共查询到20条相似文献,搜索用时 0 毫秒
1.
Peterlin P 《Journal of biological physics》2010,36(4):339-354
A model of vesicle electrodeformation is described which obtains a parametrized vesicle shape by minimizing the sum of the membrane bending energy and the energy due to the electric field. Both the vesicle membrane and the aqueous media inside and outside the vesicle are treated as leaky dielectrics, and the vesicle itself is modeled as a nearly spherical shape enclosed within a thin membrane. It is demonstrated (a) that the model achieves a good quantitative agreement with the experimentally determined prolate-to-oblate transition frequencies in the kilohertz range and (b) that the model can explain a phase diagram of shapes of giant phospholipid vesicles with respect to two parameters: the frequency of the applied alternating current electric field and the ratio of the electrical conductivities of the aqueous media inside and outside the vesicle, explored in a recent paper (S. Aranda et al., Biophys J 95:L19–L21, 2008). A possible use of the frequency-dependent shape transitions of phospholipid vesicles in conductometry of microliter samples is discussed. 相似文献
2.
Intramembrane-cleaving proteases (I-CLiPs) are membrane embedded proteolytic enzymes. All substrates identified so far are also membrane proteins, involving a number of critical cellular signaling as well as human diseases. After synthesis and assembly at the endoplasmic reticulum, membrane proteins are exported to the Golgi apparatus and transported to their sites of action. A number of studies have revealed the importance of the intracellular membrane trafficking in i-CLiP-mediated intramembrane proteolysis, not only for limiting the unnecessary encounter between i-CLiPs and their substrate but also for their cleavage site preference. In this review, we will discuss recent advances in our understanding of how each i-CLiP proteolysis is regulated by intracellular vesicle trafficking. This article is part of a Special Issue entitled: Intramembrane Proteases. 相似文献
3.
We present a non-invasive method to monitor the membrane tension of intracellular organelles using a magnetic field as an external control parameter. By exploiting the spontaneous endocytosis of anionic colloidal ferromagnetic nanoparticles, we obtain endosomes possessing a superparamagnetic lumen in eukaryotic cells. Initially flaccid, the endosomal membrane undulates because of thermal fluctuations, restricted in zero field by the resting tension and the curvature energy of the membrane. When submitted to a uniform magnetic field, the magnetized endosomes elongate along the field, resulting in the flattening of the entropic membrane undulations. The quantification of the endosome deformation for different magnetic fields allows in situ measurement of the resting tension and the bending stiffness of the membrane enclosing the intracellular organelle. 相似文献
4.
Vesicles of egg yolk phosphatidylcholine (EYPC) were studied by cryo-transmission electron microscopy. The electron micrographs indicate that, despite the rapidity of cooling, membrane undulations are flattened and some vesicles change their shapes before the samples freeze. These artefacts are attributed to the action of the lateral tension that results from the membrane area contraction associated with the temperature drop. Other micrographs represent grainy membranes and angular vesicles. We regard them as the first direct evidence for the superstructure and optically invisible roughness which were recently postulated for these membranes. 相似文献
5.
6.
In this paper we detail experimental methods to implement registers, logic gates and logic circuits using populations of photochromic molecules exposed to sequences of light pulses. Photochromic molecules are molecules with two or more stable states that can be switched reversibly between states by illuminating with appropriate wavelengths of radiation. Registers are implemented by using the concentration of molecules in each state in a given sample to represent an integer value. The register's value can then be read using the intensity of a fluorescence signal from the sample. Logic gates have been implemented using a register with inputs in the form of light pulses to implement 1-input/1-output and 2-input/1-output logic gates. A proof of concept logic circuit is also demonstrated; coupled with the software workflow describe the transition from a circuit design to the corresponding sequence of light pulses. 相似文献
7.
Mingming Pu Andrew Orr Alfred G. Redfield Mary F. Roberts 《The Journal of biological chemistry》2010,285(35):26916-26922
Despite the profound physiological consequences associated with peripheral membrane protein localization, only a rudimentary understanding of the interactions of proteins with membrane surfaces exists because these questions are inaccessible by commonly used structural techniques. Here, we combine high resolution field-cycling 31P NMR relaxation methods with spin-labeled proteins to delineate specific interactions of a bacterial phospholipase C with phospholipid vesicles. Unexpectedly, discrete binding sites for both a substrate analogue and a different phospholipid (phosphatidylcholine) known to activate the enzyme are observed. The lifetimes for the occupation of these sites (when the protein is anchored transiently to the membrane) are >1–2 μs (but <1 ms), which represents the first estimate of an off-rate for a lipid dissociating from a specific site on the protein and returning to the bilayer. Furthermore, analyses of the spin-label induced NMR relaxation corroborates the presence of a discrete tyrosine-rich phosphatidylcholine binding site whose location is consistent with that suggested by modeling studies. The methodology illustrated here may be extended to a wide range of peripheral membrane proteins. 相似文献
8.
In this article analytical expressions for peptide-induced membrane leakage are presented. Two different models for time-dependent
leakage have been developed. In the first, the leakage is assumed to be coupled by pores formed by the peptides. In the second
model the peptide is assumed to induce a stress/perturbation in the membrane, and in order to reduce the stress, rearrangements
in the membrane are induced. The leakage is coupled to these rearrangements, and when equilibrium is achieved no more leakage
occurs. From the kinetic models simple fitting routines have been developed involving only two fitting parameters, and these
have been used to fit experimental data for two prion protein-derived peptides as well as the honey bee toxin melittin in
both vesicles and erythrocytes with good results. The fitted parameters provide both a quantitative and a qualitative basis
for interpreting the experimental results. In addition a model for the peptide concentration-dependent leakage is presented,
which was used to fit experimental data for leakage induced by the prion protein-derived peptides. The models presented in
this article are compared with other models for peptide-induced membrane leakage. 相似文献
9.
M. A. R. B. Castanho Nuno C. Santos Luís M. S. Loura 《European biophysics journal : EBJ》1997,26(3):253-259
The recording of the absorption spectra of membrane probes and other chromophores is frequently difficult because of turbidity.
While in highly scattering media such as tissues, the solution to the problem can be rather complex, in cell and vesicle suspensions
it can be quite simple. In this work we aim to demonstrate that the ``blurred' sum spectrum can be decomposed into the absorption
and turbidity spectra using very well defined theoretical models rather than blind empirical procedures and intuition. Basically,
the methodology consists in the fitting of a power law to an absorption – free segment of the total spectrum. The power parameter
is related to the dimensions, refractive index and size polydispersity of the scattering particles. The proposed methodology
was applied to a polyene sterol probe in lipid vesicles (both uni and multilamellar).
Received: 22 November 1996 / Accepted: 13 March 1997 相似文献
10.
花色苷为一类天然水溶性色素,是决定果实外观和营养品质性状的重要因素。花色苷由位于内质网膜上的一系列酶合成,合成后转运至液泡内储存。花色苷的合成途径及其转录调控受到了研究者的广泛关注,关键结构基因和转录因子已在多种果树中被鉴定与验证,然而花色苷合成后跨膜转运至中央液泡的过程及其分子机制尚不清晰。本文回顾了花色苷转运相关的最新研究进展,并对谷胱甘肽S-转移酶、膜转运蛋白及囊泡运输介导的3类主要花色苷转运模型进行了概述。尽管目前已提出不同的花色苷转运模型,但花色苷向液泡内动态转运和汇集方面的研究还不够深入,进一步解析果实花色苷转运和沉积的分子机制和调控网络将有助于理解花色苷从合成到积累的完整代谢通路,并可为果实色泽品质性状改良提供分子工具。 相似文献
11.
W. Richard Burack Andrew R. G. Dibble Rodney L. Biltonen 《Chemistry and physics of lipids》1997,90(1-2):87-95
The action of phospholipase A2 (PLA2) on bilayer substrates causes the accumulation of reaction products, lyso-phospholipid and fatty acid. These reaction products and the phospholipid substrate generate compositional heterogeneities and then apparently phase separate when a critical mole fraction of reaction product accumulates in the membrane. This putative phase separation drives an abrupt morphologic rearrangement of the vesicle, which may be in turn responsible for modulating the activity of PLA2. Here we examine the thermotropic properties of the phase-separated lipid system formed upon hydrating colyophilized reaction products (1:1 palmitic acid:1-palmitoyl-2-lyso-phosphatidylcholine) and substrate, dipalmitoylphosphatidylcholine. The mixture forms structures which are not canonical spherical vesicles and appear to be disks in the gel-state. The main gel-liquid transition of these structures is hysteretic. This hysteresis is apparent using several techniques, each selected for its sensitivity to different aspects of a lipid aggregate's structure. The thermotropic hysteresis reflects the coupling between phase separation and changes in vesicle morphology. 相似文献
12.
《Journal of structural biology》2022,214(1):107836
Protein transport between the membranous compartments of the eukaryotic cells is mediated by the constant fission and fusion of the membrane-bounded vesicles from a donor to an acceptor membrane. While there are many membrane remodelling complexes in eukaryotes, COPII, COPI, and clathrin-coated vesicles are the three principal classes of coat protein complexes that participate in vesicle trafficking in the endocytic and secretory pathways. These vesicle-coat proteins perform two key functions: deforming lipid bilayers into vesicles and encasing selective cargoes. The three trafficking complexes share some commonalities in their structural features but differ in their coat structures, mechanisms of cargo sorting, vesicle formation, and scission. While the structures of many of the proteins involved in vesicle formation have been determined in isolation by X-ray crystallography, elucidating the proteins' structures together with the membrane is better suited for cryogenic electron microscopy (cryo-EM). In recent years, advances in cryo-EM have led to solving the structures and mechanisms of several vesicle trafficking complexes and associated proteins. 相似文献
13.
A.M. Kleinfeld P. Dragsten R.D. Klausner W.J. Pjura E.D. Matayoshi 《生物化学与生物物理学报:生物膜》1981,649(2):471-480
An investigation has been carried out of the relationship between changes in the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and concomittant changes in the lateral diffusion of proteins and lipid probes in membranes. Plasma membranes from lymphocytes and a CH1 mouse lymphoma line were treated with up to 70 mol% (relative to the total membrane phospholipid) of oleic or linoleic fatty acids. Under these conditions the fluorescence polarization of DPH decreased by between 8 and 15% which, in the framework of the microviscosity approach, suggests a membrane fluidity change of between 20 and 50%. The lateral diffusion coefficients of surface immunoglobin and the lipid probes 3,3′-dioctadecylindocarbocyanine and pyrene were also measured in these membranes using the fluorescence photobleaching recovery technique and the rate of pyrene excimer formation. The diffusion rates were found to be unaffected by the presence of free fatty acids. Hence despite large ‘microviscosity’ changes as reported by depolarization of DPH fluorescence, lateral diffusion coefficients are essentially unchanged. This finding is consistent with the idea that perturbing agents such as free fatty acids do not cause a general fluidization of the membrane but act locally to alter, for example, protein function. It is also consistent with the suggestion that lateral mobility of membrane proteins is not modulated by the lipid viscosity. 相似文献
14.
Lipid-protein films at the air-water interface were generated from a variety of native vesicles and from vesicles derived from lipid extracts. A technique is described which is particularly suitable for the generation of films from small amounts of material at high yield and velocity. In all instances, 10 l vesicle suspensions containing 25 g protein yield at least 50 cm2 film area at a constant surface pressure of 12 mN/m within minutes. Upon formation, surface films are separated from vesicles by use of shear forces. Complete separation is demonstrated by electron microscopy and surface pressure-area diagrams. The latter confirms previous conclusions that surface films generated from lipid vesicles are organized as a monolayer. Analysis of lipid-protein surface layers reveals that their lipid to protein ratios match those of the vesicles used, within a factor of two, irrespective of whether films are generated at high or low surface pressure. Surface denaturation of membrane proteins is shown to be effectively prevented when the film is generated and held at high surface pressure ( 15 mN/m). Upon surface pressure jumps from high to low values, denaturation kinetics revealed activation areas of 1.5 (±0.2) nm2.
Offprint requests to: H. Schindler 相似文献
15.
Hans-Günther Döbereiner Olaf Selchow Reinhard Lipowsky 《European biophysics journal : EBJ》1999,28(2):174-178
We present measurements of the effective spontaneous curvature of fluid lipid bilayers as a function of trans-bilayer asymmetry. Experiments are performed on micrometer-scale vesicles in sugar solutions with varying species across the membrane. There are two effects leading to a preferred curvature of such a vesicle. The spontaneous curvatures of the two monolayers as well as their area difference combine into an effective spontaneous curvature of the membrane. Our technique for measuring this parameter allows us to use vesicle morphology as a probe for general membrane-solute interactions affecting elasticity. Received: 3 June 1998 / Revised version: 18 August 1998 / Accepted: 21 August 1998 相似文献
16.
Diefenbacher M Thorsteinsdottir H Spang A 《The Journal of biological chemistry》2011,286(28):25027-25038
Intracellular transport is largely dependent on vesicles that bud off from one compartment and fuse with the target compartment. The first contact of an incoming vesicle with the target membrane is mediated by tethering factors. The tethering factor responsible for recruiting Golgi-derived vesicles to the ER is the Dsl1 tethering complex, which is comprised of the essential proteins Dsl1p, Dsl3p, and Tip20p. We investigated the role of the Tip20p subunit at the ER by analyzing two mutants, tip20-5 and tip20-8. Both mutants contained multiple mutations that were scattered throughout the TIP20 sequence. Individual mutations could not reproduce the temperature-sensitive phenotype of tip20-5 and tip20-8, indicating that the overall structure of Tip20p might be altered in the mutants. Using molecular dynamics simulations comparing Tip20p and Tip20-8p revealed that some regions, particularly the N-terminal domain and parts of the stalk region, were more flexible in the mutant protein, consistent with its increased susceptibility to proteolysis. Both Tip20-5p and Tip20-8p mutants prevented proper ER trans-SNARE complex assembly in vitro. Moreover, Tip20p mutant proteins disturbed the interaction between Dsl1p and the coatomer coat complex, indicating that the Dsl1p-coatomer interaction could be stabilized or regulated by Tip20p. We provide evidence for a direct role of the Dsl1 complex, in particular Tip20p, in the formation and stabilization of ER SNARE complexes. 相似文献
17.
18.
Ca2+-triggered membrane fusion is the defining step of exocytosis. Isolated urchin cortical vesicles (CV) provide a stage-specific
preparation to study the mechanisms by which Ca2+ triggers the merger of two apposed native membranes. Thiol-reactive reagents that alkylate free sulfhydryl groups on proteins
have been consistently shown to inhibit triggered fusion. Here, we characterize a novel effect of the alkylating reagent iodoacetamide
(IA). IA was found to enhance the kinetics and Ca2+ sensitivity of both CV-plasma membrane and CV–CV fusion. If Sr2+, a weak Ca2+ mimetic, was used to trigger fusion, the potentiation was even greater than that observed for Ca2+, suggesting that IA acts at the Ca2+-sensing step of triggered fusion. Comparison of IA to other reagents indicates that there are at least two distinct thiol
sites involved in the underlying fusion mechanism: one that regulates the efficiency of fusion and one that interferes with
fusion competency. 相似文献
19.
Kiselev MA Wartewig S Janich M Lesieur P Kiselev AM Ollivon M Neubert R 《Chemistry and physics of lipids》2003,123(1):31-44
Small-angle neutron and X-ray scattering, dynamic light scattering, X-ray diffraction coupled with differential scanning calorimetry, and Raman spectroscopy were applied to investigate unilamellar (ULVs) and multilamellar (MLVs) dimyristoylphosphatidylcholine (DMPC) vesicles in aqueous sucrose solutions with sucrose concentrations from 0 to 60% w/w. In case of ULVs, the addition of sucrose decreases the polydispersity of vesicle population. A minimum value of polydispersity was found at 20% sucrose. For sucrose concentration from 0 to 35% oligolamellar vesicles in the ULV population have a minimum presence. Vesicles with 5-10% sucrose exhibit the best stability in time. For the case of MLVs, sucrose influences the temperature of the phase transitions, but the internal membrane structure remains unchanged. 相似文献
20.
Summary The endocytic pathway is a well established process in animal cells, but it is not well understood in plant cells. At the morphological level, all the compartments involved in endocytosis in animal cells seem to have counterparts in plant cells, and the organization of the pathway appears to share some striking similarities. Several Rab homologues have been found in plant cells, including homologues of Rab5, Rab7, and Rab11, markers of endocytic compartments in animal cells. Coat proteins are also present in plant cells, including clathrin, adaptins, and ADP ribosylation factor proteins. However, endocytic compartments in plant cells also exhibit specific features both in organization and function. The molecular composition of these compartments remains to be established, and future work will be necessary to identify the key regulators of endocytic trafficking in plant cells.Abbreviations EE early endosome - LE late endosome - ECV-MVB endosomal carrier vesicle-multivesicular body - PCR partially coated reticulum - MPR mannose 6-phosphate receptor - TGN trans-Golgi network 相似文献