survival of transposon Tn5 modified Pseudomonas fluorescens strain R2f were investigated. Kanamycin in high (180 g g-1 dry soil) or low (18 g g-1) concentration or streptomycin in low concentration in Ede loamy sand soil had no noticeable effect on inoculant population dynamics in soil and wheat rhizosphere, whereas streptomycin in high concentration had a consistent significant stimulatory effect, in particular in the wheat rhizosphere. Streptomycin exerted its effect by selecting P. fluorescens with Tn5 insertion whilst suppressing the unmodified sensitive parent strain, as evidenced by comparing the behaviour of these two strains in separate and mixed inoculation studies.Soil textural type influenced the effect of streptomycin on the Tn5 carrying inoculant; the effect was consistently detected in rhizosphere and rhizoplane samples of wheat grown in Ede loamy sand after 7 and 14 days incubation, whereas it was only apparent after 7 days in rhizoplane or rhizosphere (and bulk soil) samples of wheat grown in two silt loam soils. Modification of soil pH by the addition of CaCO3 or bentonite clay resulted in an enhancement of the selective effect of streptomycin by CaCO3 and its abolishment by bentonite clay.The addition to soil of malic acid or wheat root exudate, but not of glucose, enhanced the streptomycin selective effect on the Tn5-modified P. fluorescens strain. Neither the streptomycin producer Streptomyces griseus nor two non-inhibiting mutants obtained following UV irradiation affected the dynamics of P. fluorescens (chr::Tn5) in soil and wheat rhizosphere.The effect of streptomycin in soil on inoculant Tn5 carrying bacteria depends on conditions such as soil type, the presence of (wheat) root exudates and the type of available substrate.  相似文献   

15.
The effects of liming and Mg fertilization on growth, specific root length (root length per unit of root dry weight; SRL) and nutrient uptake of twelve sorghum genotypes (Sorghum bicolor (L.) Moench) were studied in two pot experiments. Liming increased the pH of the sandy loam from pH 4.3 (unlimed) to 4.7 (with 0.5 g Ca(OH)2 kg-1 soil) and to 6.1 (with 2.5 g Ca(OH)2 kg-1 soil). Liming increased the dry matter yield of the genotypes by factors of 1.2 to 6.0 (between pH 4.3 and 4.7) and by 1.1 to 2.4 (between pH 4.7 and 6.1). In absence of Mg at soil pH of 4.3 and 4.7, all genotypes suffered from Mg deficiency, as indicated by low Mg concentrations in the shoots (26–94 mmol Mg kg-1 DM) and visible Mg deficiency symptoms. At pH 4.7 several of the genotypes responded to Mg application and produced significantly more dry matter. At pH 4.3, however, none of the genotypes responded to Mg, even though the internal Mg concentrations were increased by applied Mg. The relative increase in dry matter yield between pH 4.3 and 4.7 was closely correlated to the relative change in specific root length in the same soil pH interval, especially when the soil was fertilized with Mg (r2=0.91**). The group of genotypes where SRL and dry matter yield were reduced by soil acidity was not the same as the group that responded positively to Mg application at pH 4.7.It is concluded that the growth of sorghum genotypes on acid soils is determined by two independent characteristics: the sensitivity of root development to soil acidity and the efficiency of the uptake and utilization of Mg. The first characteristic is predminant at high soil acidity whilst the latter is dominant at moderate soil acidity.  相似文献   

16.
Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens   总被引:6,自引:0,他引:6  
For phytoextraction to be successful and viable in environmental remediation, strategies that can optimize plant uptake must be identified. Thlaspi caerulescens is an important hyperaccumulator of Cd and Zn, whether adjusting soil pH is an efficient way to enhance metal uptake by T. caerulescens must by clarified. This study used two soils differing in levels of Cd and Zn, which were adjusted to six different pH levels. Thlaspi caerulescens tissue metal concentrations and 0.1 M Sr(NO3)2 extractable soil metal concentrations were measured. The soluble metal form of both Cd and Zn was greatly increased with decreasing pH. Lowering pH significantly influenced plant metal uptake. For the high metal soil, highest plant biomass was at the lowest soil pH (4.74). The highest shoot metal concentration was at the second lowest pH (5.27). For low metal soil, due to low pH induced Al and Mn toxicity, both plant growth and metal uptake was greatest at intermediate pH levels. The extraordinary Cd phytoextraction ability of T. caerulescens was further demonstrated in this experiment. In the optimum pH treatments, Thlaspi caerulescens extracted 40% and 36% of total Cd in the low and high metal soils, respectively, with just one planting. Overall, decreasing pH is an effective strategy to enhance phytoextraction. But different soils had various responses to acidification treatment and a different optimum pH may exist. This pH should be identified to avoid unnecessarily extreme acidification of soils.  相似文献   

17.
Soil solution chemistry, soil acidity andcomposition of adsorbed cations were determinedin two soil profiles developed under a mixedspruce (Picea abies and Piceasitchensis) stand and in one soil profiledeveloped under an oak (Quercus robur)stand. Soils under spruce were classified asSpodosols and soils under oak were classifiedas Inceptisols. All profiles were developed inthe same parent material; a Saahlian sandy tillcontaining less than 2% clay. In the mineralsoil, the contribution from mineral surfaces tothe total cation-exchange capacity (CECt)was estimated to be less than 3%. Soilsolution pH and the percent base saturation ofCECt [%BS = 100 (2Ca + 2Mg + Na + K)CECt –1] were substantially lower inthe upper 35–40 cm of the two Spodosols, ascompared to the Inceptisol. The total amount ofsoil adsorbed base cations (BC) did not differamong the three profiles on an area basis downto 1 m soil depth. Thus, soil acidification ofCECt due to net losses of BC could notexplain differences in soil pH and %BS amongthe soil profiles. A weak acid analogue, takingthe pH-effect of metal complexation intoconsideration, combined with soil solutionionic strength as a covariate, could describeboth the pH variation by depth within soilprofiles and pH differences between theInceptisol and the two Spodosol profiles. Ourresults confirm and extend earlier findingsfrom O and E horizons of Spodosols that theextent to which organic acid groups react withAl minerals to form Al-SOM complexes is a majorpH-buffering process in acidic forest soils. Wesuggest that an increasing Al-saturation of SOMis the major reason for the widely observed pHincrease by depth in acidic forest soils with apH less than approximately 4.5. Our resultsstrongly imply that changes in mass of SOM, theionic strength in soil solution and therelative composition of soil adsorbed Al and Hneed to be considered when the causality behindchanges in pH and base saturation isinvestigated.  相似文献   

18.
Sphagnum capillifolium var. tenellum, S. magellanicum, and S. recurvum var. brevifolium were regenerated from stem pieces grown in containers to assess their potential for use in peatland restoration projects. The effect of two water levels; peat, peat/sand or peat/clay substrates; and peat decomposition level on the species’ regeneration was evaluated. S. magellanicum attained the greatest cover on the peat or peat/sand mixture using decomposed peat when the growing surface was occasionally inundated. S. recurvum attained the greatest cover grown on the peat or peat/sand mixture using undecomposed peat when the water level was kept below the surface. S. capillifolium showed an affinity for the peat/clay mixture, and overall attained a greater total cover than the other species when grown under the lower water level on all substrate types, with total cover approximately three to five times that of the others. When developing management plans for restoration of mined peatlands, species-specific responses to water level, type and extent of mineral soil mixed with the peat surface, and peat decomposition level should be considered.  相似文献   

19.
A method for the indirect measurement of soil-pH is described. This method allows the spatial arrangement of soil and rhizosphere to be conserved. The soil is brought into contact with a layer of agar, containing bromocresol purple. A nylon gauze is placed between soil and agar. For quantitative pH measurements, a micro-electrode is inserted into the agar after three hours of contact between soil and agar.The validity of the method was checked by comparing its results with those obtained by standard procedures. At different pH-levels (pH 5.0 to 7.0) in either a sandy or a clay soil, a high correlation (r2=0.98) was found between the two methods. However, in the case of the clay soil, the agar-pH was significantly lower than the standard-pH. In the sandy soil, in the range pH 5.0 to 6.0, the results of both methods agreed very well. The agar method was used to measure the pH dynamics in the rhizosphere of lucerne seedlings, grown in rhizotrons.  相似文献   

20.
The effects of soil type (an acid peat and 2 acid brown earths) andFrankia source (3 spore-positive crushed nodule inocula and spore-negative crushed nodules containing the singleFrankia ArI5) on nodulation, N content and growth ofAlnus glutinosa andA. rubra were determined in a glasshouse pot experiment of two years duration. Plants on all soils required additional P for growth. Growth of both species was very poor on peat withA. glutinosa superior toA. rubra. The former species was also superior toA. rubra on an acid brown earth with low pH and low P content. Some plant-inoculum combinations were of notable effectivity on particular soils but soil type was the major source of variation in plant weight. Inoculation with crushed nodules containingFrankia ArI5 only gave poor infection of the host plant, suggesting that inoculation with locally-collected crushed nodules can be a preferred alternative to inoculation withFrankia isolates of untested effectivity. Evidence of adaptation ofFrankia to particular soils was obtained. Thus, while the growth of all strains was stimulated by mineral soil extracts, inhibitory effects of peat extracts were more apparent with isolates from nodules from mineral soils than from peat, suggesting that survival ofFrankia on peat may be improved by strain selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号