首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Carnivory in plants is thought to enhance growth through an increased supply of nutrients, although there are considerable costs involved. It has been assumed that the relative investment of biomass in traps is inversely proportional to the availability of nutrients from non-carnivorous sources. Our aim was to test the effect of increasing nutrient concentration on investment in carnivory by Utricularia vulgaris .
2. Plants were grown under controlled conditions and nitrogen and phosphorus added at three loadings in a crossed design. Investment in carnivory was assessed as the proportion of (i) leaf biomass and (ii) leaf area comprising traps.
3. There was no effect of nutrient additions on plant growth or periphyton abundance. Investment in carnivory declined with increasing phosphorus loading. There was no effect of nitrogen, despite this being the nutrient commonly thought to be sought by carnivorous plants. Analysis of previously published data also indicated a decline in investment with increasing P availability.
4. Investment in carnivory in U. vulgaris is inversely proportional to the availability of phosphorus from non-carnivorous sources.  相似文献   

2.
Carnivory has evolved independently at least six times in fiveangiosperm orders. In spite of these independent origins, thereis a remarkable morphological convergence of carnivorous planttraps and physiological convergence of mechanisms for digestingand assimilating prey. These convergent traits have made carnivorousplants model systems for addressing questions in plant moleculargenetics, physiology, and evolutionary ecology. New data showthat carnivorous plant genera with morphologically complex trapshave higher relative rates of gene substitutions than do thosewith simple sticky traps. This observation suggests two alternativemechanisms for the evolution and diversification of carnivorousplant lineages. The ‘energetics hypothesis’ positsrapid morphological evolution resulting from a few changes inregulatory genes responsible for meeting the high energeticdemands of active traps. The ‘predictable prey capturehypothesis’ further posits that complex traps yield morepredictable and frequent prey captures. To evaluate these hypotheses,available data on the tempo and mode of carnivorous plant evolutionwere reviewed; patterns of prey capture by carnivorous plantswere analysed; and the energetic costs and benefits of botanicalcarnivory were re-evaluated. Collectively, the data are moresupportive of the energetics hypothesis than the predictableprey capture hypothesis. The energetics hypothesis is consistentwith a phenomenological cost–benefit model for the evolutionof botanical carnivory, and also accounts for data suggestingthat carnivorous plants have leaf construction costs and scalingrelationships among leaf traits that are substantially differentfrom those of non-carnivorous plants. Key words: Carnivorous plants, competition, construction costs, cost–benefit model, Darwin, energetics, niche overlap, phylogeny, prey capture, universal spectrum of leaf traits Received 6 May 2008; Revised 5 June 2008 Accepted 16 June 2008  相似文献   

3.
Tissue N, P, K, Ca, and Mg content was estimated in traps and photosynthetic and carnivorous shoots in five aquatic carnivorous plant species from an outdoor culture: Aldrovanda vesiculosa, Utricularia vulgaris, U. reflexa, U. intermedia, and U. stygia, for the determination of the mineral cost of carnivory. In three species with monomorphic shoots (A. vesiculosa, U. vulgaris, U. reflexa), tissue P and K content in traps was significantly higher than that in their photosynthetic shoots, whereas N content was about the same. In U. stygia and U. intermedia with dimorphic shoots, tissue N and P content was markedly the highest in photosynthetic shoots followed by traps, while it was lowest in carnivorous shoots. In all five species, trap K content was significantly (2–4 times) higher than that in photosynthetic and carnivorous shoots. In all species, the values of the mineral cost of carnivory – the proportion of mineral nutrient amount contained in traps or carnivorous shoots to that in the total plant biomass – were within 19–61% for N, 33–76% P, 51–78% K, 26–70% Ca, and 34% for Mg. A new concept of the ecological cost-benefit relationships of plant carnivory, based on the mineral benefit of prey capture and mineral costs associated with trap production, is introduced for aquatic carnivorous plants. The evolution of this plant group is considered to show the optimization of these mineral cost-benefit relationships.  相似文献   

4.
A new hypothesis for the benefit of carnivory in plants (i.e., an alternative to aerenchyma for avoiding hypoxia) is evaluated. Root porosity and root depth were quantified in eight carnivorous plant species and 48 non-carnivorous species within a nutrient-poor wet pine savanna in south Mississippi, USA. Carnivorous and non-carnivorous plant species were contrasted with respect to their indication of wetlands, open habitats, and habitats with nutrient-poor soils. We used path analysis, multiplicative regression, and a field experiment to test hypotheses of the effects of soil moisture/hypoxia on the abundance of carnivorous and non-carnivorous plants. All carnivorous plant species produced non-porous roots (or no roots), which were shallower than the average for non-carnivorous plants (6.9 ± 0.95 cm vs. 11.9 ± 0.96 cm), even after correcting for plant size. Root porosity in non-carnivorous species (mean = 22%) was positively correlated with root depth (r = 0.6). Despite lacking porous roots, carnivorous plants were four times more indicative of wetland habitats than were the non-carnivorous species encountered in the wetland studied here. Carnivorous plants, along with non-carnivorous plants with well-developed aerenchyma, were positively associated with the wettest microsites and were more negatively affected by elevating the substrate than were non-carnivorous plants with low-porosity roots. Non-carnivorous plants with shallow roots, while less indicative of wetlands and less abundant in wet microsites of the wet pine savanna than were carnivorous plants, were no less indicative of nutrient-poor soils than were carnivorous plants. Results supported the hypothesis that carnivory is advantageous in wet soils and disadvantageous in drier (including mesic) soils and are more indicative of wetland conditions than of low soil fertility.  相似文献   

5.
Understanding how different plant species and functional types "invest" carbon and nutrients is a major goal of plant ecologists. Two measures of such investments are "construction costs" (carbon needed to produce each gram of tissue) and associated "payback times" for photosynthesis to recover construction costs. These measurements integrate among traits used to assess leaf-trait scaling relationships. Carnivorous plants are model systems for examining mechanisms of leaf-trait coordination, but no studies have measured simultaneously construction costs of carnivorous traps and their photosynthetic rates to determine payback times of traps. We measured mass-based construction costs (CC(mass)) and photosynthesis (A(mass)) for traps, leaves, roots, and rhizomes of 15 carnivorous plant species grown under greenhouse conditions. There were highly significant differences among species in CC(mass) for each structure. Mean CC(mass) of carnivorous traps (1.14 ± 0.24 g glucose/g dry mass) was significantly lower than CC(mass) of leaves of 267 noncarnivorous plant species (1.47 ± 0.17), but all carnivorous plants examined had very low A(mass) and thus, long payback times (495-1551 h). Our results provide the first clear estimates of the marginal benefits of botanical carnivory and place carnivorous plants at the "slow and tough" end of the universal spectrum of leaf traits.  相似文献   

6.
Background The cost–benefit model for the evolution of botanical carnivory provides a conceptual framework for interpreting a wide range of comparative and experimental studies on carnivorous plants. This model assumes that the modified leaves called traps represent a significant cost for the plant, and this cost is outweighed by the benefits from increased nutrient uptake from prey, in terms of enhancing the rate of photosynthesis per unit leaf mass or area (AN) in the microsites inhabited by carnivorous plants.Scope This review summarizes results from the classical interpretation of the cost–benefit model for evolution of botanical carnivory and highlights the costs and benefits of active trapping mechanisms, including water pumping, electrical signalling and accumulation of jasmonates. Novel alternative sequestration strategies (utilization of leaf litter and faeces) in carnivorous plants are also discussed in the context of the cost–benefit model.Conclusions Traps of carnivorous plants have lower AN than leaves, and the leaves have higher AN after feeding. Prey digestion, water pumping and electrical signalling represent a significant carbon cost (as an increased rate of respiration, RD) for carnivorous plants. On the other hand, jasmonate accumulation during the digestive period and reprogramming of gene expression from growth and photosynthesis to prey digestion optimizes enzyme production in comparison with constitutive secretion. This inducibility may have evolved as a cost-saving strategy beneficial for carnivorous plants. The similarities between plant defence mechanisms and botanical carnivory are highlighted.  相似文献   

7.
In aquatic species of carnivorous utricularia, about 10 - 50 % of the total biomass consists of bladders. Utricularia bladders are physiologically very active organs though their chlorophyll content may greatly be reduced. To specify energetic costs of carnivory, respiration (RD) and net photosynthetic rate (PN) were compared in bladders and leaves or shoot segments of six aquatic utricularia species with differentiated (U. ochroleuca, U. intermedia, U. floridana) or non-differentiated shoots (U. vulgaris, U. australis, U. bremii) under optimum conditions (20 degrees C, [CO (2)] 0.20 mM, 400 micromol m (-2) s (-1) PAR). RD of bladders of six utricularia species (5.1 - 8.6 mmol kg (-1)(FW) h (-1)) was 75 - 200 % greater, than that in leaves in carnivorous or photosynthetic shoots (1.7 - 6.1 mmol kg (-1)(FW) h (-1)). Within individual species, this difference was statistically significant at P < 0.002 - 0.01. However, PN in photosynthetic leaves/shoots (40 - 117 mmol kg (-1)(FW) h (-1)) exceeded that in bladders (5.2 - 14.7 mmol kg (-1)(FW) h (-1)) 7 - 10 times. RD of empty bladders of U. ochroleuca was exactly the same as that in bladders containing prey. Though utricularia bladders are essential for uptake of growth limiting mineral nutrients N and P from prey as the main benefit of carnivory, the current results support previous work showing that bladder function requires greater metabolic (maintenance) cost and very low photosynthetic efficiency (great RD : PN ratio).  相似文献   

8.
BackgroundCarnivorous plants are an ecological group of approx. 810 vascular species which capture and digest animal prey, absorb prey-derived nutrients and utilize them to enhance their growth and development. Extant carnivorous plants have evolved in at least ten independent lineages, and their adaptive traits represent an example of structural and functional convergence. Plant carnivory is a result of complex adaptations to mostly nutrient-poor, wet and sunny habitats when the benefits of carnivory exceed the costs. With a boost in interest and extensive research in recent years, many aspects of these adaptations have been clarified (at least partly), but many remain unknown.ScopeWe provide some of the most recent insights into substantial ecophysiological, biochemical and evolutional particulars of plant carnivory from the functional viewpoint. We focus on those processes and traits in carnivorous plants associated with their ecological characterization, mineral nutrition, cost–benefit relationships, functioning of digestive enzymes and regulation of the hunting cycle in traps. We elucidate mechanisms by which uptake of prey-derived nutrients leads to stimulation of photosynthesis and root nutrient uptake.ConclusionsUtilization of prey-derived mineral (mainly N and P) and organic nutrients is highly beneficial for plants and increases the photosynthetic rate in leaves as a prerequisite for faster plant growth. Whole-genome and tandem gene duplications brought gene material for diversification into carnivorous functions and enabled recruitment of defence-related genes. Possible mechanisms for the evolution of digestive enzymes are summarized, and a comprehensive picture on the biochemistry and regulation of prey decomposition and prey-derived nutrient uptake is provided.  相似文献   

9.
Scaling relationships among photosynthetic rate, foliar nutrient concentration, and leaf mass per unit area (LMA) have been observed for a broad range of plants. Leaf traits of the carnivorous pitcher plant Darlingtonia californica, endemic to southern Oregon and northern California, USA, differ substantially from the predictions of these general scaling relationships; net photosynthetic rates of Darlingtonia are much lower than predicted by general scaling relationships given observed foliar nitrogen (N) and phosphorus (P) concentrations and LMA. At five sites in the center of its range, leaf traits of Darlingtonia were strongly correlated with elevation and differed with soil calcium availability and bedrock type. The mean foliar N : P of 25.2 ± 15.4 of Darlingtonia suggested that these plants were P-limited, although N concentration in the substrate also was extremely low and prey capture was uncommon. Foliar N : P stoichiometry and the observed deviation of Darlingtonia leaf traits from predictions of general scaling relationships permit an initial assessment of the "cost of carnivory" in this species. Carnivory in plants is thought to have evolved in response to N limitation, but for Darlingtonia, carnivory is an evolutionary last resort when both N and P are severely limiting and photosynthesis is greatly reduced.  相似文献   

10.

Background

A plant is considered carnivorous if it receives any noticeable benefit from catching small animals. The morphological and physiological adaptations to carnivorous existence is most complex in plants, thanks to which carnivorous plants have been cited by Darwin as ‘the most wonderful plants in the world’. When considering the range of these adaptations, one realizes that the carnivory is a result of a multitude of different features.

Scope

This review discusses a selection of relevant articles, culled from a wide array of research topics on plant carnivory, and focuses in particular on physiological processes associated with active trapping and digestion of prey. Carnivory offers the plants special advantages in habitats where nutrient supply is scarce. Counterbalancing costs are the investments in synthesis and the maintenance of trapping organs and hydrolysing enzymes. With the progress in genetic, molecular and microscopic techniques, we are well on the way to a full appreciation of various aspects of plant carnivory.

Conclusions

Sufficiently complex to be of scientific interest and finite enough to allow conclusive appraisal, carnivorous plants can be viewed as unique models for the examination of rapid organ movements, plant excitability, enzyme secretion, nutrient absorption, food-web relationships, phylogenetic and intergeneric relationships or structural and mineral investment in carnivory.  相似文献   

11.
Plant carnivory is one of many possible adaptation strategies to unfavorable conditions, mostly low nutrient availability in wet, acid soils. The following issues concerning the mineral nutrition of carnivorous plants are reviewed: the relative importance of carnivory and root nutrition for growth; which nutrients (elements) from prey are of principal importance for growth; the relationship between mineral and organic nutrition based on carnivory; the interactions between carnivory and root mineral nutrition; and the importance of carnivory under natural conditions. Special attention is paid to aquatic carnivorous plants. Studies on mineral nutrition carried out in laboratory and/or greenhouse conditions are discussed separately from those carried out in field conditions. The emphasis of this review is on recapitulation of original data and conclusions of results from a variety of studies that approach carnivorous plants from an ecophysiological point of view.  相似文献   

12.
Using CO2 gasometry, net photosynthetic (P N) and dark respiration rates (R D) were measured in leaves or traps of 12 terrestrial carnivorous plant species usually grown in the shade. Generally, mean maximum P N (60 nmol CO2 g−1(DM) s−1 or 2.7 μmol m−2 s−1) was low in comparison with that of vascular non-carnivorous plants but was slightly higher than that reported elsewhere for carnivorous plants. After light saturation, the facultatively heliophytic plants behaved as shade-adapted plants. Mean R D in leaves and traps of all species reached about 50% of maximum P N and represents the high photosynthetic (metabolic) cost of carnivory.  相似文献   

13.
BACKGROUND AND AIMS: Roridula plants capture insects but have no digestive enzymes. It has been hypothesized that Roridula leaves absorb nitrogen from the faeces of obligately associated, carnivorous hemipterans. But rapid movement across the leaf surfaces of most plant leaves is prevented by the presence of an impermeable cuticle. However, in carnivorous plants, cuticular gaps or pores in digestive/absorptive cells allow rapid movement across the leaf surface. Recently, it was suggested that the hemipteran-plant interaction constituted a new pathway for plant carnivory. Here, a further adaptation to this pathway is described by demonstrating how Roridula plants probably absorb hemipteran faeces rapidly through their leaf cuticles. METHODS: The dye neutral red was used to document the rapidity of foliar absorption and TEM to determine the nature of cuticular discontinuities in the leaf of Roridula. KEY RESULTS: Aqueous compounds diffuse rapidly across the cuticle of Roridula's leaves but not across the cuticles of co-occurring, non-carnivorous plant leaves. Furthermore, immature Roridula leaves were unable to absorb neutral red whereas mature leaves could. Using TEM, cuticular gaps and pores similar to those in other carnivorous plants were found in the epidermal cells of mature Roridula leaves. CONCLUSIONS: The leaf cuticle of Roridula is very thin (0-120 nm) and cell wall elements project close to the leaf surface, possibly enhancing foliar absorption. In addition to these, cuticular gaps were frequently seen and probably perform a function similar to those found in other carnivorous plants: namely the absorption of aqueous compounds. The cuticular gaps of Roridula are probably an adaptation to plant carnivory, supporting the newly described pathway.  相似文献   

14.
Aaron M. Ellison  Lubomír Adamec 《Oikos》2011,120(11):1721-1731
Identification of tradeoffs among physiological and morphological traits and their use in cost–benefit models and ecological or evolutionary optimization arguments have been hallmarks of ecological analysis for at least 50 years. Carnivorous plants are model systems for studying a wide range of ecophysiological and ecological processes and the application of a cost–benefit model for the evolution of carnivory by plants has provided many novel insights into trait‐based cost–benefit models. Central to the cost–benefit model for the evolution of botanical carnivory is the relationship between nutrients and photosynthesis; of primary interest is how carnivorous plants efficiently obtain scarce nutrients that are supplied primarily in organic form as prey, digest and mineralize them so that they can be readily used, and allocate them to immediate versus future needs. Most carnivorous plants are terrestrial – they are rooted in sandy or peaty wetland soils – and most studies of cost–benefit tradeoffs in carnivorous plants are based on terrestrial carnivorous plants. However approximately 10% of carnivorous plants are unrooted aquatic plants. Here we ask whether the cost–benefit model applies equally well to aquatic carnivorous plants and what general insights into tradeoff models are gained by this comparison. Nutrient limitation is more pronounced in terrestrial carnivorous plants, which also have much lower growth rates and much higher ratios of dark respiration to photosynthetic rates than aquatic carnivorous plants. Phylogenetic constraints on ecophysiological tradeoffs among carnivorous plants remain unexplored. Despite differences in detail, the general cost–benefit framework continues to be of great utility in understanding the evolutionary ecology of carnivorous plants. We provide a research agenda that if implemented would further our understanding of ecophysiological tradeoffs in carnivorous plants and also would provide broader insights into similarities and differences between aquatic and terrestrial plants of all types.  相似文献   

15.
Background and AimsSecondary metabolites are integral to multiple key plant processes (growth regulation, pollinator attraction and interactions with conspecifics, competitors and symbionts) yet their role in plant adaptation remains an underexplored area of research. Carnivorous plants use secondary metabolites to acquire nutrients from prey, but the extent of the role of secondary metabolites in plant carnivory is not known. We aimed to determine the extent of the role of secondary metabolites in facilitating carnivory of the Cape sundew, Drosera capensis.MethodsWe conducted metabolomic analysis of 72 plants in a time-series experiment before and after simulated prey capture. We used ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) and the retention time index to identify compounds in the leaf trap tissue that changed up to 72 h following simulated prey capture. We identified associated metabolic pathways, and cross-compared these compounds with metabolites previously known to be involved in carnivorous plants across taxa.Key ResultsFor the first time in a carnivorous plant, we have profiled the whole-leaf metabolome response to prey capture. Reliance on secondary plant metabolites was higher than previously thought – 2383 out of 3257 compounds in fed leaves had statistically significant concentration changes in comparison with unfed controls. Of these, ~34 compounds are also associated with carnivory in other species; 11 are unique to Nepenthales. At least 20 compounds had 10-fold changes in concentration, 12 of which had 30-fold changes and are typically associated with defence or attraction in non-carnivorous plants.ConclusionsSecondary plant metabolites are utilized in plant carnivory to an extent greater than previously thought – we found a whole-metabolome response to prey capture. Plant carnivory, at the metabolic level, likely evolved from at least two distinct functions: attraction and defence. Findings of this study support the hypothesis that secondary metabolites play an important role in plant diversification and adaptation to new environments.  相似文献   

16.

Background and Aims

Cost–benefit models predict that carnivory can increase the rate of photosynthesis (AN) by leaves of carnivorous plants as a result of increased nitrogen absorption from prey. However, the cost of carnivory includes decreased AN and increased respiration rates (RD) of trapping organs. The principal aim of the present study was to assess the costs and benefits of carnivory in the pitcher plant Nepenthes talangensis, leaves of which are composed of a lamina and a pitcher trap, in response to feeding with beetle larvae.

Methods

Pitchers of Nepenthes grown at 200 µmol m−2 s−1 photosynthetically active radiation (PAR) were fed with insect larvae for 2 months, and the effects on the photosynthetic processes were then assessed by simultaneous measurements of gas exchange and chlorophyll fluorescence of laminae and pitchers, which were correlated with nitrogen, carbon and total chlorophyll concentrations.

Key Results

AN and maximum (Fv/Fm) and effective quantum yield of photosystem II (ΦPSII) were greater in the fed than unfed laminae but not in the fed compared with unfed pitchers. Respiration rate was not significantly affected in fed compared with unfed plants. The unfed plants had greater non-photochemical quenching (NPQ) of chlorophyll fluorescence. Higher NPQ in unfed lamina did not compensate for their lower ΦPSII, resulting in lower photochemical quenching (QP) and thus higher excitation pressure on PSII. Biomass and nitrogen and chlorophyll concentration also increased as a result of feeding. The cost of carnivory was shown by lower AN and ΦPSII in pitchers than in laminae, but RD depended on whether it was expressed on a dry weight or a surface area basis. Correlation between nitrogen and AN in the pitchers was not found. Cost–benefit analysis showed a large beneficial effect on photosynthesis from feeding as light intensity increased from 200 to 1000 µmol m−2 s−1 PAR after which it did not increase further. All fed plants began to flower.

Conclusion

Feeding pitchers with insect larvae increases AN of leaf laminae, due to higher nutrient acquisition, with strong correlation with nitrogen concentration, but AN of pitchers does not increase, despite increased nitrogen concentration in their tissue. Increased AN improves growth and reproduction and is likely to increase the competitive advantage of carnivorous over non-carnivorous plants in nutrient-poor habitats.Key words: carnivorous plants, chlorophyll fluorescence, Nepenthes talangensis, nitrogen, pitcher plant, photosynthetic rate, photosystem II, respiration rate  相似文献   

17.
Darwin's interest in carnivorous plants was in keeping with the Victorian fascination with Gothic horrors, and his experiments on them were many and varied, ranging from what appears to be idle curiosity (e.g. what will happen if I place a human hair on a Drosera leaf?) to detailed investigations of mechanisms. Mechanisms for capture and digestion of prey vary greatly among the six (or more) lineages of flowering plants that have well‐developed carnivory, and some are much more active than others. Passive carnivory is common in some groups, and one, Roridula (Roridulaceae) from southern Africa, is so passively carnivorous that it requires the presence of an insect intermediate to derive any benefit from prey trapped on its leaves. Other groups not generally considered to be carnivores, such as Stylidium (Stylidiaceae), some species of Potentilla (Rosaceae), Proboscidea (Martyniaceae) and Geranium (Geraniaceae), that have been demonstrated to both produce digestive enzymes on their epidermal surfaces and be capable of absorbing the products, are putatively just as ‘carnivorous’ as Roridula. There is no clear way to discriminate between cases of passive and active carnivory and between non‐carnivorous and carnivorous plants – all intermediates exist. Here, we document the various angiosperm clades in which carnivory has evolved and the degree to which these plants have become ‘complete carnivores’. We also discuss the problems with definition of the terms used to describe carnivorous plants. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 161 , 329–356.  相似文献   

18.
Carnivorous plants grow in nutrient-poor habitats and obtain substantial amount of nitrogen from prey. Specialization toward carnivory may decrease the ability to utilize soil-derived sources of nutrients in some species. However, no such information exists for pitcher plants of the genus Nepenthes, nor the effect of nutrient uptake via the roots on photosynthesis in carnivorous plants is known. The principal aim of present study was to investigate, whether improved soil nutrient status increases photosynthetic efficiency in prey-deprived pitcher plant Nepenthes talangensis. Gas exchange and chlorophyll (Chl) fluorescence were measured simultaneously and were correlated with Chl and nitrogen concentration as well as with stable carbon isotope abundance (δ13C) in control and fertilized N. talangensis plants. Net photosynthetic rate (P N) and maximum- (Fv/Fm) and effective quantum yield of photosystem II (ΦPSII) were greater in the plants supplied with nutrients. Biomass, leaf nitrogen, and Chl (a+b) also increased in fertilized plants. In contrast, δ13C did not differ significantly between treatments indicating that intercellular concentration of CO2 did not change. We can conclude that increased root nutrient uptake enhanced photosynthetic efficiency in prey-deprived N. talangensis plants. Thus, the roots of Nepenthes plants are functional and can obtain a substantial amount of nitrogen from the soil.  相似文献   

19.
We have analysed the effect of prey and fertilization by inorganic nutrients on the survival, growth, reproduction (sexual and vegetative) and mucilage secretion of Pinguicula vallisneriifolia (Lentibulariaceae), a carnivorous plant inhabiting rocky substrates of southern Spain. We tested the hypothesis that carnivorous plants are more prey dependent when root access to nutrients is strongly limited by (1) analysing the importance of the carnivorous habit to the fitness of P. vallisneriifolia in its natural rocky habitat, and (2) determining whether the effect of trapped prey varies with soil nutrient levels. Our 2-year experimental results indicated prey to be limiting to P. vallisneriifolia growth on its natural rocky substrate. Animal food supply substantially increased the chance of survival, growth, vegetative propagation, sexual reproductive success and mucilage secretion. The differences between prey levels were more evident at the end of the experiment when all the surviving Prey-exclusion plants had lost weight, and the probability of sexual reproduction and of vegetative propagation by axillary buds had accordingly diminished. Furthermore, there were clear benefits from carnivory at the population level, since both the expected individual life span and the lifetime vegetative and sexual output correlated positively with the quantity of prey trapped. Application of insects to non-fertilized plants stimulated growth, but similar application to fertilized plants grown on a complete nutrient solution failed to enhance growth. There was no obvious benefit from the provision of a balanced mineral nutrient solution (alone or with prey). The greatest absolute growth and sexual and vegetative output resulted from providing a surplus of insects to plants on their natural rocky substrate. The strong dependence of P. vallisneriifolia on prey can therefore be considered a useful preadaptation enabling colonization of rocky substrates. Received: 11 November 1996 / Accepted: 31 March 1997  相似文献   

20.
The classic cost-benefit model of ectothermic thermoregulation compares energetic costs and benefits, providing a critical framework for understanding this process (Huey and Slatkin 1976 ). It considers the case where environmental temperature (T(e)) is less than the selected temperature of the organism (T(sel)), and it predicts that, to minimize increasing energetic costs of thermoregulation as habitat thermal quality declines, thermoregulatory effort should decrease until the lizard thermoconforms. We extended this model to include the case where T(e) exceeds T(sel), and we redefine costs and benefits in terms of fitness to include effects of body temperature (T(b)) on performance and survival. Our extended model predicts that lizards will increase thermoregulatory effort as habitat thermal quality declines, gaining the fitness benefits of optimal T(b) and maximizing the net benefit of activity. Further, to offset the disproportionately high fitness costs of high T(e) compared with low T(e), we predicted that lizards would thermoregulate more effectively at high values of T(e) than at low ones. We tested our predictions on three sympatric skink species (Carlia rostralis, Carlia rubrigularis, and Carlia storri) in hot savanna woodlands and found that thermoregulatory effort increased as thermal quality declined and that lizards thermoregulated most effectively at high values of T(e).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号