首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Extracellular nucleotides such as ATP have been shown to regulate ion transport processes in a variety of epithelia. This effect is mediated by the activation of plasma membrane P2Y receptors, which leads to Ca(2+) signaling cascade. Ion transport processes (e.g. activation of apical calcium-dependent Cl(-) channels) are then stimulated via an increase in [Ca(2+)](i). Many polarized epithelia express apical and/or basolateral P2Y receptors. To test whether apical and basolateral stimulation of P2Y receptors elicit polarized Ca(2+) signaling and anion secretion, we simultaneously measured the two parameters in polarized epithelia. Although activation of P2Y receptors located at both apical and basolateral membranes evoked an increase in [Ca(2+)](i), only apical P2Y receptors-coupled Ca(2+) release stimulated an increase in anion secretion. Moreover, the calcium influx evoked by apical and basolateral P2Y receptor stimulation is predominately via the basolateral membrane domain. It appears that the apical P2Y receptor-regulated Ca(2+) release and activation of apical Cl(-) channels is compartmentalized in polarized epithelia with basolateral P2Y-stimulated Ca(2+) release failing to activate anion secretion. These data suggest that there may be two distinct ATP-releasable Ca(2+) pools, each coupled to apical and basolateral membrane receptor but linked to the same calcium influx pathway located at the basolateral membrane.  相似文献   

2.
Airway epithelia are confronted with distinct signals emanating from the luminal and/or serosal environments. This study tested whether airway epithelia exhibit polarized intracellular free calcium (Ca(2+)(i)) and anion secretory responses to 5' triphosphate nucleotides (ATP/UTP), which may be released across both barriers of these epithelia. In both normal and cystic fibrosis (CF) airway epithelia, mucosal exposure to ATP/UTP increased Ca(2+)(i) and anion secretion, but both responses were greater in magnitude for CF epithelia. In CF epithelia, the mucosal nucleotide-induced response was mediated exclusively via Ca(2+)(i) interacting with a Ca(2+)-activated Cl(-) channel (CaCC). In normal airway epithelia (but not CF), nucleotides stimulated a component of anion secretion via a chelerythrine-sensitive, Ca(2+)-independent PKC activation of cystic fibrosis transmembrane conductance regulator. In normal and CF airway epithelia, serosally applied ATP or UTP were equally effective in mobilizing Ca(2+)(i). However, serosally applied nucleotides failed to induce anion transport in CF epithelia, whereas a PKC-regulated anion secretory response was detected in normal airway epithelia. We conclude that (1) in normal nasal epithelium, apical/basolateral purinergic receptor activation by ATP/UTP regulates separate Ca(2+)-sensitive and Ca(2+)-insensitive (PKC-mediated) anion conductances; (2) in CF airway epithelia, the mucosal ATP/UTP-dependent anion secretory response is mediated exclusively via Ca(2+)(i); and (3) Ca(2+)(i) regulation of the Ca(2+)-sensitive anion conductance (via CaCC) is compartmentalized in both CF and normal airway epithelia, with basolaterally released Ca(2+)(i) failing to activate CaCC in both epithelia.  相似文献   

3.
Bronchial epithelial cells respond to extracellular nucleotides from the luminal and basolateral side activating Cl- secretion via [Ca2+]i increase. In this study we investigated the differences of apically (ap) and basolaterally (bl) stimulated [Ca2+]i signals in polarized human bronchial epithelial cells (16HBE14o-). Specifically we investigated the localization of 'capacitative Ca2+ entry' (CCE). 16HBE14o- cells grown on permeable filters were mounted into an Ussing chamber built for the simultaneous measurement of Fura-2 fluorescence and electrical properties. Application of ATP from both sides induced a rapid [Ca2+]i increase and subsequent sustained [Ca2+]i plateau due to transmembraneous Ca(2+)-influx. The use of different nucleotides revealed the following rank order or potency which was very similar for addition from the apical or basolateral side: UTP (EC50 ap: 4 microM, bl: 5 microM) > ATP (EC50 ap: 4 microM, bl: 10 microM) > ADP (n = 4-7 from both sides). 2-MeS-ATP, AMP, adenosine and beta gamma-methylene ATP were ineffective (n = 3 from both sides). The ATP- (ap and bl) induced Ca2+ influx was only abolished by removal of basolateral Ca2+. This was also true for receptor-independent activation of Ca(2+)-influx by intracellular Ca(2+)-store depletion with 2,5 Di-(tert-butyl)-1,4-benzohydroquinone (BHQ) (10 microM). Also in polarized T84 cells the basolateral carbachol and BHQ activated Ca2+ plateau was exclusively sensitive to removal of basolateral Ca2+. We propose that in all polarized epithelial cells the CCE entry pathway is located in the basolateral membrane. We furthermore suggest that Ca2+[i elevating agonists acting from the apical side of the epithelium lead to the opening of a basolateral CCE pathway.  相似文献   

4.
Bradykinin stimulates Cl- secretion by airway epithelia, but different patterns of secretion result from addition to the mucosal and submucosal surfaces. Earlier work suggested that bradykinin activates two second messenger pathways: increasing inositol phosphates (InsP) via phosphatidylinositol bisphosphate hydrolysis and increasing cAMP via arachidonic acid metabolism. In this study, we measured arachidonic acid release and InsP production in cultured canine tracheal epithelial cells. Bradykinin increased the two second messengers via independent mechanisms: (a) dose-response curves with different incubation media demonstrated that each second messenger could be generated independently of the other; (b) phorbol ester inhibited InsP production but stimulated arachidonic acid release; (c) for polarized cultures, submucosal bradykinin stimulated production of both second messengers but mucosal bradykinin stimulated only arachidonic acid release. To determine if differences in second messenger formation at the two membranes resulted from differences in hormone-receptor interactions, we compared bradykinin binding to the apical and basolateral membranes. Both the binding capacities and affinity constants (KD) were different (basolateral KD, 257 +/- 53 pM; apical KD, 39 +/- 3 pM). These data demonstrate polarized coupling of bradykinin receptors to second messenger pathways in airway epithelial cells and suggest that this polarized coupling is due to different bradykinin receptors at the two membranes.  相似文献   

5.
Adenosine promotes IL-6 release in airway epithelia   总被引:1,自引:0,他引:1  
In the airway epithelia, extracellular adenosine modulates a number of biological processes. However, little is known about adenosine's role in the inflammatory responses of airway epithelial cells. Recent studies suggest that the chronic elevation of extracellular adenosine in mice leads to pulmonary inflammation and fibrosis. Yet, the underlying molecular mechanism has not been well understood and little attention has been paid to the role of airway epithelia in adenosine-triggered inflammation. In the present work, we examined the role of adenosine in releasing IL-6 from airway epithelia. In Calu-3 human airway epithelial cells, apical but not basolateral adenosine elicited robust, apically polarized release of IL-6, along with proinflammatory IL-8. Both protein kinase A and protein kinase C mediated the adenosine-induced IL-6 release, at least partly via phosphorylation of CREB. Protein kinase C appeared to phosphorylate CREB through activating ERK. In addition, A2A but not A2B adenosine receptors were specifically required for the adenosine-induced IL-6 release. Furthermore, in rat bronchoalveolar lavage fluid, adenosine triggered the release of IL-6 as well as proinflammatory IL-1beta. Adenosine also mediated the release of a considerable portion of the LPS-induced IL-6 in rat bronchoalveolar lavage fluid. Our findings provide a possible molecular link between extracellular adenosine elevation and lung inflammation and fibrosis.  相似文献   

6.
In cholangiocytes, adenine nucleotides function as autocrine/paracrine signals that modulate ductular ion transport by activation of purinergic receptors. The purpose of these studies was to identify cellular signals that modulate ATP release and nucleotide processing in polarized normal rat cholangiocytes. In Ussing chamber studies, selective exposure of the apical and basolateral membranes to ATP or adenosine 5'-O-(3-thiotriphosphate) (ATPgammaS) stimulated increases in short-circuit current. Apical purinergic receptor agonist preference was consistent with the P2Y(2) subtype. In contrast, basolateral ADP was more potent in stimulating transepithelial currents, consistent with the expression of different basolateral P2 receptor(s). Luminometric analysis revealed that both membranes exhibited constitutive ATP efflux. Hypotonic exposure enhanced ATP release in both compartments, whereas decreases in ATP efflux during hypertonicity were more prominent at the apical membrane. Increases in intracellular cAMP, cGMP, and Ca(2+) also increased ATP permeability, but selective effects on apical and basolateral ATP release differed. Finally, the kinetics of ATP degradation in apical and basolateral compartments were distinct. These findings suggest that there are domain-specific signaling pathways that contribute to purinergic responses in polarized cholangiocytes.  相似文献   

7.
We recently proposed that extracellular Ca(2+) ions participate in a novel form of intercellular communication involving the extracellular Ca(2+)-sensing receptor (CaR). Here, using Ca(2+)-selective microelectrodes, we directly measured the profile of agonist-induced [Ca(2+)]ext changes in restricted domains near the basolateral or luminal membranes of polarized gastric acid-secreting cells. The Ca(2+)-mobilizing agonist carbachol elicited a transient, La(3+)-sensitive decrease in basolateral [Ca(2+)] (average approximately 250 microM, but as large as 530 microM). Conversely, carbachol evoked an HgCl2-sensitive increase in [Ca(2+)] (average approximately 400 microM, but as large as 520 microM) in the lumen of single gastric glands. Both responses were significantly reduced by pre-treatment with sarco-endoplasmic reticulum Ca(2+) ATPase (SERCA) pump inhibitors or with the intracellular Ca(2+) chelator BAPTA-AM. Immunofluorescence experiments demonstrated an asymmetric localization of plasma membrane Ca(2+) ATPase (PMCA), which appeared to be partially co-localized with CaR and the gastric H(+)/K(+)-ATPase in the apical membrane of the acid-secreting cells. Our data indicate that agonist stimulation results in local fluctuations in [Ca(2+)]ext that would be sufficient to modulate the activity of the CaR on neighboring cells.  相似文献   

8.
Respiratory pathogens and toxins often assault the lung from the airway lumen. Airway epithelia may initiate and amplify inflammation in response to these attacks, but under certain conditions confinement of inflammation to the airway lumen may be beneficial to the host. Accordingly, we hypothesized that airway epithelial polarity allows different responses to basolateral vs apical stimuli that may modulate inflammation. Using primary human airway epithelial cells differentiated at an air-liquid interface in culture, we found that responses to several cytokines required basolateral mediator application. In contrast, responses to Haemophilus influenzae occurred after either basolateral or apical interaction with airway epithelia. Experiments focused on IFN-gamma receptor polarity confirmed its predominant basolateral location in cultured airway epithelia as well as in normal human airway tissue. Furthermore, physical and pharmacologic disruption of barrier function in airway epithelia allowed responses to apical application of IFN-gamma and other cytokines. These in vitro studies directly correlated with experiments in mice in which an airway epithelial response to IFN-gamma injected into the airway lumen was seen only after disruption of barrier function. The results indicate that airway epithelia with intact barrier function restrict inflammatory responses by limitation of cell activation through requiring interaction of selected mediators with the basolateral surface. However, loss of barrier integrity allows epithelial responses to these mediators if located in the airway lumen to amplify airway defenses.  相似文献   

9.
In airway epithelia, purinergic receptor (P2Y2-R) stimulation of intracellular calcium (Ca2+i)-regulated ion transport is restricted to the membrane domain ipsilateral to receptor activation, implying compartmentalization of Ca2+i signaling. Because mitochondria can spatially restrict cellular Ca2+i signals, immunocytochemical, electron microscopic, and fluorescent studies of mitochondria localization were performed in human airway epithelia. Although concentrated at the apical domain, mitochondria were found distributed at both the apical and the basolateral poles and in close association with the endoplasmic reticulum. The role of mitochondria in locally restricting P2Y2-R-induced Ca2+i signals was investigated by measuring changes in mitochondrial Ca2+ (Ca2+m) in human airway epithelial monolayers. P2Y2-R activation induced Ca2+m accumulation in mitochondria confined to the domain ipsilateral to P2Y2-R stimulation, which was blocked by mitochondrial uncoupling with 1 microM CCCP and 2.5 microg/ml oligomycin. The role of mitochondria in restricting the cellular cross-talk between basolateral P2Y2-R-dependent Ca2+i mobilization and apical membrane Ca2+-activated Cl- secretion was investigated in studies simultaneously measuring Ca2+i and Cl- secretion in cystic fibrosis human airway epithelial monolayers. Activation of basolateral P2Y2-Rs produced similar increases in Ca2+i in monolayers without and with pretreatment with uncouplers, whereas Ca2+i-activated Cl- secretion was only efficiently triggered in mitochondria-uncoupled conditions. We conclude that (a) mitochondria function as a Ca2+i-buffering system in airway epithelia, compartmentalizing Ca2+i-dependent functions to the membrane ipsilateral to receptor stimulation; and (b) the mitochondria provide structural barriers that protect the airway epithelia against nonspecific activation of Ca2+i-modulated functions associated with Ca2+i signals emanating from the apical or the basolateral membrane domains.  相似文献   

10.
Lumenal delivery of adenovirus vectors (AdV) results in inefficient gene transfer to human airway epithelium. The human coxsackievirus and adenovirus receptor (hCAR) was detected by immunofluorescence selectively at the basolateral surfaces of freshly excised human airway epithelial cells, suggesting that the absence of apical hCAR constitutes a barrier to adenovirus-mediated gene delivery in vivo. In transfected polarized Madin-Darby canine kidney cells, wild-type hCAR was expressed selectively at the basolateral membrane, whereas hCAR lacking the transmembrane and/or cytoplasmic domains was expressed on both the basolateral and apical membranes. Cells expressing apical hCAR still were not efficiently transduced by AdV applied to the apical surface. However, after the cells were treated with agents that remove components of the apical surface glycocalyx, AdV transduction occurred. These results indicate that adenovirus can infect via receptors located at the apical cell membrane but that the glycocalyx impedes interaction of AdV with apical receptors.  相似文献   

11.
Increasing evidence suggests that P2 receptors (P2Rs) in airway epithelial cells perform critical functions in auto- or paracrine regulation of fluid and mucus secretion. In the present study, we characterized the effects of P2R stimulation on Na(+)-K(+)-2Cl(-) cotransporter (NKCC) activity in normal human nasal epithelial (NHNE) cells. [Ca(2+)](i) and pH(i) were measured in primary cultures of NHNE cells using a double perfusion chamber, which enabled us to analyze membrane-specific transporter activities. NKCC activities were estimated by the pH(i) reduction due to Na(+)-dependent and bumetanide-sensitive intracellular uptake of NH(4)(+). NKCC activities were observed in the basolateral membrane, but not in the luminal membrane, of NHNE cells. Interestingly, P2Rs were expressed in both membranes, and the stimulation of either luminal or basolateral P2R increased NKCC activity. Blockades of luminal Cl(-) channels, basolateral K(+) channels, or protein kinase C did not affect the activation of NKCC by basolateral P2R stimulation. The effects of luminal P2R stimulation were partially reduced by Cl(-) channel blockers. However, chelation of intracellular Ca(2+) by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) treatment completely blocked the stimulatory effects of luminal and basolateral P2Rs on NKCC. In addition, increasing [Ca(2+)](i) by treatment with ionomycin-stimulated NKCC activity. These results provide evidence that stimulation of P2Rs directly activates basolateral NKCC by Ca(2+)-dependent pathways in NHNE cells, which is an important aspect of the purinergic regulation of ion and fluid secretions in human airway epithelia under physiologic and pathologic conditions.  相似文献   

12.
In Ca(2+)-transporting epithelia, calbindin-D(28K) (CaBP(28K)) facilitates Ca(2+) diffusion from the luminal Ca(2+) entry side of the cell to the basolateral side, where Ca(2+) is extruded into the extracellular compartment. Simultaneously, CaBP(28K) provides protection against toxic high Ca(2+) levels by buffering the cytosolic Ca(2+) concentration ([Ca(2+)](i)) during high Ca(2+) influx. CaBP(28K) consistently colocalizes with the epithelial Ca(2+) channel TRPV5, which constitutes the apical entry step in renal Ca(2+)-transporting epithelial cells. Here, we demonstrate using protein-binding analysis, subcellular fractionation and evanescent-field microscopy that CaBP(28K) translocates towards the plasma membrane and directly associates with TRPV5 at a low [Ca(2+)](i). (45)Ca(2+) uptake measurements, electrophysiological recordings and transcellular Ca(2+) transport assays of lentivirus-infected primary rabbit connecting tubule/distal convolute tubule cells revealed that associated CaBP(28K) tightly buffers the flux of Ca(2+) entering the cell via TRPV5, facilitating high Ca(2+) transport rates by preventing channel inactivation. In summary, CaBP(28K) acts in Ca(2+)-transporting epithelia as a dynamic Ca(2+) buffer, regulating [Ca(2+)] in close vicinity to the TRPV5 pore by direct association with the channel.  相似文献   

13.
Extracellular nucleotides regulate mucociliary clearance in the airways and surfactant secretion in alveoli. Their release is exquisitely mechanosensitive and may be induced by stretch as well as airflow shear stress acting on lung epithelia. We hypothesized that, in addition, tension forces at the air-liquid interface (ALI) may contribute to mechanosensitive ATP release in the lungs. Local depletion of airway surface liquid, mucins, and surfactants, which normally protect epithelial surfaces, facilitate such release and trigger compensatory mucin and fluid secretion processes. In this study, human bronchial epithelial 16HBE14o(-) and alveolar A549 cells were subjected to tension forces at the ALI by passing an air bubble over the cell monolayer in a flow-through chamber, or by air exposure while tilting the cell culture dish. Such stimulation induced significant ATP release not involving cell lysis, as verified by ethidium bromide staining. Confocal fluorescence microscopy disclosed reversible cell deformation in the monolayer part in contact with the ALI. Fura 2 fluorescence imaging revealed transient intracellular Ca(2+) elevation evoked by the ALI, which did not entail nonspecific Ca(2+) influx from the extracellular space. ATP release was reduced by ~40 to ~90% from cells loaded with the Ca(2+) chelator BAPTA-AM and was completely abolished by N-ethylmalemide (1 mM). These experiments demonstrate that in close proximity to the ALI, surface tension forces are transmitted directly on cells, causing their mechanical deformation and Ca(2+)-dependent exocytotic ATP release. Such a signaling mechanism may contribute to the detection of local deficiency of airway surface liquid and surfactants on the lung surface.  相似文献   

14.
Ferroportin 1 (FPN1; aka MTP1, IREG1, and SLC40A1), which was originally identified as a basolateral iron transporter crucial for nutritional iron absorption in the intestine, is expressed in airway epithelia and upregulated when these cells are exposed to iron. Using immunofluorescence labeling and confocal microscopic imaging techniques, we demonstrate that in human and rodent lungs, FPN1 localizes subcellularly to the apical but not basolateral membrane of the airway epithelial cells. The role of airway epithelial cells in iron mobilization in the lung was studied in an in vitro model of the polarized airway epithelium. Normal human bronchial epithelial cells, grown on membrane supports until differentiated, were exposed to iron, and the efficiency and direction of iron transportation were studied. We found that these cells can efficiently take up iron across the apical but not basolateral surface in a concentration-dependent manner. Most of the iron taken up by the cells is then released into the medium within 8 h in the form of less reactive protein-bound complexes including ferritin and transferrin. Interestingly, iron release also occurred across the apical but not basolateral membrane. Our findings indicate that FPN1, depending on its subcellular location, could have distinct functions in iron homeostasis in different cells and tissues. Although it is responsible for exporting nutrient iron from enterocytes to the circulation in the intestine, it could play a role in iron detoxification in airway epithelial cells in the lung.  相似文献   

15.
Large conductance, Ca(2+)-activated, and voltage-dependent K(+) (BK) channels control a variety of physiological processes in nervous, muscular, and renal epithelial tissues. In bronchial airway epithelia, extracellular ATP-mediated, apical increases in intracellular Ca(2+) are important signals for ion movement through the apical membrane and regulation of water secretion. Although other, mainly basolaterally expressed K(+) channels are recognized as modulators of ion transport in airway epithelial cells, the role of BK in this process, especially as a regulator of airway surface liquid volume, has not been examined. Using patch clamp and Ussing chamber approaches, this study reveals that BK channels are present and functional at the apical membrane of airway epithelial cells. BK channels open in response to ATP stimulation at the apical membrane and allow K(+) flux to the airway surface liquid, whereas no functional BK channels were found basolaterally. Ion transport modeling supports the notion that apically expressed BK channels are part of an apical loop current, favoring apical Cl(-) efflux. Importantly, apical BK channels were found to be critical for the maintenance of adequate airway surface liquid volume because continuous inhibition of BK channels or knockdown of KCNMA1, the gene coding for the BK α subunit (KCNMA1), lead to airway surface dehydration and thus periciliary fluid height collapse revealed by low ciliary beat frequency that could be fully rescued by addition of apical fluid. Thus, apical BK channels play an important, previously unrecognized role in maintaining adequate airway surface hydration.  相似文献   

16.
The renal Na-K-Cl cotransporter (NKCC2) is selectively expressed in the apical membranes of cells of the mammalian kidney, where it is the target of the clinically important loop diuretics. In contrast, the “secretory” NKCC1 cotransporter is localized in the basolateral membranes of many epithelia. To identify the sorting signal(s) that direct trafficking of NKCCs, we generated chimeras between the two isoforms and expressed these constructs in polarized renal epithelial cell lines. This analysis revealed an amino acid stretch in NKCC2 containing apical sorting information. The NKCC1 C terminus contains a dileucine motif that constitutes the smallest essential component of its basolateral sorting signal. NKCC1 lacking this motif behaves as an apical protein. Examination of the NKCC gene structure reveals that this dileucine motif is encoded by an additional exon in NKCC1 absent in NKCC2. Phylogenetic analysis of this exon suggests that the evolutionary loss of this exon from the gene encoding the basolateral NKCC1 constitutes a novel mechanism that accounts for the apical sorting of the protein encoded by the NKCC2 gene.  相似文献   

17.
Renal epithelial cells release ATP constitutively under basal conditions and release higher quantities of purine nucleotide in response to stimuli. ATP filtered at the glomerulus, secreted by epithelial cells along the nephron, and released serosally by macula densa cells for feedback signaling to afferent arterioles within the glomerulus has important physiological signaling roles within kidneys. In autosomal recessive polycystic kidney disease (ARPKD) mice and humans, collecting duct epithelial cells lack an apical central cilium or express dysfunctional proteins within that monocilium. Collecting duct principal cells derived from an Oak Ridge polycystic kidney (orpk ( Tg737 ) ) mouse model of ARPKD lack a well-formed apical central cilium, thought to be a sensory organelle. We compared these cells grown as polarized cell monolayers on permeable supports to the same cells where the apical monocilium was genetically rescued with the wild-type Tg737 gene that encodes Polaris, a protein essential to cilia formation. Constitutive ATP release under basal conditions was low and not different in mutant versus rescued monolayers. However, genetically rescued principal cell monolayers released ATP three- to fivefold more robustly in response to ionomycin. Principal cell monolayers with fully formed apical monocilia responded three- to fivefold greater to hypotonicity than mutant monolayers lacking monocilia. In support of the idea that monocilia are sensory organelles, intentionally harsh pipetting of medium directly onto the center of the monolayer induced ATP release in genetically rescued monolayers that possessed apical monocilia. Mechanical stimulation was much less effective, however, on mutant orpk collecting duct principal cell monolayers that lacked apical central monocilia. Our data also show that an increase in cytosolic free Ca(2+) primes the ATP pool that is released in response to mechanical stimuli. It also appears that hypotonic cell swelling and mechanical pipetting stimuli trigger release of a common ATP pool. Cilium-competent monolayers responded to flow with an increase in cell Ca(2+) derived from both extracellular and intracellular stores. This flow-induced Ca(2+) signal was less robust in cilium-deficient monolayers. Flow-induced Ca(2+) signals in both preparations were attenuated by extracellular gadolinium and by extracellular apyrase, an ATPase/ADPase. Taken together, these data suggest that apical monocilia are sensory organelles and that their presence in the apical membrane facilitates the formation of a mature ATP secretion apparatus responsive to chemical, osmotic, and mechanical stimuli. The cilium and autocrine ATP signaling appear to work in concert to control cell Ca(2+). Loss of a cilium-dedicated autocrine purinergic signaling system may be a critical underlying etiology for ARPKD and may lead to disinhibition and/or upregulation of multiple sodium (Na(+)) absorptive mechanisms and a resultant severe hypertensive phenotype in ARPKD and, possibly, other diseases.  相似文献   

18.
Electrolyte transport by airway epithelia regulates the quantity and composition of liquid covering the airways. Previous data indicate that airway epithelia can absorb NaCl. At the apical membrane, cystic fibrosis transmembrane conductance regulator (CFTR) provides a pathway for Cl(-) absorption. However, the pathways for basolateral Cl(-) exit are not well understood. Earlier studies, predominantly in cell lines, have reported that the basolateral membrane contains a Cl(-) conductance. However, the properties have varied substantially in different epithelia. To better understand the basolateral Cl(-) conductance in airway epithelia, we studied primary cultures of well-differentiated human airway epithelia. The basolateral membrane contained a Cl(-) current that was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The current-voltage relationship was nearly linear, and the halide selectivity was Cl(-) > Br(-) > I(-). Several signaling pathways increased the current, including elevation of cellular levels of cAMP, activation of protein kinase C (PKC), and reduction of pH. In contrast, increasing cell Ca(2+) and inducing cell swelling had no effect. The basolateral Cl(-) current was present in both cystic fibrosis (CF) and non-CF airway epithelia. Likewise, airway epithelia from wild-type mice and mice with disrupted genes for ClC-2 or ClC-3 all showed similar Cl(-) currents. These data suggest that the basolateral membrane of airway epithelia possesses a Cl(-) conductance that is not due to CFTR, ClC-2, or ClC-3. Its regulation by cAMP and PKC signaling pathways suggests that coordinated regulation of Cl(-) conductance in both apical and basolateral membranes may be important in controlling transepithelial Cl(-) movement.  相似文献   

19.
20.
Cl(-) channels in the apical membrane of biliary epithelial cells (BECs) provide the driving force for ductular bile formation. Although a cystic fibrosis transmembrane conductance regulator has been identified in BECs and contributes to secretion via secretin binding basolateral receptors and increasing [cAMP](i), an alternate Cl(-) secretory pathway has been identified that is activated via nucleotides (ATP, UTP) binding apical P2 receptors and increasing [Ca(2+)](i). The molecular identity of this Ca(2+)-activated Cl(-) channel is unknown. The present studies in human, mouse, and rat BECs provide evidence that TMEM16A is the operative channel and contributes to Ca(2+)-activated Cl(-) secretion in response to extracellular nucleotides. Furthermore, Cl(-) currents measured from BECs isolated from distinct areas of intrahepatic bile ducts revealed important functional differences. Large BECs, but not small BECs, exhibit cAMP-stimulated Cl(-) currents. However, both large and small BECs express TMEM16A and exhibit Ca(2+)-activated Cl(-) efflux in response to extracellular nucleotides. Incubation of polarized BEC monolayers with IL-4 increased TMEM16A protein expression, membrane localization, and transepithelial secretion (I(sc)). These studies represent the first molecular identification of an alternate, noncystic fibrosis transmembrane conductance regulator, Cl(-) channel in BECs and suggest that TMEM16A may be a potential target to modulate bile formation in the treatment of cholestatic liver disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号