共查询到20条相似文献,搜索用时 12 毫秒
1.
Martin Whitham Gary J Walker Nicolette C Bishop 《Journal of applied physiology》2006,101(4):1222-1227
The stimulus for the release of 72-kDa heat shock protein (HSP72) during exercise in humans is currently unclear. Recent evidence in an animal model is suggestive of an involvement of catecholamines. The present study, therefore, investigated the effect of caffeine supplementation, a known stimulator of sympathetic activity, on the extracellular (e)HSP72 response to prolonged exercise. Ten healthy male endurance-trained cyclists were recruited (age: 21 +/- 1 yr, maximum O(2) uptake 61.1 +/- 1.7 ml x kg(-1) x min(-1), mean +/- SE). Each subject was randomly assigned to ingest either 6 mg/kg body mass of caffeine (Caff) or placebo (Pla) 60 min before one of two 90-min bouts of cycling at 74 +/- 1% maximum O(2) uptake. Trials were performed at least 7 days apart in a counterbalanced design. Venous blood samples were collected by venepuncture at pretreatment, preexercise, postexercise, and 1 h postexercise. Serum caffeine and plasma catecholamines were determined using a spectrophotometric assay and high-performance liquid chromatography, respectively. Plasma HSP72 and cortisol were determined by ELISA. Serum caffeine concentrations were significantly increased throughout Caff, while no increases were detected in Pla. Caffeine supplementation and exercise was associated with a greater eHSP72 response than exercise alone (postexercise Caff 8.6 +/- 1.3 ng/ml; Pla 5.9 +/- 0.9 ng/ml). This greater eHSP72 response was associated with a greater epinephrine response to exercise in Caff. There was a significant increase in norepinephrine and cortisol, with no intertrial differences. The present data suggest that, in humans, catecholamines may be an important mediator of the exercise-induced increase in eHSP72 concentration. 相似文献
2.
3.
Goto K Kojima A Morioka S Naito T Akema T Matsuba Y Fujiya H Sugiura T Ohira Y Yoshioka T 《Biochemical and biophysical research communications》2007,358(1):331-335
Effects of an antiulcer drug, geranylgeranylaceton (GGA), and/or heat-stress on 72 kDa heat shock protein (HSP72) expression and protein content in cultured skeletal muscle cells were studied. Mouse skeletal muscle cells (C(2)C(12)) were subjected to either 1) control (cultured at 37 degrees C without GGA), 2) GGA administration (10(-11) - 10(-8) M), 3) heat-stress at 41 degrees C for 60 min, or 4) GGA administration combined with heat-stress. Expression of HSP72 was up-regulated by GGA administration. Heat-stress further enhanced the GGA-related up-regulation of HSP72. Administration of GGA caused an increase of muscular protein content as a dose-dependent manner. Protein synthesis was also stimulated by heat-stress alone in myotubes. It was suggested that GGA stimulates the differentiation of myoblasts and protein synthesis. These observations may also suggest that the administration of GGA could be one of the useful tools to gain muscular mass not only in athletes, but also in patients during rehabilitation. 相似文献
4.
Glucose ingestion attenuates the exercise-induced increase in circulating heat shock protein 72 and heat shock protein 60 in humans 下载免费PDF全文
Febbraio MA Mesa JL Chung J Steensberg A Keller C Nielsen HB Krustrup P Ott P Secher NH Pedersen BK 《Cell stress & chaperones》2004,9(4):390-396
Heat shock protein (Hsp) 72 is a cytosolic stress protein that is highly inducible by several factors including exercise. Hsp60 is primarily mitochondrial in cellular location, plays a key role in the intracellular protein translocation and cytoprotection, is increased in skeletal muscle by exercise, and is found in the peripheral circulation of healthy humans. Glucose deprivation increases Hsp72 in cultured cells, whereas reduced glycogen availability elevates Hsp72 in contracting human skeletal muscle. To determine whether maintained blood glucose during exercise attenuates the exercise-induced increase in intramuscular and circulating Hsp72 and Hsp60, 6 males performed 120 minutes of semirecumbent cycling at approximately 65% maximal oxygen uptake on 2 occasions while ingesting either a 6.4% glucose (GLU) or sweet placebo (CON) beverage throughout exercise. Muscle biopsies, obtained before and immediately after exercise, were analyzed for Hsp72 and Hsp60 protein expression. Blood samples were simultaneously obtained from a brachial artery, a femoral vein, and the hepatic vein before and during exercise for the analysis of serum Hsp72 and Hsp60. Leg and hepatosplanchnic blood flow were measured to determine Hsp72-Hsp60 flux across these tissue beds. Neither exercise nor glucose ingestion affected the Hsp72 or Hsp60 protein expression in, or their release from, contracting skeletal muscle. Arterial serum Hsp72 increased (P < 0.05) throughout exercise in both trials but was attenuated (P < 0.05) in GLU. This may have been in part because of the increased (P < 0.05) hepatosplanchnic Hsp72 release in CON, being totally abolished (P < 0.05) in GLU. Serum Hsp60 increased (P < 0.05) after 60 minutes of exercise in CON before returning to resting levels at 120 minutes. In contrast, no exercise-induced increase in serum Hsp60 was observed in GLU. We detected neither hepatosplanchnic nor contracting limb Hsp60 release in either trial. In conclusion, maintaining glucose availability during exercise attenuates the circulating Hsp response in healthy humans. 相似文献
5.
Ogura Y Naito H Akin S Ichinoseki-Sekine N Kurosaka M Kakigi R Sugiura T Powers SK Katamoto S Demirel HA 《American journal of physiology. Regulatory, integrative and comparative physiology》2008,294(5):R1600-R1607
This study examined whether the exercise-increased extracellular heat shock protein 72 (eHsp72) levels in rats was associated with body temperature elevation during exercise. In all, 26 female Sprague-Dawley rats (3 mo old) were assigned randomly to control (CON; n = 8), exercise under warm temperature (WEx; n = 9), or exercise under cold temperature (CEx; n = 9). The WEx and CEx were trained at 25 degrees C or 4 degrees C, respectively, for nine days using a treadmill. Before and immediately after the final exercise bout, the colonic temperatures were measured as an index of body temperature. The animals were subsequently anesthetized, and blood samples were collected and centrifuged. Plasma samples were obtained to assess their eHsp72 levels. Only the colonic temperature in WEx was increased significantly (P < 0.05) by exercise. The eHsp72 level in WEx was significantly higher (P < 0.05) than that of either the CON or CEx. However, no significant difference was found between CON and CEx. Regression analyses revealed that the eHsp72 level increased as a function of the body temperature. In another experiment, the eHsp72 level of animals with body temperature that was passively elevated through similar kinetics to those of the exercise was studied. Results of this experiment showed that mere body temperature elevation was insufficient to induce eHsp72 responses. Collectively, our results suggest that body temperature elevation during exercise is important for induction of exercise-increased eHsp72. In addition, the possible role of body temperature elevation is displayed when the exercise stressor is combined with it. 相似文献
6.
The majority of previous work examining stress responses has been done in males. Recently, it has become clear that the impact of stressor exposure is modulated by sex. One stress response that may be affected by sex is the induction of intracellular heat shock protein (HSP) 72, which is a stress- responsive molecular chaperone that refolds denatured proteins and promotes cellular survival. The following study compared HSP72 in males and females and also examined whether the estrous cycle altered HSP72 induction in females. We hypothesized that females compared with males would have a constrained HSP72 response after an acute stressor and that the stress-induced HSP72 response in females would fluctuate with the estrous cycle. Male and female F344 rats were either left in their home cage or exposed to acute tail-shock stress (8-10/group). Immediately following stressor, trunk blood was collected and tissues were flash frozen. Vaginal smear and estrogen enzyme immunoassay were used to categorize the phase of estrous. Results show that female rats had a greater corticosterone response than males, that both males and females exhibit a stress-induced release of progesterone, and that males and females had equal levels of stress-induced circulating norepinephrine. Sexual dimorphism of the HSP72 (ELISA) response existed in pituitary gland, mesenteric lymph nodes, and liver such that female rats had an attenuated HSP72 response compared with males after stress. The adrenal glands, spleen, and heart did not exhibit sexual dimorphism of the HSP72 response. The estrous cycle did not have a significant effect on basal or stress-induced HSP72 in females. 相似文献
7.
Higher induction of heat shock protein 72 by heat stress in cisplatin-resistant than in cisplatin-sensitive cancer cells 总被引:3,自引:0,他引:3
Induction of the heat shock proteins (HSPs) is involved in the increased resistance to cancer therapies such as chemotherapy and hyperthermia. We used two human ovarian cancer cell lines; a cisplatin (CDDP)-sensitive line A2780 and its CDDP-resistant derivative, A2780CP. The concentration of intracellular glutathione (GSH) is higher (2.7-fold increase) in A2780CP cells than in A2780 cells. A mild treatment with a heat stress (42 degrees C for 30 min) induced synthesis of both the heat shock protein 72 (Hsp72) mRNA and the HSP72 protein in A2780CP cells, but not in A2780 cells. In contrast, a severe heat stress (45 degrees C for 30 min) increased synthesis of the HSP72 protein in the two cell lines. The induced level of the HSP72 protein by the severe treatment was higher in A2780CP than in A2780 cells. The gel mobility shift assay showed that DNA binding activities of the heat shock factor (HSF) in the two cell lines were induced similarly and significantly by the mild heat stress. Immunocytochemistry using an anti HSF1 antibody also indicated that mild heat stress activated the HSF1 translocation from the cytosol to the nucleus similarly in the both cell lines. Pretreatment of CDDP-sensitive A2780 cells with N-acetyl-L-cysteine, a precursor of GSH, effectively enhanced induction of the Hsp72 mRNA by the mild heat stress. The present findings demonstrate that induction of the Hsp72 mRNA by the mild heat stress was more extensive in CDDP-resistant A2780CP cells. It is likely that the higher GSH concentration in A2780CP cells plays an important role in promoting Hsp72 gene expression induced by the mild heat stress probably through processes downstream of activation of HSF-DNA binding. 相似文献
8.
Induction of heat shock protein 72 in the failing heart is attenuated after an exposure to heat shock 总被引:1,自引:0,他引:1
Tanonaka K Toga W Takahashi M Yoshida H Oikawa R Takeo S 《Molecular and cellular biochemistry》2004,259(1-2):211-215
Induction of heat shock protein (Hsp) 72 in the right ventricular muscle of the rat with heart failure following acute myocardial infarction (AMI) was examined. AMI was induced by the left coronary artery ligation (CAL). The animals at the 8th, but not 2nd, week after CAL revealed a decrease in cardiac output index (COI), suggesting that heart failure had developed by 8 weeks after CAL. Increases in the right ventricular developed pressure and the ratios of right ventricle/body weight and lung/body weight at the 2nd and 8th weeks showed the development of the right ventricular hypertrophy. After measurement of hemodynamic parameters, the hearts isolated from animals at the 2nd and 8th weeks after CAL (2w- and 8w-CAL hearts, respectively) were perfused and subjected to heat shock (at 42 degrees C, for 15 min) followed by 6-h perfusion. At the end of perfusion, Hsp72 content in the left ventricle without infarct area (viable LV) and the right ventricle (RV) was determined by the Western immunoblotting method. The production of myocardial Hsp72 in the viable LV and RV of the 2w-CAL heart increased after an exposure to heat shock. In contrast, induction of Hsp72 in the viable LV and RV of the 8w-CAL heart was blunted. The results suggest that the development of heart failure following AMI may result in a decrease in the ability for Hsp72 induction not only in the viable LV but also in the RV, leading to contractile dysfunction of the heart. 相似文献
9.
Xu H Ito T Tawada A Maeda H Yamanokuchi H Isahara K Yoshida K Uchiyama Y Asari A 《The Journal of biological chemistry》2002,277(19):17308-17314
10.
Paulette M Yamada Fabiano T Amorim Pope Moseley Robert Robergs Suzanne M Schneider 《Journal of applied physiology》2007,103(4):1196-1204
Heat acclimation (HA) results in whole body adaptations that increase heat tolerance, and in addition, HA may also result in protective cellular adaptations. We hypothesized that, after HA, basal intracellular heat shock protein (HSP) 72 and extracellular IL-10 levels would increase, while extracellular HSP72 levels decrease. Ten male and two female subjects completed a 10-day exercise/HA protocol (100-min exercise bout at 56% of maximum O(2) uptake in a 42.5 degrees C DB, 27.9% RH environment); subjects exhibited classic adaptations that accompany HA. Peripheral blood mononuclear cells (PBMCs) were isolated before and after each acclimation session on days 1, 6, and 10; plasma and serum were collected before and after exercise on the 1st and 10th day of HA. SDS-PAGE was used to determine PBMC HSP72 levels during HA, and ELISA was used to measure plasma IL-10 and serum HSP72 concentrations. The increase in PBMC HSP72 from pre- to postexercise on the 1st day of HA was not significant (mean +/- SD, 1.0 +/- 0 vs. 1.6 +/- 0.6 density units). Preexercise HSP72 levels on day 1 were significantly lower compared with the pre- and postexercise samples on days 6 and 10 (mean +/- SD, day 6: 2.1 +/- 1.0 and 2.2 +/- 1.0, day 10: 2.0 +/- 1.3 and 2.2 +/- 1.0 density units, respectively, P < 0.05). There were no differences in plasma IL-10 and serum HSP72 postexercise or after 10 days of HA. The sustained elevation of HSP72 from days 6 to 10 may be evidence of a cellular adaptation to HA that contributes to improved heat tolerance and reduced heat illness risk. 相似文献
11.
12.
Oishi Y Ogata T Ohira Y Taniguchi K Roy RR 《Biochemical and biophysical research communications》2005,330(3):706-713
The involvement of calcineurin (CaN) and heat shock protein (Hsp) 72 in the regulation of fiber size and/or phenotype in response to functional overload (FO) was investigated. In one FO group, the plantaris muscle was overloaded by cutting the distal tendons (5-10 mm length) of the soleus and gastrocnemius of 3-week-old male Wistar rats. Cyclosporin A (CsA), a CaN inhibitor, was injected daily (5 mg/kg body weight, i.p.) in a second group of FO rats (FO+CsA group) for a 2-week period. Compared to age-matched controls (Con), the absolute and relative plantaris weights were increased in both FO groups: the hypertrophic response was attenuated in FO+CsA rats. The mean cross-sectional area of each fiber type was increased (approximately 2.0-fold) in the plantaris of FO rats: CsA treatment attenuated this effect, although the fibers were still larger than in Con rats. The percent composition of myosin heavy chain (MHC) IIb decreased from 54% in Con to 19% in FO rats, whereas types I, IIa, and IIx MHC increased in the FO rats. CsA treatment blunted the shifts in MHC isoforms: the FO+CsA group showed a smaller decrease in type IIb and a smaller increase in type IIx MHC than the FO group. The levels of CaN-A and -B proteins were higher (approximately 2.5-fold) in FO than Con rats, whereas these values were similar in Con and FO+CsA rats. Hsp72 protein levels were higher in FO (3.6-fold) and FO+CsA (5.2-fold) than Con rats, with the values being significantly higher in the FO+CsA than FO rats. CsA treatment in Con rats had no effects on muscle mass, fiber size, MHC composition, and Hsp72 or CaN levels. Combined, these results suggest that CaN levels are related to changes in both fiber size and phenotype, and that Hsp72 levels are more related to the levels of stress added to the muscle rather than to increases in the slow fiber phenotype in functionally overloaded rat plantaris muscles. 相似文献
13.
Inactivation of dual-specificity phosphatases is involved in the regulation of extracellular signal-regulated kinases by heat shock and hsp72 下载免费PDF全文
Yaglom J O'Callaghan-Sunol C Gabai V Sherman MY 《Molecular and cellular biology》2003,23(11):3813-3824
Extracellular signal-regulated kinase 1 (ERK1) and ERK2 (ERK1/2) dramatically enhance survival of cells exposed to heat shock. Using Cos-7 cells and primary human fibroblasts (IMR90 cells), we demonstrated that heat shock activates ERKs via two distinct mechanisms: stimulation of the ERK-activating kinases, MEK1/2, and inhibition of ERK dephosphorylation. Under milder heat shock conditions, activation of ERKs proceeded mainly through stimulation of MEK1/2, whereas under more severe heat shock MEK1/2 could no longer be activated and the inhibition of ERK phosphatases became critical. In Cos-7 cells, nontoxic heat shock caused rapid inactivation of the major ERK phosphatase, MKP-3, by promoting its aggregation, so that in cells exposed to 45 degrees C for 20 min, 90% of MKP-3 became insoluble. MKP-3 aggregation was reversible and, 1 h after heat shock, MKP-3 partially resolubilized. The redistribution of MKP-3 correlated with an increased rate of ERK dephosphorylation. Similar heat-induced aggregation, followed by partial resolubilization, was found with a distinct dual-specificity phosphatase MKP-1 but not with MKP-2. Therefore, MKP-3 and MKP-1 appeared to be critical heat-labile phosphatases involved in the activation of ERKs by heat shock. Expression of the major heat shock protein Hsp72 inhibited activation of MEK1/2 and prevented inactivation of MKP-3 and MKP-1. Hsp72DeltaEEVD mutant lacking a chaperone activity was unable to protect MKP-3 from heat inactivation but interfered with MEK1/2 activation similar to normal Hsp72. Hence, Hsp72 suppressed ERK activation by both protecting dual-specificity phosphatases, which was dependent on the chaperone activity, and suppressing MEK1/2, which was independent of the chaperone activity. 相似文献
14.
Alternative mechanism by which IFN-gamma enhances tumor recognition: active release of heat shock protein 72 总被引:6,自引:0,他引:6
Bausero MA Gastpar R Multhoff G Asea A 《Journal of immunology (Baltimore, Md. : 1950)》2005,175(5):2900-2912
IFN-gamma exhibits differential effects depending on the target and can induce cellular activation and enhance survival or mediate cell death via activation of apoptotic pathways. In this study, we demonstrate an alternative mechanism by which IFN-gamma enhances tumor recognition, mediated by the active release of Hsp72. We demonstrate that stimulation of 4T1 breast adenocarcinoma cells and K562 erythroleukemic cells with IFN-gamma triggers the cellular stress response, which results in the enhanced expression of total Hsp72 expression without a significant increase in cell death. Intracellular expression of Hsp72 was abrogated in cells stably transfected with a mutant hsf-1 gene. IFN-gamma-induced Hsp72 expression correlated with enhanced surface expression and consequent release of Hsp72 into the culture medium. Pretreatment of tumors with compounds known to the block the classical protein transport pathway, including monensin, brefeldin A, tunicamycin, and thapsigargin, did not significantly block Hsp72 release. However, pretreatment with intracellular calcium chelator BAPTA-AM or disruption of lipid rafts using methyl beta-cyclodextrin completely abrogated IFN-gamma-induced Hsp72 release. Biochemical characterization revealed that Hsp72 is released within exosomes and has the ability to up-regulate CD83 expression and stimulate IL-12 release by naive dendritic cells. Pretreatment with neutralizing mAb or depletion of Hsp72 completely abrogated its chaperokine function. Taken together, these findings are indicative of an additional previously unknown mechanism by which IFN-gamma promotes tumor surveillance and furthers our understanding of the central role of extracellular Hsp72 as an endogenous adjuvant and danger signal. 相似文献
15.
Human resting extracellular heat shock protein 72 concentration decreases during the initial adaptation to exercise in a hot, humid environment 总被引:1,自引:0,他引:1 下载免费PDF全文
Heat shock protein (Hsp) 72 is a cytosolic protein that also is present in the circulation. Extracellular Hsp72 (eHsp72) is inducible by exercise and is suggested to act as a danger signal to the immune system. The adaptive response of eHsp72 to repeated exercise-heat exposures in humans remains to be determined. An intracellular animal study found a reduced Hsp72 response, with no change in resting levels, during heat stress after a single day of passive heat acclimation. The current study therefore tested whether adaptations in human eHsp72 levels would similarly occur 24 hours after a single exercise-heat exposure. Seven males completed cycle exercise (42.5% V(O2peak) for 2 hours) in a hot, humid environment (38 degrees C, 60% relative humidity) on each of 2 consecutive days. Blood samples were obtained from an antecubital vein before exercise and 0 hours and 22 hours postexercise for the analysis of eHsp72. Exercise-heat stress resulted in enhanced eHsp72, with a similar absolute increase found on both days (day 1: 1.26 ng/mL [0.80 ng/mL]; day 2: 1.29 ng/mL [1.60 ng/mL]). Resting eHsp72 decreased from rest on day 1 to day 2's 22-hour postexercise sample (P < 0.05). It is suggested that the reduction in resting eHsp72 after 2 consecutive exercise-heat exposures is possibly due to an enhanced removal from the circulation, for either immunoregulatory functions, or for improved cellular stress tolerance in this initial, most stressful period of acclimation. 相似文献
16.
Sarcopenia is a geriatric syndrome in which there is a decrease of muscle mass and strength with aging. In age-related loss
of muscle strength, there are numerous observations supporting the assertion that neural factors mediate muscle strength.
A possible contributing cause may be that aging changes systemic extracellular heat shock protein (eHsp)72 activity. The present
study was designed to assess the plasma levels of eHsp72 in elderly people and to investigate its potential interaction with
components of sarcopenia. A total of 665 men and women participated in an official medical health examination and an integrated
health examination, including psychological and physical fitness tests. Blood samples were assayed for levels of plasma Hsp72,
serum C-reactive protein, interleukin 6, tumor necrosis factor α, and regular biomedical parameters. We found that higher
Hsp72 in plasma is associated with lower muscle mass, weaker grip strength, and slower walking speed, and may be a potential
biomarker of sarcopenia in elderly people. This finding was supported by other results in the present study: (1) older age
and shrinking body and lower hemoglobin levels, all of which characterize sarcopenia, were related to higher eHsp72 tertiles
and (2) the ORs of the highest tertile of eHsp72 for the lowest tertiles of muscle mass, grip strength, and walking speed
were 2.7, 2.6, and 1.8, respectively. These ORs were independent of age, sex, and the incidence of related diseases. Our results
would reveal that eHsp72 in plasma is linked to sarcopenia factors and is a potential biomarker or predictor of sarcopenia. 相似文献
17.
18.
Activation of heme oxygenase and heat shock protein 70 genes by stress in human hepatoma cells 总被引:1,自引:0,他引:1
K Mitani H Fujita S Sassa A Kappas 《Biochemical and biophysical research communications》1990,166(3):1429-1434
Effects of various stresses were examined on the accumulation of mRNA for microsomal heme oxygenase and a heat shock protein, hsp70, in three human hepatoma cell lines. By heat shock, hsp70 mRNA was induced in all three hepatoma lines, Hep G2, Hep 3B and Hep G2f, while heme oxygenase mRNA was increased only in Hep 3B. Time-courses of the heat shock induction of both mRNAs in Hep 3B were similar. Arsenite caused induction of both mRNAs in all three cell lines, while cadmium increased them in Hep G2 and Hep 3B, but not in Hep G2f cells. These findings suggest that, although both hsp70 and heme oxygenase are heat shock proteins, the mode of induction of mRNAs for these proteins is different. 相似文献
19.
Ganter MT Ware LB Howard M Roux J Gartland B Matthay MA Fleshner M Pittet JF 《American journal of physiology. Lung cellular and molecular physiology》2006,291(3):L354-L361
Previous studies have shown that heat shock protein 72 (Hsp72) is found in the extracellular space (eHsp72) and that eHsp72 has potent immunomodulatory effects. However, whether eHsp72 is present in the distal air spaces and whether eHsp72 could modulate removal of alveolar edema is unknown. The first objective was to determine whether Hsp72 is released within air spaces and whether Hsp72 levels in pulmonary edema fluid would correlate with the capacity of the alveolar epithelium to remove alveolar edema fluid in patients with ALI/ARDS. Patients with hydrostatic edema served as controls. The second objective was to determine whether activation of the stress protein response (SPR) caused the release of Hsp72 into the extracellular space in vivo and in vitro and to determine whether SPR activation and/or eHsp72 itself would prevent the IL-1beta-mediated inhibition of the vectorial fluid transport across alveolar type II cells. We found that eHsp72 was present in plasma and pulmonary edema fluid of ALI patients and that eHsp72 was significantly higher in pulmonary edema fluid from patients with preserved alveolar epithelial fluid clearance. Furthermore, SPR activation in vivo in mice and in vitro in lung endothelial, epithelial, and macrophage cells caused intracellular expression and extracellular release of Hsp72. Finally, SPR activation, but not eHsp72 itself, prevented the decrease in alveolar epithelial ion transport induced by exposure to IL-1beta. Thus SPR may protect the alveolar epithelium against oxidative stress associated with experimental ALI, and eHsp72 may serve as a marker of SPR activation in the distal air spaces of patients with ALI. 相似文献