首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of rooibos tea (Aspalathus linearis) on liver antioxidant status and oxidative stress was investigated in rat model of carbon tetrachloride-induced liver damage. Synthetic antioxidant N-acetyl-L-cysteine (NAC) was used for comparison. Administration of carbon tetrachloride (CCl4) for 10 weeks decreased liver concentrations of reduced and oxidized forms of coenzyme Q9 (CoQ9H2 and CoQ9), reduced -tocopherol content and simultaneously increased the formation of malondialdehyde (MDA) as indicator of lipid peroxidation. Rooibos tea and NAC administered to CCl4-damaged rats restored liver concentrations of CoQ9H2 and alpha-tocopherol and inhibited the formation of MDA, all to the values comparable with healthy animals. Rooibos tea did not counteract the decrease in CoQ9, whereas NAC was able to do it. Improved regeneration of coenzyme Q9 redox state and inhibition of oxidative stress in CCl4-damaged livers may explain the beneficial effect of antioxidant therapy. Therefore, the consumption of rooibos tea as a rich source of natural antioxidants could be recommended as a market available, safe and effective hepatoprotector in patients with liver diseases.  相似文献   

2.
Hyperglycemia induced oxidative stress has been proposed as a cause of many complications of diabetes including cardiac dysfunction. The present study depicts the therapeutic effect of green tea extract on oxidative stress in aorta as well as heart of streptozotocin diabetic rats. Six weeks after diabetes induction, green tea was administered orally for 4 weeks [300 mg (kg body weight)(-1) day (-1)]. In aorta and heart of diabetic rats there was a significant increase in the activity of superoxide dismutase, catalase and glutathione peroxidase with an increase in lipid peroxides. Diabetic rats showed a significant decrease in the levels of serum and cardiac glutathione. Green tea administration to diabetic rats reduced lipid peroxides and activity of antioxidant enzymes whereas increased glutathione content. The results demonstrate that the induction of antioxidant enzymes in diabetic rats is not efficient and sufficient to reduce the oxidative stress. But green tea by providing a competent antioxidative mechanism ameliorates the oxidative stress in the aorta and heart of diabetic rats. The study suggests that green tea may provide a useful therapeutic option in the reversal of oxidative stress induced cardiac dysfunction in diabetes mellitus.  相似文献   

3.
Oxidants have been shown to be involved in alcohol-induced liver injury. This study was designed to test the hypothesis that the antioxidant polyphenolic extract of green tea, comprised predominantly of epigallocatechin gallate, protects against early alcohol-induced liver injury in rats. Male Wistar rats were fed high-fat liquid diets with or without ethanol (10-14 g kg(-1) day(-1)) and green tea (300 mg kg(-1) day(-1)) continuously for 4 weeks using an intragastric enteral feeding protocol. Mean body weight gains (approximately 4 g/day) were not significantly different between treatment groups, and green tea extract did not the affect average concentration or the cycling of urine ethanol concentrations (0-550 mg dl(-1) day(-1)). After 4 weeks, serum ALT levels were increased significantly about 4-fold over control values (35+/-3 IU/l) by enteral ethanol (114+/-18); inclusion of green tea extract in the diet significantly blunted this increase (65+/-10). Enteral ethanol also caused severe fatty accumulation, mild inflammation, and necrosis in the liver. While not affecting fat accumulation or inflammation, green tea extract significantly blunted increases in necrosis caused by ethanol. Furthermore, ethanol significantly increased the accumulation of protein adducts of 4-hydroxynonenal, a product of lipid peroxidation and an index of oxidative stress; green tea extract blocked this effect almost completely. TNFalpha protein levels were increased in liver by alcohol; this phenomenon was also blunted by green tea extract. These results indicate that simple dietary antioxidants, such as those found in green tea, prevent early alcohol-induced liver injury, most likely by preventing oxidative stress.  相似文献   

4.
Coenzyme Q (CoQ(10)) is a component of the mitochondrial electron transport chain and also a constituent of various cellular membranes. It acts as an important in vivo antioxidant, but is also a primary source of O(2)(-*)/H(2)O(2) generation in cells. CoQ has been widely advocated to be a beneficial dietary adjuvant. However, it remains controversial whether oral administration of CoQ can significantly enhance its tissue levels and/or can modulate the level of oxidative stress in vivo. The objective of this study was to determine the effect of dietary CoQ supplementation on its content in various tissues and their mitochondria, and the resultant effect on the in vivo level of oxidative stress. Rats were administered CoQ(10) (150 mg/kg/d) in their diets for 4 and 13 weeks; thereafter, the amounts of CoQ(10) and CoQ(9) were determined by HPLC in the plasma, homogenates of the liver, kidney, heart, skeletal muscle, brain, and mitochondria of these tissues. Administration of CoQ(10) increased plasma and mitochondria levels of CoQ(10) as well as its predominant homologue CoQ(9). Generally, the magnitude of the increases was greater after 13 weeks than 4 weeks. The level of antioxidative defense enzymes in liver and skeletal muscle homogenates and the rate of hydrogen peroxide generation in heart, brain, and skeletal muscle mitochondria were not affected by CoQ supplementation. However, a reductive shift in plasma aminothiol status and a decrease in skeletal muscle mitochondrial protein carbonyls were apparent after 13 weeks of supplementation. Thus, CoQ supplementation resulted in an elevation of CoQ homologues in tissues and their mitochondria, a selective decrease in protein oxidative damage, and an increase in antioxidative potential in the rat.  相似文献   

5.
Iron overload toxicity was shown to associate with chronic liver diseases which lead to hepatic fibrosis and subsequently the progression to cancer through oxidative stress and apoptotic pathways. Green tea potential activity as chelating, anti-oxidative, or anti-apoptotic mechanisms against metal toxicity was poorly clarified. Here, we are trying to evaluate the anti-oxidant and anti-apoptotic properties of green tea in the regulation of serum hepcidin levels, reduction in iron overloads, and improve of liver fibrosis in iron overloaded experimental rats. Three groups of male adult rats were randomly classified into three groups and treated as follows: control rats, iron treated rats for two months in drinking water followed by either vehicle or green tea extract (AGTE; 100 mg/kg) treatment for 2 more months. Thereafter, we studied the effects of AGTE on iron overload-induced lipid peroxidation, anti-oxidant depletion, liver cell injury and apoptosis. Treatment of iron-overloaded rats with AGTE resulted in marked decreases in iron accumulation within liver, depletion in serum ferritin, and hepcidin levels. Iron-overloaded rats had significant increase in malonyldialdehyde (MDA), a marker of lipid peroxidation and nitric oxide (NO) in liver when compared to control group. Also, significant change in cytochrome c and DNA content as apoptotic markers were reported in iron treated rats. The effects of iron overload on lipid peroxidation, NO levels, cytochrome c and DNA content were significantly reduced by the intervention treatment with AGTE (P < 0.001). Furthermore, the endogenous anti-oxidant capacities/levels (TAC) in liver were also significantly decreased in chronic iron overload and administration of AGTE restored the decrease in the hepatic antioxidant activities/levels. Also, hepatic hepcidin was shown to be significantly correlated with oxidative and apoptotic relating biomarkers as well as an improvement in liver fibrosis of iron treated rats following AGTE treatment. In-vitro analysis showed that, the improvement in iron toxicity of the liver depend mainly on antioxidant and protective ability of green tea polyphenolic compounds especiallyepigallocatechin-3-gallate (EGCG). Our study showed that green tea extract (GTE) ameliorates iron overload induced hepatotoxicity, apoptosis and oxidative stress in rat liver via inhibition of hepatic iron accumulation; improve of liver antioxidant capacity, and down regulation of serum hepcidin as well as reduction in the release of apoptotic relating proteins.  相似文献   

6.
Cholestatic liver disease is recognized by extreme collagen formation and deposition, which is mediated by free radicals. The aim of the current study was to investigate the probable hepatoprotective effects of hydroalcoholic extract of watercress (WC) against oxidative stress and liver injury in bile duct ligation (BDL)- induced cholestatic rats. A total of 32 male Wistar rats were divided into four groups; sham control (SC), BDL, SC + hydroalcoholic extract of WC and BDL + hydroalcoholic extract of WC. WC-treated rats received daily WC 500 mg/kg/day for 10 days. Biochemical tests, hepatic oxidative stress markers, and antioxidant enzymes activity were estimated. Further, liver hydroxyproline content was assayed and histological analysis was made. The BDL model markedly elevated the protein carbonyl (PCO) and hydroxyproline contents and decreased the glutathione peroxidase (GPx) activity. Hydroalcoholic extract of WC significantly decreased the surge in liver PCO and hydroxyproline levels and increased the reduced GPx enzyme activity contents in the hepatic tissue. As determined by hematoxylin and eosin staining, BDL considerably induced hepatocyte necrosis. Moreover, these changes were significantly attenuated by the hydroalcoholic extract of WC treatment. Our data indicate that the hydroalcoholic extract of WC extract attenuated liver damage in BDL rats by decreasing the hydroxyproline content and histopathological indexes. Also, it reduced oxidative stress by preventing the hepatic protein oxidation and enhancing the activity of the GPx enzyme via antioxidative effect and free-radical scavenging. Our findings suggest that hydroalcoholic extract of WC could be a beneficial new curative agent for cholestatic liver damage.  相似文献   

7.
Responses to oxidative stress contribute to damage caused by chronic cerebral hypoperfusion, which is characteristic of certain neurodegenerative diseases. We used a rat model of chronic cerebral hypoperfusion to determine whether green tea polyphenols, which are potent antioxidants and free radical scavengers, can reduce vascular cognitive impairment and to investigate their underlying mechanisms of action. Different doses of green tea polyphenols were administered orally to model rats from 4 to 8 weeks after experimentally induced cerebral hypoperfusion, and spatial learning and memory were assessed using the Morris water maze. Following behavioral testing, oxygen free radical levels and antioxidative capability in the cortex and hippocampus were measured biochemically. The levels of lipid peroxidation and oxidative DNA damage were assessed by immunohistochemical staining for 4-hydroxynonenal and 8-hydroxy-2′-deoxyguanosine, respectively. Rats that received green tea polyphenols 400 mg/kg per day had better spatial learning and memory than saline-treated rats. Green tea polyphenols 400 mg/kg per day were found to scavenge oxygen free radicals, enhance antioxidant potential, decrease lipid peroxide production and reduce oxidative DNA damage. However, green tea polyphenols 100 mg/kg per day had no significant effects, particularly in the cortex. This study suggests that green tea polyphenols 400 mg/kg per day improve spatial cognitive abilities following chronic cerebral hypoperfusion and that these effects may be related to the antioxidant effects of these compounds.  相似文献   

8.
We determined the effects of a green tea extract with 36% alcohol on the blood alcohol content, oxidative stress, lipogenesis, inflammation and liver function of female Wistar rats. Tea alcohol significantly decreased the O??, H?O? and HOCl amounts via catechins and not caffeine. Thirty days of alcohol gavage improved the level of reactive oxygen species (ROS) in the liver, bile and blood, increased the 4-hydroxynonenal-protein adducts, Kupffer cell infiltration and lipid accumulation in the liver, and elevated the plasma alanine aminotransferase level. A western blot analysis showed reduced expression of the oxidative enzymes (CYP2E1 and NADPH oxidase p47phox protein) and lipogenic enzymes (SREBP-1c and fatty acid synthase) in the alcohol-treated liver. Tea alcohol significantly attenuated these elevated parameters. We conclude that the green tea extract in alcohol efficiently reduced the amounts of O??, H?O? and HOCl primarily due to the catechin content, and not caffeine. The developed tea liquor attenuated alcohol-induced oxidative injury and lipogenesis in the liver by the synergetic action of catechins and caffeine.  相似文献   

9.
Inflammatory bowel disease (IBD) is characterised by oxidative and nitrosative stress, leukocyte infiltration, and up-regulation of intercellular adhesion molecule 1 (ICAM-1) expression in the colon. The aim of the present study was to examine the effects of green tea extract in rats subjected to experimental colitis induced by intracolonic instillation of dinitrobenzene sulphonic acid (DNBS). At 4 days after DNBS administration the rats were sacrificed. Treatment with green tea extract significantly attenuated diarrhoea and loss of body weight. This was associated with a remarkable amelioration of the disruption of the colonic architecture, significant reduction of colonic myeloperoxidase (MPO) and tumor necrosis factor-alpha (TNF-alpha) production. Green tea extract also reduced the appearance of nitrotyrosine immunoreactivity in the colon and reduced the up-regulation of ICAM-1.  相似文献   

10.
This study was designed to assess the effect of green tea, an aqueous extract of Camellia sinensis, on the oxidative stress, antioxidant defense system and liver pathology of Schistosoma mansoni-infected mice. Green tea at concentration of 3% (w/v) was given orally to treated mice as sole source of drinking water from the end of the 4th week to the end of 10th week post-infection; untreated mice were allowed to drink normal water. The data of the studied S. mansoni-infected mice exhibited a suppression of hepatic total antioxidant capacity, superoxide dismutase (SOD), catalase (CAT) activity and glutathione content. The liver lipid peroxidation was deleteriously elevated in S. mansoni-infected mice. The hepatic total protein content, AST and ALT activities were profoundly decreased in the S. mansoni-infected mice. Most hepatocytes were damaged and showed abnormal microscopic appearance with aggressive necrosis. Both total protein and glycogen levels have been greatly reduced as indicated by histochemical examination. The treatment of S. mansoni-infected mice with green tea succeeded to suppress oxidative stress by decreasing the lipid peroxides but failed to significantly enhance the antioxidant defense system and deteriorated changes owing to liver damage and necrosis. In consistence with biochemical data, histopathological and histochemical data indicated that treatment of S. mansoni-infected mice with green tea could ameliorate hepatocytes thus reduce cellular necrosis and partially restore both total protein and glycogen levels. Thus, the study concluded that the green tea suppresses the oxidative stress through its constituent with free radicals scavenging properties rather than through the endogenous antioxidant defense system.  相似文献   

11.
In a surgical model of liver ischemia lipid peroxidation occurs, as shown by increase of lipid peroxidation end products, endogenous CoQ9 is oxidized and mitochondrial respiration is lowered; however, pre-treatment of the rats by i.p. injection of CoQ10 for 14 days normalizes the above parameters, presumably by way of the observed high extent of reduction of the incorporated quinone; moreover, liver homogenates of the CoQ10-treated rats are more resistant than those of non-treated rats to oxidative stress induced by an azido free radical initiator. This preliminary study suggests that CoQ10 pre-treatment can be of beneficial effect against oxidative damage during liver surgery transplantation.  相似文献   

12.
The antioxidative property of green tea against iron-induced oxidative stress was investigated in the rat brain both in vivo and in vivo. Incubation of brain homogenates at 37 degrees C for 4 hours in vitro increased the formation of Schiff base fluorescent products of malonaldehyde, an indicator of lipid peroxidation. Auto-oxidation (without exogenous iron) of brain homogenates was inhibited by green tea extract in a concentration-dependent manner. Moreover, incubation with iron (1 microM) elevated lipid peroxidation of brain homogenates after 4-hour incubation at 37 degrees C. Co-incubation with green tea extract dose-dependently inhibited the iron-induced elevation in lipid peroxidation. For the in vivo studies: ferrous citrate (iron, 4.2 nmoles) was infused intranigrally and induced degeneration of the nigrostriatal dopaminergic system of rat brain. An increase in lipid peroxidation in substantia nigra as well as a decrease in dopamine content in striatum was observed seven days after the iron infusion. Intranigral infusion of green tea extract alone did not increase, and in some cases, even decreased lipid peroxidation in substantia nigra. Co-infusion of green tea extract prevented oxidative injury induced by iron. Both iron-induced elevation in lipid peroxidation in substantia nigra and iron-induced decrease in dopamine content in striatum were suppressed. Oral administration of green tea extract for two weeks did not prevent the iron-induced oxidative injury in nigrostriatal dopaminergic system. Our results suggest that intranigral infusion of green tea extract appears to be nontoxic to the nigrostriatal dopaminergic system. Furthermore, the potent antioxidative action of green tea extract protects the nigrostriatal dopaminergic system from the iron-induced oxidative injury.  相似文献   

13.
We determined the effects of a green tea extract with 36% alcohol on the blood alcohol content, oxidative stress, lipogenesis, inflammation and liver function of female Wistar rats. Tea alcohol significantly decreased the O2?, H2O2 and HOCl amounts via catechins and not caffeine. Thirty days of alcohol gavage improved the level of reactive oxygen species (ROS) in the liver, bile and blood, increased the 4-hydroxynonenal-protein adducts, Kupffer cell infiltration and lipid accumulation in the liver, and elevated the plasma alanine aminotransferase level. A western blot analysis showed reduced expression of the oxidative enzymes (CYP2E1 and NADPH oxidase p47phox protein) and lipogenic enzymes (SREBP-1c and fatty acid synthase) in the alcohol-treated liver. Tea alcohol significantly attenuated these elevated parameters. We conclude that the green tea extract in alcohol efficiently reduced the amounts of O2?, H2O2 and HOCl primarily due to the catechin content, and not caffeine. The developed tea liquor attenuated alcohol-induced oxidative injury and lipogenesis in the liver by the synergetic action of catechins and caffeine.  相似文献   

14.
Mitochondrial dysfunction and oxidative stress participate in the development of diabetic complications, however, the mechanisms of their origin are not entirely clear. Coenzyme Q has an important function in mitochondrial bioenergetics and is also a powerful antioxidant. Coenzyme Q (CoQ) regenerates alpha-tocopherol to its active form and prevents atherogenesis by protecting low-density lipoproteins against oxidation. The aim of this study was to ascertain whether the experimentally induced diabetes mellitus is associated with changes in the content of endogenous antioxidants (alpha-tocopherol, coenzymes Q9 and Q10) and in the intensity of lipoperoxidation. These biochemical parameters were investigated in the blood and in the isolated heart and liver mitochondria. Diabetes was induced in male Wistar rats by a single intravenous injection of streptozotocin (45 mg x kg(-1)), insulin was administered once a day for 8 weeks (6 U x kg(-1)). The concentrations of glucose, cholesterol, alpha-tocopherol and CoQ homologues in the blood of the diabetic rats were increased. The CoQ9/cholesterol ratio was reduced. In heart and liver mitochondria of the diabetic rats we found an increased concentration of alpha-tocopherol, however, the concentrations of CoQ9 and CoQ10 were decreased. The formation of malondialdehyde was enhanced in the plasma and heart mitochondria. The results have demonstrated that experimental diabetes is associated with increased lipoperoxidation, in spite of the increased blood concentrations of antioxidants alpha-tocopherol and CoQ. These changes may be associated with disturbances of lipid metabolism in diabetic rats. An important finding is that heart and liver mitochondria from the diabetic rats contain less CoQ9 and CoQ10 in comparison with the controls. We suppose that the deficit of coenzyme Q can participate in disturbances of mitochondrial energy metabolism of diabetic animals.  相似文献   

15.
We investigated the effects of physical exercise and green tea supplementation (associated or not) on biochemical and behavioral parameters in the time course of normal aging. Male Wistar rats aged 9 months were divided into groups: control, physical exercise (treadmill running), and supplemented with green tea while either performing physical exercise or not. A young control group was also studied. Physical exercise and green tea supplementation lasted 3 months. Afterwards, behavioral and biochemical tests were performed. Biochemical measurements revealed differences in antioxidant and oxidant responses in hippocampus, prefrontal cortex and striatum. Behavioral testing showed age-related memory impairments reversed by physical exercise. The association of green tea supplementation and physical exercise did not provide aged rats with additional improvements in memory or brain oxidative markers. Green tea per se significantly decreased reactive oxygen species levels and improved antioxidant defenses although it did not reverse memory deficits associated with normal aging.  相似文献   

16.
The present study has been undertaken to monitor the extent of oxidative stress in mice infected with M. tuberculosis and the role of crude green tea extract in repairing the oxidative damage. The mice were divided into three groups of 9 each; normal, infected-untreated and infected-treated. The infected group of animals exhibited significant enhancement of erythrocytic catalase and glutathione peroxidase activities along with elevated levels of erythrocytic total thiols and plasma lipid peroxidation as compared to normal animals. The infected group also exhibited significantly decreased activity of superoxide dismutase and levels of glutathione in erythrocytes. Upon oral administration of green tea extract for seven days the oxidative stress parameters were reverted back to near normal levels as evidenced by a fall in catalase, glutathione peroxidase, total thiol and extent of lipid peroxidation with concomitant increase in the levels of SOD and reduced glutathione in infected animals. The findings thus, portray that there is a high oxidative stress during early stages of tuberculosis and antioxidants such as green tea extract, can play a vital role by reducing stress through adjuvant therapy.  相似文献   

17.
The infusion tea extracted from the leaves of the plant Camellia sinensis can be used in the prevention of cancer, cardiovascular and neurodegenerative diseases, and aging, while adriamycin (ADR) is an anticancer drug that increases oxidative stress in cells. The present study evaluated the protective effect of the long-term consumption of white tea used at two different doses against the oxidative stress produced by aging and acute oxidation caused ADR treatment. At wearing, rats received distilled water (control), or 0.15 (dose 1) or 0.45 mg (dose 2) of solid tea extract/kilogram body weight in their drink. At 12 months, about half of the rats of each group were injected with a bolus of ADR, and six rats of the control group with an injection of saline solution and sacrificed. The rest of the animals continued in their cages until 24 months of age, when they were sacrificed. Lipid and protein oxidation of liver and brain microsomes was analyzed by measuring hydroperoxide and carbonyl levels. White tea consumption for 12 months at a non-pharmacological dose was seen to reverse the oxidative damage caused by ADR in both liver and brain, while the consumption of white tea for 20 months at a non-pharmacological dose had no effect on carbonyl or hydroperoxides in these tissues. The long-term ingestion of white tea protected tissues from acute oxidative stress but did not affect chronic oxidative agents such aging.  相似文献   

18.
This paper reports data on the effect of green tea on the lipid peroxidation products formation and parameters of antioxidative system of the liver, blood serum and central nervous tissue of healthy young rats drinking green tea for five weeks. The rats were permitted free access to solubilized extract of green tea. Bioactive ingredients of green tea extract caused in the liver an increase in the activity of glutathione peroxidase and glutathione reductase and in the content of reduced glutathione as well as marked decrease in lipid hydroperoxides (LOOH), 4-hydroksynonenal (4-HNE) and malondialdehyde (MDA). The concentration of vitamin A increased by about 40%. Minor changes in the measured parameters were observed in the blood serum. GSH content increased slightly, whereas the index of the total antioxidant status increased significantly. In contrast, the lipid peroxidation products, particularly MDA was significantly diminished. In the central nervous tissue the activity of superoxide dismutase and glutathione peroxidase decreased while the activity od glutathione reductase and catalase increased after drinking green tea. Moreover the level of LOOH, 4-HNE and MDA significantly decreased. The use of green tea extract appeared to be beneficial to rats in reducing lipid peroxidation products. These results support and substantiate traditional consumption of green tea as protection against lipid peroxidation in the liver, blood serum, and central nervous tissue.  相似文献   

19.
Some heavy metals are known to exert harmful effects by generating an oxidative stress which, in turn, can affect the sexual and reproductive functions of male animals. The addition of antioxidants to the diet could decrease the cytotoxic effect related to oxidative stress (in the presence of heavy metals as food or water contaminants). As a contribution to this problem, the protective effect ofCamellia sinensis green tea, which is know to be rich in antioxidant compounds (polyphenols, etc.), was studied in vanadium-treated adult male rats, with particular attention to growth and genital tract function. White male Wistar rats were given ammonium metavanadate in drinking water (0.46 g/L) for 90 days One group of animals received green tea supplement in drinking water and the control group did not. Chronic vanadium intoxication (without green tea supplement) induced a low growth rate and relative atrophy of the testes, epididymis, prostate and seminal vesicles. Motility and number of spermatozoa were also decreased. Histological examination of the testes revealed atrophy of the seminiferous tubules and defects of spermatogenesis leading to the absence of spermatozoa in 50% of seminiferous tubules. Blood testosterone levels, evaluated by radioimmunoassay, were also decreased from day 2 to day 20. In control animals, these levels were 0.717±0.107 ng/ml; 4.366±0.666 ng/ml and 1.979±0.42 ng/ml on day 2, day 10 and day 20, respectively. After vanadium treatment, they were reduced to 0.043±0.012 ng/ml, 2.494±0.17 ng/ml and 1.086±0.53 ng/ml, respectively, at the same periods. These morphological, histological and functional disorders mostly occured during the first phase of the intoxication period (day 2 to day 10) and were subsequently attenuated, indicating adaptation to the poisoning. In rats receiving green tea, vanadium ingestion did not modify growth rate compared to control animals. Very minor changes were observed in the genital tract. Testicular atrophy and absence of spermatozoa were observed in only some seminiferous tubules. Our results underscore the protective effect of green tea on vanadium poisoning. Polyphenols, which are abundant in green tea, are known to chelate iron. It is proposed that polyphenols may also form insoluble complexes with vanadium, allowing it to be eliminated in the feces. This could explain the decreased effects of vanadium poisoning under our experimental conditions.  相似文献   

20.
Transitional metals, as vanadium, are known to exert noxious effects by generating oxidative stress. Addition of antioxidants in the diet could decrease the cytotoxic effect related to the oxidative stress. The present study, carried out in Wistar rats, is a contribution to the evaluation of protective effects of green tea Camellia sinensis, which is known to be rich in antioxidant compounds (polyphenols...). Rats were divided into four groups: (C) was control, (V) was given ammonium metavanadate (AMV), (TH) was given herbal tea as drink (66 g/l) and TH + V was given tea and metavanadate. Group (TH) was given herbal tea one month before vanadium treatment. Metavanadate was daily i.p. injected (5 mg NH4VO3/kg body weight) for 10 days. (C) and (TH) groups received i.p. injections of 0.9% NaCl during the same period. Changes in lipid peroxidation levels (TBARS) in kidney, liver and testes, serum concentrations of vitamins E and A and superoxidismutase (SOD) and catalase (CAT) activities in blood cells were determined. One month pre-treatment with green tea, followed by 10 days of treatment (TH) did not change TBARS in liver and testes as compared to controls, but induced a clear decrease of TBARS in kidneys. Intraperitoneal administration of AMV to rats (V) induced a time-dependant increase of TBARS in kidney, liver and testes that was lowered in rats (V + TH) drinking tea. Vitamin E concentrations were found to be drastically decreased from day 1 to 10 in rats (V). Vitamin A concentration was decreased at day 10 only. Drinking tea lowered AMV inhibitory effects in rats (V + TH), and conversely an increase of vitamins A and E concentrations were found at day 10. SOD and catalase activities were found increased in the blood cells from day 1 to day 5 and conversely decreased at day 10. In contrast, associated to green tea, AMV did not affect SOD and catalase activities compared to controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号