首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steady-state membrane potentials (Vm) and intracellular Na+ (aiNa), K+ (aiK), H+ (aiH) and Cl- (aiCl) activities were measured with double-barrelled ion-selective microelectrodes in liver slices from normal rats and during the 4-dimethylaminoazobenzene-induced (DAB) hepatocarcinogenesis. Rats fed with the experimental regimen without the carcinogen were used as control animals. In Krebs-Henseleit bicarbonate saline containing 5.5 mM glucose as bathing solution at 37 degrees C, Vm was found to be significantly lower in neoplastic hepatocytes, compared to normal liver cells. Vm decreased also in control rat liver cells. Increased Na+/K+ ratios and Na+ + K+ activities were found in cancerous hepatocytes whereas H+ and Cl- activities decreased. Therefore, the intracellular pH increased significantly in neoplastic cells, compared to normal and control cells. This could reflect activation of the Na+/H+ exchange system during the DAB-induced hepatocarcinogenesis, leading to a stimulation of cell metabolism with increased rate of protein and DNA synthesis and loss of growth control, under these conditions.  相似文献   

2.
The continuous feeding of the carcinogenic aminoazo dye DAB to rats produces hyperbasophilic foci in the preneoplastic livers. After injections of thymidine-3H into the rats, such foci were isolated from the livers and studied by radioautography with the phase-contrast and electron microscopes. In these foci, the only cells found to be proliferating, as determined by the uptake of thymidine-3H into their nuclei, were a poorly differentiated type; well differentiated hepatocytes in the same regions were not labeled with the isotope. The labeled cells had an irregular cell outline and a high nucleocytoplasmic ratio; the cytoplasm had almost completely lost the specialized elements characteristic of hepatocytes; the irregular nuclei with prominent nucleoli, the altered mitochondria, and the increased free ribosomes noted in these cells are features which are characteristic of neoplastic cells induced by DAB. Thus, it seems likely that the hyperbasophilic foci represent the sites of extensive dedifferentiation of hepatocytes followed by rapid cellular proliferation, leading to neoplastic growth.  相似文献   

3.
Hepatocytes have the ability to go through specialized cell cycles, which, during normal developmental liver growth, result in the formation of binuclear and polyploid cells. In the adult rat liver, the majority of the hepatocytes (about 70%) are tetraploid, 15-20% are octoploid, and only 10-15% are diploid (about 50% in humans). One-third of the hepatocytes in either rats or humans are binuclear (with two diploid or two tetraploid nuclei). Among cultured rat hepatocytes stimulated with growth factors (EGF and insulin), one-half of the mitoses are of the binucleating type (suggesting a "quantal" mechanism), causing one-third of the postmitotic cells to become binuclear. In contrast, regenerative liver growth, induced by partial hepatectomy, is predominantly nonbinucleating. During rat liver carcinogenesis, the early populations of phenotypically altered cells (foci) are predominantly diploid, as are the later neoplastic nodules and carcinomas, which can be shown to have a regeneration-like, largely nonbinucleating growth pattern. A negative correlation between growth capacity and ploidy can be demonstrated in cultured hepatocytes, regenerating livers, neoplastic nodules, and hepatocellular carcinomas, suggesting that suppression of binucleation and polyploidization may carry a growth advantage, in addition to helping to maintain a large population of diploid, potential stem cells. Since a diploid genome is less protected against mutagenic change than a polyploid genome, diploid tumor cells may, furthermore, be more prone than polyploid cells to undergo mutation-based progression toward increasing malignancy. The ability of liver tumor promoters like 2-acetylaminofluorene, cyproterone acetate, -hexachlorocyclohexane and methylclofenapate to induce nonbinucleating hepatocyte growth may, therefore, cooperate with the selective growth stimulation of cancer cells and cancer cell precursors to promote liver carcinogenesis.Autophagy, a mechanism for the bulk degradation of cytoplasm, contributes to intracellular protein turnover and serves to restrict cellular growth. Rat liver carcinogenesis is accompanied by a progressive reduction of autophagic capacity, preneoplastic livers having 50% and hepatocellular carcinoma cells only 20% as much autophagy as normal hepatocytes. The ascites hepatoma cell line AH-130 has virtually no autophagy during logarithmic growth, but some autophagy is turned on when the cells become growth-arrested at high cell density. Ascitic fluid from AH-130 cells is able to completely inhibit autophagy in normal hepatocytes, suggesting that the cancer cells may improve their growth ability through an autocrine, autophagy-suppressive mechanism. Hepatocytes from preneoplastic livers similarly maintain a low autophagic activity under restrictive culture conditions, thereby surviving much better than normal hepatocytes, which switch on their autophagy. In the presence of an autophagy inhibitor (3-methyladenine), normal and preneoplastic hepatocytes survive equally well, testifying to the importance of autophagy as a determinant of cell survival and growth.  相似文献   

4.
The progressive morphological changes in the liver during neoplastic transformation have been studied by histological, cytophotometric and morphometric methods in male Wistar rats treated with two carcinogens: N-nitrosomorpholine (NNM) and aflatoxin B1 (AFB1). Cytophotometric and morphometric analysis of hepatocyte nuclei using Feulgen-stained tissue sections were performed in morphologically normal hepatic parenchyma and in early preneoplastic foci composed of altered hepatocytes. Foci of clear cells, mixed cells and large basophilic cells possessed a ploidy distribution similar to the surrounding non-transformed parenchyma, while the small hyperbasophilic cell foci were predominantly diploid. These findings confirm that the foci composed of PAS-negative, small hyperbasophilic cells with an unique diploid content may represent one of the earliest stages in the neoplastic transformation.  相似文献   

5.
The presence and distribution of AFP, AAT and HBsAg in peritumoral non-neoplastic hepatocytes (NNH) of 27 cases and, at the same time, in the neoplastic tissue of 37 liver cell carcinoma (HCC) were studied; AFP and HBsAg were more frequently found in NNH than in HCC cells; no differences were found for AAT. The presence of HBsAg also in normal liver without cirrhosis is probably best explained by its possible role in neoplastic transformation and by the inhibition of replication of the viruses AFP, considered to be expression of dedifferentiated cells, may possible be taken up by NNH for catabolic purposes.  相似文献   

6.
Lung resistance-related protein (LRP) plays an important role in chemoresistance of tumor cells probably by altering nuclear-cytoplasmic transport processes. We analyzed the association between LRP expression and hepatocarcinogenesis in humans and rats by RT-PCR, immunoblotting, and immunohistochemistry. LRP was found in hepatocytes and bile epithelia of normal human and rat liver showing distinct interindividual variations. In human tissues, the LRP expression levels of dysplastic liver nodules, hepatocellular adenomas, and carcinomas were highly variable, including decreased but also distinctly increased staining intensities. Mean expression levels, however, were comparable to the surrounding tissue. Considerable levels of LRP mRNA and protein were also found in human hepatoma cell lines. To study LRP expression from the beginning of hepatocarcinogenesis onward, rats were subjected to a tumor initiation/promotion protocol leading to preneoplastic hepatocytes present as single cells or multicellular clones, followed by adenoma and carcinoma. All of the (pre)neoplastic rat liver lesions expressed, comparable to the surrounding tissue, considerable amounts of LRP. We conclude that LRP might be one mechanism involved in the intrinsically high but variable chemoresistance of normal and (pre)neoplastic hepatocytes.  相似文献   

7.
Non-alcoholic steatohepatitis (NASH) is a frequent clinical picture characterised by hepatic inflammation, lipid accumulation and fibrosis. When untreated, NASH bears a high risk of developing liver cirrhosis and consecutive hepatocellular carcinoma requiring liver transplantation in its end-stage. However, donor organ scarcity has prompted the search for alternatives, of which hepatocyte or stem cell-derived hepatocyte transplantation are regarded auspicious options of treatment. Mesenchymal stem cells (MSC) are able to differentiate into hepatocyte-like cells and thus may represent an alternative cell source to primary hepatocytes. In addition these cells feature anti-inflammatory and pro-regenerative characteristics, which might favour liver recovery from NASH. The aim of this study was to investigate the potential benefit of hepatocyte-like cells derived from human bone marrow MSC in a mouse model of diet-induced NASH. Seven days post-transplant, human hepatocyte-like cells were found in the mouse liver parenchyma. Triglyceride depositions were lowered in the liver but restored to normal in the blood. Hepatic inflammation was attenuated as verified by decreased expression of the acute phase protein serum amyloid A, inflammation-associated markers (e.g. lipocalin 2), as well as the pro-inflammatory cytokine TNFα. Moreover, the proliferation of host hepatocytes that indicate the regenerative capacity in livers receiving cell transplants was enhanced. Transplantation of MSC-derived human hepatocyte-like cells corrects NASH in mice by restoring triglyceride depositions, reducing inflammation and augmenting the regenerative capacity of the liver.  相似文献   

8.
In normal rat liver, aldehyde dehydrogenase (Aldehyde:NAD+ oxidoreductase, EC 1.2.1.3; ALDH) is found primarily in mitochondrial and microsomal fractions. During hepatocarcinogenesis, an additional tumor-associated aldehyde dehydrogenase (T-ALDH) is detectable in the cytosol of preneoplastic and neoplastic cells. We report here differences in the ALDH distribution pattern in different rat hepatoma cell lines compared to normal rat hepatocytes. Of the four basal ALDH enzymes, one mitochondrial ALDH and one microsomal ALDH account for 96% of total ALDH molecules detectable with our probes in normal hepatocytes. The other two mitochondrial and microsomal ALDH enzymes are only detectable in the appropriate subcellular fraction from large populations of cells. The tumor-associated ALDH is not detectable in normal hepatocytes. In addition to varying amounts of T-ALDH in the six different rat hepatoma cell lines examined, differences in the amounts of mitochondrial and microsomal ALDHs also occur in both high and low T-ALDH activity hepatoma cell lines. Each of five ALDH enzymes examined has a characteristic half-life varying from 45 min to 95 h.  相似文献   

9.
Transforming growth factor (TGF) β(1) plays a critical role in liver fibrosis. Previous studies demonstrated embryonic liver fodrin (ELF), a β-spectrin was involved in TGF-β/Smad signalling pathway as Smad3/4 adaptor. Here we investigate the role of ELF in pathogenesis of liver cirrhosis. In carbon tetrachloride (CCl(4))-induced mice model of liver cirrhosis, ELF is up-regulated in activated hepatic stellate cells (HSCs), and down-regulated in regenerative hepatocytes of cirrhotic nodules. In activated HSCs in vitro, reduction of ELF expression mediated by siRNA leads to the inhibition of HSC activation and procollagen I expression. BrdU assay demonstrates that down-regulation of ELF expression does not inhibit proliferation of activated HSCs in vitro. Immunostaining of cytokeratin 19 and Ki67 indicates that regenerative hepatocytes in cirrhotic liver are derived from hepatic progenitor cells (HPC). Further study reveals that HPC expansion occurs as an initial phase, before the reduction of ELF expression in regenerative hepatocytes. Regenerative hepatocytes in cirrhotic liver show the change in proliferative activity and expression pattern of proteins involved in G1/S transition, which suggests the deregulation of cell cycle in regenerative hepatocytes. Finally, we find that ELF participates in TGF-β/Smad signal in activated HSCs and hepatocytes through regulating the localization of Smad3/4. These data reveal that ELF is involved in HSC activation and the formation of regenerative nodules derived from HPC in cirrhotic liver.  相似文献   

10.
Rat liver parenchymal cells (hepatocytes) were isolated by a collagenase perfusion technique and maintained as monolayers in serum-free medium in collagen-coated culture dishes. Glucagon, in combination with dexamethasone, induced α-aminoisobutyric acid transport in these cells. Addition of purified Clostridiumperfringens enterotoxin to hepatocytes preinduced by glucagon and dexamethasone rapidly depressed (but did not abolish) α-aminoisobutyric acid transport. The toxin effect was dose dependent: 1000 or 300 ng/ml produced maximal depression whereas 100 or 40 ng/ml were without effect in 120 minutes. The effect was eliminated by pretreating the toxin with heat or specific antisera. The effect of enterotoxin on α-aminoisobutyric acid transport in two cultured rat hepatoma cell lines (H4-II-E-C3 and McA-RH 7777) was also investigated. Only the McA-RH 7777 cells were sensitive to the toxin suggesting that the enterotoxin may interact with specific membrane components of normal rat liver cells which are also present on some (but not all) cancerous rat liver cells.  相似文献   

11.
The significance of glucose-6-phosphatase (G6P) expression by bile duct-like cells proliferating during hepatocarcinogenesis in the histogenesis of hepatocellular carcinoma is not clear. To this end, we measured the histochemical and biochemical activity of G6P in normal rat liver, and in rat livers in which bile duct-like proliferation was induced by either hyperplastic (bile duct ligation for 14 days or feeding alpha-naphthylisothiocyanate for 28 days) or neoplastic (feeding a choline-devoid diet containing 0.1% ethionine for 60 days) regimens. In normal, hyperplastic, and preneoplastic livers, G6P histochemical activity was confined to the hepatocytes; proliferated bile duct-like cells, like normal bile ducts, did not display visible G6P staining. When the enzyme activity was determined biochemically, however, hydrolysis of glucose-6-phosphate was observed in both parenchymal and nonparenchymal liver cells isolated from all experimental animals. In elutriated nonparenchymal fractions, G6P activity was directly proportional to the number of cells positive for gamma-glutamyl transpeptidase and cytokeratin no. 19 (markers of bile duct cells) and inversely proportional to the number of cells positive for vimentin (marker of mesenchymal cells). These results indicate that, while by light microscopy hepatic G6P histochemical activity is detectable only in the hepatocytes, the biochemical activity is also expressed in proliferating bile duct-like cells. However, the nonparenchymal activity is observed during both neoplastic and hyperplastic liver growth, thus indicating that the presence of this enzyme in bile duct-like cells proliferating during hepatocarcinogenesis should not necessarily be construed as supporting their stem cell nature nor their neoplastic commitment.  相似文献   

12.
Hepatic stem cells: from inside and outside the liver?   总被引:21,自引:0,他引:21  
The liver is normally proliferatively quiescent, but hepatocyte loss through partial hepatectomy, uncomplicated by virus infection or inflammation, invokes a rapid regenerative response from all cell types in the liver to perfectly restore liver mass. Moreover, hepatocyte transplants in animals have shown that a certain proportion of hepatocytes in foetal and adult liver can clonally expand, suggesting that hepatoblasts/hepatocytes are themselves the functional stem cells of the liver. More severe liver injury can activate a potential stem cell compartment located within the intrahepatic biliary tree, giving rise to cords of bipotential transit amplifying cells (oval cells), that can ultimately differentiate into hepatocytes and biliary epithelial cells. A third population of stem cells with hepatic potential resides in the bone marrow; these haematopoietic stem cells may contribute to the albeit low renewal rate of hepatocytes, but can make a more significant contribution to regeneration under a very strong positive selection pressure. In such instances, cell fusion rather than transdifferentiation appears to be the underlying mechanism by which the haematopoietic genome becomes reprogrammed.  相似文献   

13.
The significance of glucose-6-phosphatase (G6P) expression by bile duct-like cells proliferating during hepatocarcinogenesis in the histogenesis of hepatocellular carcinoma is not clear. To this end, we measured the histochemical and biochemical activity of G6P in normal rat liver, and in rat livers in which bile duct-like proliferation was induced by either hyperplastic (bile duct ligation for 14 days or feeding alpha-naphthylisothiocyanate for 28 days) or neoplastic (feeding a choline-devoid diet containing 0.1% ethionine for 60 days) regimens. In normal, hyperplastic, and preneoplastic livers, G6P histochemical activity was confined to the hepatocytes; proliferated bile duct-like cells, like normal bile ducts, did not display visible G6P staining. When the enzyme activity was determined biochemically, however, hydrolysis of glucose-6-phosphate was observed in both parenchymal and nonparenchymal liver cells isolated from all experimental animals. In elutriated nonparenchymal fractions, G6P activity was directly proportional to the number of cells positive for gamma-glutamyl transpeptidase and cytokeratin no. 19 (markers of bile duct cells) and inversely proportional to the number of cells positive for vimentin (marker of mesenchymal cells). These results indicate that, while by light microscopy hepatic G6P histochemical activity is detectable only in the hepatocytes, the biochemical activity is also expressed in proliferating bile duct-like cells. However, the nonparenchymal activity is observed during both neoplastic and hyperplastic liver growth, thus indicating that the presence of this enzyme in bile duct-like cells proliferating during hepatocarcinogenesis should not necessarily be construed as supporting their stem cell nature nor their neoplastic commitment.  相似文献   

14.
15.
Certain antimicrobial peptides from multicellular animals kill a variety of tumor cells at concentrations not affecting normal eukaryotic cells. Recently, it was reported that also plantaricin A (PlnA), which is a peptide pheromone with strain-specific antibacterial activity produced by Lactobacillus plantarum, permeabilizes cancerous rat pituitary cells (GH4 cells), whereas normal rat anterior pituitary cells are resistant to the peptide. To examine whether the preferential permeabilization of cancerous cells is a general feature of PlnA, we studied its effect on primary cultures of cells from rat liver (hepatocytes, endothelial, and Kupffer cells) and rat kidney cortex, as well as two epithelial cell lines of primate kidney origin (Vero cells from green monkey and human Caki-2 cells). The Vero cell line is derived from normal cells, whereas the Caki-2 cell line is derived from a cancerous tumor. The membrane effects were studied by patch clamp recordings and microfluorometric (fura-2) monitoring of the cytosolic concentrations of Ca2+ ([Ca2+]i) and fluorophore. In all the tested cell types except Kupffer cells, exposure to 10–100 μM PlnA induced a nearly instant permeabilization of the membrane, indicated by the following criteria: increased membrane conductance, membrane depolarization, increased [Ca2+]i, and diffusional loss of fluorophore from the cytosol. At a concentration of 5 μM, PlnA had no effect on any of the cell types. The Kupffer cells were permeabilized by 500 μM PlnA. We conclude that the permeabilizing effect of PlnA is not restricted to cancerous cells.  相似文献   

16.
The present work consists in a quantitative cytospectrophotometric investigation of the cytoplasmic hyperbasophilia that characterizes the foci of neoplastic transformation and the tumor cells in rats fed hepatocarcinogens. It reveals that the increase in the dye-binding capacity shown by the cytoplasmic RNA of these cell populations results primarily form a qualitative alteration which raises the affinity for basic dyes by a factor of nearly 2, and also to a change in concentration due to volumetric changes which may again double the staining intensity of these hepatocytes. This phenomenon of hyperbasophilia differs radically from the weak variations in basophilia observed in normal regenerating liver and in hyperplastic liver parenchyma of rats fed the carcinogenic diet in which cases the changes appear to be related mainly to de nova RNA synthesis. Biochemical assays on cellular fractions indicate that the ribosomes are the organelles responsible for the hyperbasophilic properties that hepatocytes acquire in areas of neoplastic transformation.  相似文献   

17.
BACKGROUND INFORMATION: Partial hepatectomy (70%) induces cell proliferation until the original mass of the liver is restored. In the first 24 h after partial hepatectomy, drastic changes in the metabolism of the remaining liver have been shown to occur. To evaluate changes in hepatocyte ultrastructure within the hepatic acinus during the liver regenerative process, we investigated, by light and electron microscopy observations on specimens taken 0 h, 24 h and 96 h after partial hepatectomy, the hepatocyte structure and ultrastructure in the periportal and pericentral area of the hepatic acinus, with a particular emphasis on mitochondria ultrastructure. Moreover, some biochemical events that could affect the mitochondria ultrastructure and function were investigated. RESULTS: We found that, 24 h after partial hepatectomy, mitochondria with altered ultrastructure were preferentially localized in the periportal area. Periportal hepatocytes showed also an increase in the number of peroxisomes, free ribosomes, lysosomes and autophagosomes. Altered mitochondria showed swelling, an ultrastructural index of increased membrane permeability, a reduction in the number of cristae, and a rarefied, often vacuoled, matrix. Consistently, an increase in the mitochondrial oxidized/reduced glutathione ratio was found as well as calcium release from mitochondria in a manner inhibited by cyclosporin A. Interestingly, light and electron microscopy analysis showed that the hepatocytes in the periportal area were the cells with the major structural attributes to proliferate. At 96 h after partial hepatectomy, the preferential zonation of altered mitochondria was lost and the normal mitochondrial membrane permeability properties were restored. CONCLUSIONS: We suggest that 24 h after partial hepatectomy, a preferential zonation of altered mitochondria in the periportal hepatocytes could be involved in the changes of metabolic and functional heterogeneity of the hepatocytes within the hepatic acinus during the regenerative process.  相似文献   

18.
The liver has a marked capacity for regeneration. In most cases the liver regeneration is determined by hepatocytes. The regenerative capacity of hepatocytes is significantly reduced in acute or chronic damage. For example, in patients with alcoholic cirrhosis repair mechanisms are not activated and only organ transplantation or advanced methods of regenerative medicine can help such patients. Clinical trials including patients with various forms of liver disease have shown promising results of transplantation of autologous bone marrow stem cells. However, improvement of the effectiveness of such treatment requires optimization of sources of progenitor cells. In this study we have isolated stromal cells from the liver biopsies of three patients with alcoholic cirrhosis, performed their morphological and phenotypic analysis, and evaluated the hepatic potential of these cells in vitro. Stromal cells isolated from the fetal liver were used for comparative evaluation. During hepatic differentiation both types of cells expressed hepatic markers and secreted albumin. These results can serve as a basis for the development of a new method for the treatment of end-stage liver disease. The stromal cells isolated from the liver biopsies proliferate for a long time in a culture and this provides opportunity to produce them in large amounts for subsequent differentiation into hepatocyte-like cells and autologous transplantation.  相似文献   

19.
The existence, origin, and bipotency of the hepatic stem cell (HeSC) have been investigated. However, the isolation and culture of HeSCs from adult liver tissue is not yet well established, and the mechanism by which HeSCs differentiate into mature cells remains unclear. On the other hand, the development of HeSC-isolating and -culturing methods and the in vitro clonal analysis of their mechanism of differentiation are required to enable clinical applications of regenerative medicine in the liver. For the purpose of providing HeSCs for these studies, we attempted to establish an HeSC line from a normal adult porcine liver using a unique culture system, a poly-D-lysine-coated culture dish with NAIR-1 medium (the PDL-NAIR-1 culture system). Moreover, we examined the differentiating capacity of HeSCs in vitro. We demonstrated that it was possible in the culture system that immature epithelial cells capable of proliferating grew selectively into aggregates and that two hepatic stem-like cell lines, PHeSC-A1 and PHeSC-A2, were established. The results from our data suggest that these hepatic stem-like cell lines were capable of self-renewing and differentiating into hepatocytes or biliary epithelial cells and show that the PDL-NAIR-1 culture system offers the immense advantage of isolating and culturing HeSCs from a normal adult liver. Furthermore, because of the ability to use a clonal analysis in vitro, these cell lines are useful for the investigation of various mechanisms in which HeSCs seem to participate and their application in the study of regenerative medicine in the liver.  相似文献   

20.
目的探讨核转录因子-κB(NF-κB)在大鼠肝癌发生发展中的作用和意义。方法应用免疫组织化学SP法,对二乙基亚硝胺(DEN)诱发的大鼠肝癌发生过程中NF-κB的动态表达进行了检测。结果 DEN诱发的肝癌为肝细胞癌,诱癌率为100%,大鼠肝癌癌变过程大致经过肝细胞损伤期、肝细胞增生-硬化期和肝细胞癌变期等三个阶段。在正常大鼠肝组织,偶见少量肝细胞呈阳性表达,随着肝癌发生发展,NF-κB阳性表达细胞逐渐增多,至诱癌晚期,可见大量NF-κB阳性表达细胞,均比正常肝组织表达高(P<0.05)。结论本研究表明肝细胞NF-κB的过度表达与肝癌的发生和发展密切有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号