首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selenoenzyme activities in selenium- and iodine-deficient sheep   总被引:3,自引:0,他引:3  
This study was conducted to evaluate the effects of single and combined deficiencies of selenium and iodine on selenoenzyme activities in sheep. Twenty-four male lambs were assigned to one of four semisynthetic diets: combined deficient A (SeI), Se-deficient B (SeI+), I-deficient C (Se+I), and basal diet D (Se+I+). Thyroid hormones (T3, T4), thyroid stimulating hormone (TSH), and inorganic iodine (PII) were determined in plasma. Selenium and glutathione peroxidase activity (GSH-Px) were determined in erythrocytes, and tissue samples, including the thyroid, liver, kidney, and brain, were taken for selenoenzyme analysis. Plasma T3, T4, and TSH concentrations were similar in all groups. Type I deiodinase (ID-I) activity in liver and kidney remained unchanged in Se or I deficiency. In contrast, hepatic ID-I activity was increased by 70% in combined Se-I deficiency. Thyroidal cystolic GSH-Px (c-GSH-Px) and phospholipid GSH-Px (ph-GSH-Px) activities remained constant in both Se-deficient groups, whereas thyroidal c-GSH-Px activity increased (57%) in I deficiency. Type II deiodinase (ID-II) activity was not detectable in the cerebrum and cerebellum, whereas cerebellum Type III deiodinase (ID-III) activity was decreased in I deficiency and combined Se-I deficiencies. The results of the present study support a sensitive interaction between Se and I deficiencies in sheep thyroid and brain. Furthermore, the lack of thyroidal ID-I activity, the presservation of the thyroidal antioxidant enzymes, and the increases in hepatic ID-I indicate that a compensatory mechanism(s) works toward retaining plasma T3 levels, mostly by de novo synthesis of T3 and peripheral deiodination of T4 in Se- and I-deficient sheep.  相似文献   

2.
Selenium,zinc, and thyroid hormones in healthy subjects   总被引:3,自引:0,他引:3  
Iodothyronine 5′ deiodinase, which is mainly responsible for peripheral T3 production, has recently been demonstrated to be a selenium (Se)-containing enzyme. The structure of nuclear thyroid hormone receptors contains Zinc (Zn) ions, crucial for the functional properties of the protein. In the elderly, reduced peripheral conversion of T4 to T3 with a lower T3/T4 ratio and overt hypothyroidism are frequently observed. We measured serum Se and RBC GSH-Px (as indices of Se status), circulating and RBC Zinc (as indices of Zn status), thyroid hormones and TSH in 109 healthy euthyroid subjects (52 women, 57 men), carefully selected to avoid abnormally low thyroid hormone levels induced by acute or chronic diseases or calorie restriction. The subjects were subdivided into three age groups. To avoid under- or malnutrition conditions, dietary records were obtained for a sample of 24 subjects, randomly selected and representative of the whole population for age and sex. Low T3/T4 ratios and reduced Se and RBC GSH-Px activity were observed only in the older group. A highly significant linear correlation between the T3/T4 ratio and indices of Se status was observed in the older group of subjects (r=0.54;p<0.002, for Se;r=0.50;p<0.002, for RBC GSH-Px). Indices of Zn status did not correlate with thyroid hormones, but RBC Zn was decreased in older as compared with younger subjects. We concluded that reduced peripheral T4 conversion is related to impaired Se status in the elderly.  相似文献   

3.
Plasma concentrations of cGH, T3, and T4 were not different between dwarf and normal broiler breeders. Normal hens had a liver selenium content of 710±35 ng/g, and dwarf hens 656 ±nine ng/g (n=8). Following injections into a wing vein of different doses (1.5, 3, 6, 12, and 24 μg/kg) of the hypothalamic hormone TRH, GH was increased after 15 min. This effect seemed to last longer in dwarf chickens. Plasma concentrations of T3 increased significantly 1 h after TRH in normal hens, but TRH was ineffective in raising T3 levels in dwarf animals. The selenium content of livers obtained following decapitation after 2 h was also increased in normal hens up to 902±42 ng/g using the highest dose of TRH (24 μg/kg). This seemed not to be the case for dwarf animals. A much smaller. number of hepatic cGH receptors was also found in dwarf hens, whereas the affinity of the hepatic GH receptor was not influenced by the genotype. It is concluded that the sex-linked dwarf hens are unable to increase their hepatic T4 into T3 conversion following a TRH challenge probably because of a deficiency in hepatic GH receptors. The lower content of selenium in dwarfs and their inability to increase its uptake after TRH seem therefore to support the hypothesis that selenium has a direct role in the activity of the 5′-deiodinase complex.  相似文献   

4.
The hypothesis tested was whether marginal iodine deficiency for a period of 6 wk affects iodothyronine deiodinase activities in liver and brain of rats. Male rats were fed purified diets either deficient or sufficient in iodine; the diets were fed on a restricted basis (60% ofad libitum intake). Body weight gain of the two groups was comparable. Iodine deficiency was evidenced by increased thyroid weight (26%), reduced urinary iodine excretion (80%), and reduced plasma T4 concentrations (22%). Activities of liver type I and brain type III deiodinase were unchanged, but the activity of type II deiodinase in brain was increased (28%) in the iodine-deficient rats. Food restrictionper se significantly lowered T3 (30%) and T4 (22%) concentrations in plasma and decreased type III deiodinase activity in brain (30%). These results indicate that in marginal iodine deficiency the activities of hepatic type I deiodinase and brain type III deiodinase are unchanged, whereas that of brain type II deiodinase is increased.  相似文献   

5.
Selenium deficiency impairs thyroid hormone metabolism by inhibiting the synthesis and activity of the iodothyronine deiodinases, which convert thyroxine (T4) to the more metabolically active 3,3′-5 triiodothyronine (T3). Hepatic type I iodothyronine deiodinase, identified in partially purified cell fractions using affinity labeling with [125I]N-bromoacetyl reverse triiodothyronine, is also labeled with75Se by in vivo treatment of rats with75Se-Na2SeO3. Thus, the type I iodothyronine 5′-deiodinase is a selenoenzyme. In rats, concurrent selenium and iodine deficiency produces greater increases in thyroid weight and plasma thyrotrophin than iodine deficiency alone. These results indicate that a concurrent selenium deficiency could be a major determinant of the severity of iodine deficiency.  相似文献   

6.
Selenium deficiency impairs thyroid hormone metabolism by inhibiting the synthesis and activity of the iodothyronine deiodinases, which convert thyroxine (T4) to the more metabolically active 3,3′–5 triiodothyronine (T3). Hepatic type I iodothyronine deiodinase, identified in partially purified cell fractions using affinity labeling with [125I]N-bromoacetyl reverse triiodothyronine, is also labeled with75Se by in vivo treatment of rats with75Se−Na2SeO3. Thus, the type I iodothyronine 5′-deiodinase is a selenoenzyme. In rats, concurrent selenium and iodine deficiency produces greater increases in thyroid weight and plasma thyrotrophin than iodine deficiency alone. These results indicate that a concurrent selenium deficiency could be a major determinant of the severity of iodine deficiency.  相似文献   

7.
Twenty male buffalo calves (15 months, 200.2 ± 9.75) were divided into four groups of five animals in each and fed diets without (T1) or supplemented with 0.3 ppm selenium (Se) + 40 ppm zinc (Zn) (T2), 0.3 ppm Se + 40 ppm Zn + 10 ppm copper (Cu) (T3), and 40 ppm Zn + 10 ppm Cu (T4) for 120 days, during which blood samples were collected on days 0, 40, 80, and 120. Concentrations of glucose, total protein, albumin, globulin, urea, uric acid, and creatinine were similar in all the four groups. The level of different serum enzymes viz. lactate dehydrogenase, alkaline phosphatase, glutamate pyruvate transaminase, and glutamate oxaloacetate transaminase, and hormones viz. T3, T4, testosterone and insulin were similar (P > 0.05) among the four groups but the ratio of T4/T3 was reduced (P < 0.05) in the groups (T2 and T3) where selenium was supplemented at 120th day of supplementation. It was deduced that supplementation of 0.3 ppm Se and/or 10.0 ppm of Cu with 40 ppm Zn had no effect on blood metabolic profile in buffalo calves, except the ratio of T4 and T3 hormone which indicates that selenium plays an important role in converting T4 hormone to T3 which is more active form of thyroid hormone.  相似文献   

8.
Experiments were conducted to study the effect of marginal levels of selenium and vitamin E on plasma thyroid hormones of meattype chicks. Plasma thyroxine (T4) was significantly increased when a semipurified diet was supplemented with either selenium or vitamin E. Triiodothyronine (T3) was also significantly increased by vitamin E and in one experiment with selenium supplementation. No significant increase in these hormones was observed in birds fed a corn-soybean-meal diet supplemented with these nutrients. Plasma corticosterone level was reduced and weight of the bursa of Fabricius increased by selenium or vitamin E supplementation. These nutrients may be necessary for providing the optimum thyroid conditions for activity of thyroid peroxidase.  相似文献   

9.
Thyroid function ultimately depends on appropriate iodine supply to the gland. There is a complex series of checks and balances that the thyroid uses to control the orderly utilization of iodine for hormone synthesis. The aim of our study is to evaluate the mechanism underlying the effect of iodine excess on thyroid hormone metabolism. Based on the successful establishment of animal models of normal-iodine (NI) and different degrees of high-iodine (HI) intake in Wistar rats, the content of monoiodotyrosine (MIT), diiodotyrosine (DIT), T4, and T3 in thyroid tissues, the activity of thyroidal type 1 deiodinase (D1) and its (Dio1) mRNA expression level were measured. Results showed that, in the case of iodine excess, the biosynthesis of both MIT and DIT, especially DIT, was increased. There was an obvious tendency of decreasing in MIT/DIT ratio with increased doses of iodine intake. In addition, iodine excess greatly inhibited thyroidal D1 activity and mRNA expression. T3 was greatly lower in the HI group, while there was no significant difference of T4 compared with NI group. The T3/T4 ratio was decreased in HI groups, antiparalleled with increased doses of iodine intakes. In conclusion, the increased biosyntheses of DIT relative to MIT and the inhibition of thyroidal Dio1 mRNA expression and D1 activity may be taken as an effective way to protect an organism from impairment caused by too much T3. These observations provide new insights into the cellular regulation mechanism of thyroid hormones under physiological and pathological conditions.  相似文献   

10.
Abstract: The effects of different kinds of acute stressor on thyroid hormone concentrations and deiodinase activities were investigated in four brain regions (frontal cortex, amygdala, hypothalamus, and cerebellum) and in the pituitaries and livers of adult male rats. Five groups of rats were killed after each of the following stressors: (a) an intraperitoneal injection of saline, (b) intragastric intubation, (c) and (d) two different forms of handling, being grasped as for intraperitoneal injection and being moved from one cage to another, and (e) a 2-h period spent in a slowly rotating drum. Two other groups were placed in the rotating drums for 10 and 19 h (sleep deprivation experiment), respectively. All stressors induced significant (in some cases up to 200%) increases in the activity of type II 5′-iodothyronine deiodinase, which catalyzes the deiodination of the prohormone l -thyroxine (T4) to the active metabolite 3,3′,5-triiodo-l -thyronine (T3). As a consequence, the tissue concentrations of T4 fell, and those of T3 rose (sometimes by up to 300%). However, these changes were limited to selected areas of the brain that were specific for each stressor and were not seen in all brain regions investigated in any group. No clear-cut effects of stress were seen on the activities of the type III 5-iodothyronine deiodinase isoenzyme, which catalyzes the inactivation of T3, on liver or serum thyroid hormone concentrations or on liver of brain type I 5′-iodothyronine deiodinase activities. In summary, our results show that even mild and very brief stress can induce marked increases in T3 concentrations specifically in brain but not in liver or blood. Thus, contrary to common opinion, thyroid hormones may play an important physiological role in stress reactions, at least in tissues that contain type II 5′-iodothyronine deiodinase, such as brain and pituitary.  相似文献   

11.
The effects of supplementing selenium on thyroid hormone metabolism were studied on mice with excessive iodine exposure. The serum concentrations of thyroxine (T4) and triiodothyronine (T3) and the activities of iodothyronine 5′ and 5-deiodinase (D2, D3) were measured in the brain of filial mice to study the influence of selenium on thyroid hormone metabolism. Measurements were carried out on postnatal day 0, 14, and 28. It was found that selenium supplementation alleviated the adverse effects of excessive iodine on progeny. The serum TT4 level as well as TT4 and TT3 concentrations and D3 activity in cerebrum of progeny decreased, whereas D2 activity increased in the cerebrum of progeny on postnatal day 0 and 14. Selenium supplementation exerted some favorable effects on thyroid hormone metabolism in cerebrum of progeny of dam with excessive iodine intake.  相似文献   

12.
An immunoelectron-microscopic and morphometric study was carried out on the anterior pituitary prolactin (PRL) cells of adult male Wistar rats treated with a combination of thyroidectomy and administration of L-thyroxine (T4) and/or synthetic thyrotropin-releasing hormone (TRH) in order to clarify the effects of changes in the hypothalamus-pituitary-thyroid axis on the ultrastructure and function of PRL cells. After thyroidectomy, PRL cells underwent atrophy and hypofunction of their cell organelles, but these changes tended to be restored to their normal level by T4 treatment. On the other hand, the administration of TRH to intact rats produced hypertrophy and hyperfunction in the PRL cells, although this treatment had no effect on the PRL cells of thyroidectomized rats. However, treatment with a combination of T4 and TRH had a strong effect and led to hypertrophy and hyperfunction in the PRL cells of thyroidectomized rats. Serum and pituitary PRL levels were measured by radioimmunoassay (RIA) for a comparison with the morphological results. They correlated well with the morphological changes. These results indicate that TRH stimulates PRL secretion in the presence of thyroid hormone, and that the thyroid hormone plays an important role in the basic maintenance of PRL cell function and its reactivity to TRH.  相似文献   

13.
In vitro 30 min of incubation with selenomethionine (Sm)+vitamin E multiplied by about five platelet selenium (Se) decreased significantly platelet thrombin and ADP-induced aggregation decrease. Four groups of streptozotocin-induced diabetic rats were fed with a supplemented purified diet with an Se-rich yeast (Selenion): DSel, Sm: DSm, Sm α-tocopherol: DSmE or unsupplemented diet: D. After 24 wk of supplementation, only a decrease in thrombin-induced aggregation in group DSel compared to DSm and DSmE and D was observed. However, after 24 wk of diet compared to 14 wk, in group D and DSm, a significant increase in thrombin-induced aggregation occurred (p<0.0001), whereas a significant decrease in groups DSel and DSmE (p<0.0001,p<0.03) was noted. After 21 wk of diet, in DSmE, platelet adhesion to fibronectin was significantly decreased compared to group D (p<0.05). These changes in DSmE were associated with a significant decrease in platelet sorbitol (p<0.02) and a very significant increase in platelet Se (p<0.0005). Sm associated with vitamin E would appear more efficient to prevent oxidative damage of diabetic platelet membrane and thus to modulate its hyperactivity.  相似文献   

14.
Coppola A  Hughes J  Esposito E  Schiavo L  Meli R  Diano S 《FEBS letters》2005,579(21):4654-4658
Fasting is characterized by disrupted thyroid feedback, with suppressed levels of thyroid hormones and paraventricular thyrotropin releasing hormone (TRH). We found that third ventricle administration of the deiodinase inhibitor, iopanoic acid, dose-dependently reduced deiodinase type II (DII) activity selectively in the hypothalamus. This suppression of DII by iopanoic acid during fasting prevented elevated DII activity and blunted the decline in hypothalamic TRH mRNA levels. Because fasting-induced elevation in hypothalamic DII activity is paralleled by increased hypothalamic T3 concentration, our study suggests that T3 formation by DII in the hypothalamus is the cause of disrupted thyroid feedback during fasting.  相似文献   

15.
Male New Zealand White rabbits were divided into three groups: (I) control, (II) high-fat-diet (HFD) fed, and (III) HFD fed+selenium supplemented. After 3 mo of treatment, there was a significant increase in serum cholesterol and triglycerides in the HFD-fed group as compared to the control. However in the selenium (Se)-supplemented group, the levels of serum cholesterol and triglycerides were significantly less as compared to group II. HFD feeding resulted in decreased serum Se levels, but supplementation of dietary Se along with HFD, as in group III, showed an apparent increase in its levels. The Se-dependent glutathione peroxidase (GSH-Px) activity in the liver and the aorta increased significantly in HFD-fed animals and also showed an additional significant increase on Se supplementation. Both serum T3 and T4 levels showed a significant decrease on HFD feeding. However, supplementation of Se led to a significant increase in the levels of these parameters viz-à-viz HFD-fed animals. HFD feeding significantly decreased the activity of type I iodothyronine 5′-deiodinase (5′-DI) in the liver from group II rats. On supplementation of Se along with HFD, the activity increased in the liver. However, there was no significant change in its activity in the aorta. The 5′-DI activity in the thyroid showed an opposite trend in comparison with peripheral tissues (i.e., liver). The important finding of this study is that in the hyperlipidemic state, deiodinase in the thyroid behaves in a different manner as compared to its activity in extrathyroidal tissues.  相似文献   

16.
Thirty-two wether lambs of Tan sheep were randomly assigned into four dietary treatment groups (eight per group) for an 8-wk study and then fed a basal diet deficient in Se (0.06 mg/kg) or diets supplemented to provide 0.10 mg/kg Se from sodium selenite, selenized yeast, and selenium-enriched probiotics, respectively. Blood samples were collected at d 0, 28, and 56 of the experiment and tissue samples were collected at experiment termination. Tissue and blood Se concentrations, blood glutathione peroxidase (GSH-Px) activities, and plasma interleukin levels were analyzed. The results showed that the concentrations of Se in the kidney, liver, and muscle increased in all of the supplemented groups (p<0.01) compared with the control group. However, the Se concentrations in the kidney, liver, and muscle in the groups supplemented with Se yeast and Se-enriched probiotics were higher than those in the group supplemented with sodium selenite (p<0.01). The activities of GSH-Px and the concentrations of Se in blood also increased in all of the supplemented groups during the period of supplementation (p<0.01) compared with the control group. The activities of GSH-Px and the concentrations of Se in the whole blood of the lambs fed with selenized yeast and Se-enriched probiotics were higher than those of lambs fed with sodium selenite (p<0.01 or p<0.05). The concentrations of interleukin-1 and interleukin-2 in plasma significantly increased in all of the supplemented groups during the entire period of experiment (p<0.01) compared with the control group, but had no significant differences among all of the supplemented groups. In conclusion, a diet supplemented with Se for finishing lambs was able to increase the concentrations of Se in tissue and blood, activities of GSH-Px in blood, and levels of interleukins in plasma. Organic Se sources (selenized yeast and Se-enriched probiotics) were more effective than the inorganic Se source (sodium selenite) in increasing tissue and blood Se concentrations and blood GSH-Px activities of lambs. However, there were no significant differences in plasma interleukin levels of lambs between organic and inorganic Se sources.  相似文献   

17.
Late term fetuses from genetically obese dams have slightly larger fat cells, greater adipose tissue lipoprotein lipase (LPL) activities, elevated levels of thyroid hormones, and depressed growth hormone (GH) levels when compared to fetuses from lean dams. We have investigated the influence of thyroid hormone and GH status per se on these and other adipose tissue traits by chronically treating hypophysectomized (hypox) fetuses (day 70) between day 90 and 105 of gestation with either thyroxine (T4) or human GH. Treatment with T4 decreased body weights (P<.05), increased serum T4 levels (P<.05), and enhanced skin and hair development (P<.05). Quantitative analysis of sections of perirenal and subcutaneous adipose tissue indicated that T4 increased LPL activity (P<.05), slightly increased fat cell size, and more than doubled (P<.05) lipid accretion. A hypox induced deficit in fat cell cluster number in the outer layer of subcutaneous tissue was normalized by T4 (P<.05). Conversely, human GH (hGH) treatment had no influence on body weight, increased serum hGH levels, decreased fat cell size (P<.05) and LPL activity (P<.05) but had no influence on lipid accretion. Quantitative analysis of adipose tissue sections provided direct and indirect evidence of a “critical” or “sensitive” period between 90 and 105 days, since fetal hypox at day 70 severely impeded preadipocyte recruitmentheplication during this period. Furthermore, T4 but not GH effectively normalized this hypox-induced deficiency in preadipocyte development. Therefore, T4 may have a major role in preadipocyte recruitmentheplication during late fetal life.  相似文献   

18.
The object was to determine the influence of dietary vitamin E, selenium and their combination on the fatty acid con-tent of erythrocytes, bone marrow and spleen lipids of Akkaraman lambs. After supplementation for 15 days, the amount of all fatty acids was slightly higher (p < 0·05) in the vitamin E as compared to the control group, whereas the amount of longer fatty acids was significantly higher (p < 0·01, p < 0·001) in the selenium and combination groups. On the thirtieth day, the amount of all fatty acids was slightly high (p < 0·5) in all the supplemented groups in comparison with the control group. In the bone marrow lipids, the amount of longer fatty acids was decreased (p < 0·05, p < 0·01, p < 0·001) in the vitamin E and combination groups as compared to the control. Although the amount of some fatty acids was high (p < 0·05, p < 0·01) in the selenium group compared to the control, linoleic (18:2), linolenic (18:3) and the polyunsaturated fatty acids (PUFA) were lower (p < 0·05, p < 0·001). In the spleen lipids, the amount of longer fatty acids was slightly decreased (p < 0·05) in the vitamin E group as compared with the control; however the amount of longer fatty acids was significantly higher (p < 0·05, p < 0·01) in the selenium and combination groups in comparison to the control group. Thus dietary supplementation with selenium was more effective than dietary vitamin E supplementation in altering the fatty acid content of the erythrocyte, bone marrow and spleen lipids. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
Type I iodothyronine deiodinase (ID-I) is a selenoenzyme, which is important for the conversion of the prohormone thyroxine (T4) to the bioactive thyroid hormone 3,3',5-triiodothyronine (T3). 2-Thiouracil derivatives inhibit ID-I by interaction with an enzyme form generated during catalysis. We have now tested the potential inhibitory effects of the selenocompounds 6-methyl- (MSU) and 6-propyl-2-selenouracil (PSU) in comparison with their thioanalogs 6-methyl- (MTU) and 6-propyl-2-thiouracil (PTU) on rat liver ID-I activity using 3,3',5-triiodothyronine (reverse T3, rT3) as substrate and dithiothreitol (DTT) as cofactor. All compounds showed dose-dependent inhibition of ID-I with IC50 values of 1, 0.5, 0.4 and 0.2 microM for MTU, MSU, PTU and PSU, respectively. Our results further suggest that these inhibitions are uncompetitive with substrate and competitive with cofactor. The high potency of selenouracils may be due to reaction with a substrate-induced enzyme selenenyl iodide intermediate under formation of a stable enzyme-selenouracil diselenide.  相似文献   

20.
The effect of ad libitum ingestion of selenium (Se) in drinking water (0.15 mg SeO2/L) for 3 wk on the brain weight, total brain protein, glutathione (GSH) level, catalase activity, and lipid peroxidation in the brain of protein-undernourished (PU) rats was investigated, in an attempt to determine whether antioxidants alone can reverse some of the neuropathological changes associated with protein undernutrition in rats. Feeding on a normal diet (16% casein) by well-fed rats or a low-protein diet (5% casein) by PU rats and Se-treated PU rats lasted 14 wk. Setreated PU rats were given Se in drinking water during the last 3 wk of the experiment. Results show that protein undernutrition induced significant reductions (p<0.001) in brain weight, total brain protein, and catalase activity (p<0.05) while it induced a significant increase (p<0.05) in lipid peroxidation when compared with well-nourished rats; but no significant effect was observed for the GSH level. However, the ingestion of Se in drinking water by PU rats for 3 wk resulted in significant increases (p<0.05) in brain weight, catalase activity, and total brain protein but induced a significant reduction (p<0.05) in lipid peroxidation when compared with PU rats given water. The values obtained for Setreated PU rats are comparable with those obtained for well-nourished rats. The GSH level was, however, not affected by Se ingestion. We suggest that Se, by inducing increases in the concentration of certain proteins, including catalase, in the brain, abolished some of the pathological changes associated with protein undermutrition in the brain, and appears as a promising antioxidant in the prevention and management of pro-oxidant-induced brain damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号