首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The BoLA-DRB3 gene is a highly polymorphic major histocompatibility complex class II gene of cattle with over one hundred alleles reported. Most of the polymorphisms are located in exon 2, which encodes the peptide-binding cleft, and these sequence differences play a role in variability of immune responsiveness and disease resistance. However, the high degree of polymorphism in exon 2 leads to difficulty in accurately genotyping cattle, especially heterozygous animals. In this study, we have improved and simplified an earlier sequence-based typing method to easily and reliably genotype cattle for BoLA-DRB3. In contrast to the earlier method, which used a nested primer set to amplify exon 2 followed by sequencing with internal primers, the new method uses only internal primers for both amplification and sequencing, which results in high-quality sequence across the entire exon. The haplofinder software, which assigns alleles from the heterozygous sequence, now has a pre-processing step that uses a consensus of all known alleles and checks for errors in base calling, thus improving the ability to process large numbers of samples. In addition, advances in sequencing technology have reduced the requirement for manual editing and improved the clarity of heterozygous base calls, resulting in longer and clearer sequence reads. Taken together, this has resulted in a rapid and robust method for genotyping large numbers of heterozygous samples for BoLA-DRB3 polymorphisms. Over 400 Holstein-Charolais cattle have now been genotyped for BoLA-DRB3 using this approach.  相似文献   

2.
3.
    
The evolutionary and adaptive potential of populations or species facing an emerging infectious disease depends on their genetic diversity in genes, such as the major histocompatibility complex (MHC). In birds, MHC class I deals predominantly with intracellular infections (e.g., viruses) and MHC class II with extracellular infections (e.g., bacteria). Therefore, patterns of MHC I and II diversity may differ between species and across populations of species depending on the relative effect of local and global environmental selective pressures, genetic drift, and gene flow. We hypothesize that high gene flow among populations of Humboldt and Magellanic penguins limits local adaptation in MHC I and MHC II, and signatures of selection differ between markers, locations, and species. We evaluated the MHC I and II diversity using 454 next‐generation sequencing of 100 Humboldt and 75 Magellanic penguins from seven different breeding colonies. Higher genetic diversity was observed in MHC I than MHC II for both species, explained by more than one MHC I loci identified. Large population sizes, high gene flow, and/or similar selection pressures maintain diversity but limit local adaptation in MHC I. A pattern of isolation by distance was observed for MHC II for Humboldt penguin suggesting local adaptation, mainly on the northernmost studied locality. Furthermore, trans‐species alleles were found due to a recent speciation for the genus or convergent evolution. High MHC I and MHC II gene diversity described is extremely advantageous for the long‐term survival of the species.  相似文献   

4.
5.
Genetic diversity within the DQA genes of the major histocompatibility complex (Mhc) of cattle is characterised by multiple polymorphic loci that can vary in number between haplotypes. Previous analysis of the second exon sequences derived from genomic BoLA DQA3 genes identified two distinct families, DQA3*01 and DQA3*02 . In this report, we describe the nucleotide and predicted amino acid sequences of the entire coding region of three transcribed BoLA DQA3 genes representing each of these families. These data provide additional evidence that the BoLA DQA3 locus is distinct from BoLA DQA1 and BoLA DQA2 . In addition, the amino acid sequence of DQA3 genes from the two families is shown to differ by 35 out of the 254 amino acids. Putative locus-specific amino acid sequence motifs within the transmembrane and intracytoplasmic domains of DQA genes are shown to differ between the DQA3*01 and DQA3*02 genes. Phylogenetic analysis reveals a genetic distance that is considerably larger than that seen between orthologous Mhc allelic families. These data are consistent with either an extremely divergent family of DQA3 genes or an allele at an additional BoLA DQA4 locus.  相似文献   

6.
In cattle (Bos taurus), there is evidence of more than 50 alleles of BoLA-DQB (bovine lymphocyte antigen DQB) that are distributed across at least five DQB loci, making this region one of the most complex in the BoLA gene family. In this study, DQB alleles were analysed for the water buffalo (Bubalus bubalis), another economically important bovine species. Twelve alleles for Bubu-DQB (Bubalis bubalis DQB) were determined by nucleotide sequence analysis. A phylogenetic analysis revealed numerous trans-species polymorphisms, with alleles from water buffalo assigned to at least three different loci (BoLA-DQB1, BoLA-DQB3 and BoLA-DQB4) that are also found in cattle. These presumptive loci were analysed for patterns of synonymous (d(S)) and non-synonymous (d(N)) substitution. Like BoLA-DQB1, Bubu-DQB1 was observed to be under strong positive selection for polymorphism. We conclude that water buffalo and cattle share the current arrangement of their DQB region because of their common ancestry.  相似文献   

7.
Blood samples from 54 animals were exchanged between 15 laboratories in nine countries to improve and expand BoLA class I and class II typing. A total of 27 out of 33 (82%) of previously accepted BoLA-w specificities were represented within the cell panel. Seventeen new serum-defined BoLA specificities were accepted by the workshop participants, thus expanding the number of internationally recognized BoLA specificities to 50. The large number of new specificities detected resulted from the number of serological reagents used (n = 1139) and the genetic diversity of the cell panel. Confidence derived from the high percentage of agreement between the laboratories on antigen detection (97.3%; r = 0.84) permitted the removal of the workshop (w) notation from 23 BoLA-w specificities and their acceptance as full status BoLA-A antigens. Two new non-BoLA antigens were also detected, one completely included within the red blood cell factor S' (BoLy-S'), whereas a second (BoLy-w1) did not show any association with tested red blood cell factors. A comparison between serological, isoelectric focusing (IEF) and DNA typing for BoLA class II polymorphism was conducted with a subset of workshop cells. Correlation between the three methods was significant for three combinations of alleles. Three other serologically defined class II specificities were correlated with DR and/or DQ restriction fragment length polymorphism (RFLP) types, whereas six additional IEF types were correlated with DR and/or DQ RFLP types (r greater than or equal to 0.50). Several new IEF, DRB, DQA and DQB RFLP patterns were identified. In 46 animals that were typed for BoLA-DR and DQ genes by RFLP analysis, 46 different BoLA haplotypes were tentatively defined. These 46 haplotypes were distinguished by 31 serologically-defined BoLA-A alleles (and 2 'blanks'), 15 DRB RFLP types (plus up to 10 new DRB RFLP patterns) and 23 DQA-DQB haplotypes.  相似文献   

8.
    
The highly polymorphic genes of the major histocompatibility complex (MHC) are involved in disease resistance, mate choice and kin recognition. Therefore, they are widely used markers for investigating adaptive variation. Although selection is the key driver, gene flow and genetic drift also influence adaptive genetic variation, sometimes in opposing ways and with consequences for adaptive potential. To further understand the processes that generate MHC variation, it is helpful to compare variation at the MHC with that at neutral genetic loci. Differences in MHC and neutral genetic variation are useful for inferring the relative influence of selection, gene flow and drift on MHC variation. To date, such investigations have usually been undertaken at a broad spatial scale. Yet, evolutionary and ecological processes can occur at a fine spatial scale, particularly in small or fragmented populations. We investigated spatial patterns of MHC variation among three geographically close, naturally discrete, sampling sites of Egernia stokesii, an Australian lizard. The MHC of E. stokesii has recently been characterized, and there is evidence for historical selection on the MHC. We found E. stokesii MHC weakly differentiated among sites compared to microsatellites, suggesting selection, acting similarly at each site, has outweighed any effects of low gene flow or of genetic drift on E. stokesii MHC variation. Our findings demonstrate the strength of selection in shaping patterns of MHC variation or consistency at a fine spatial scale.  相似文献   

9.
10.
    
Mit mutations that disrupt function of the mitochondrial electron transport chain can, inexplicably, prolong Caenorhabditis elegans lifespan. In this study we use a metabolomics approach to identify an ensemble of mitochondrial‐derived α‐ketoacids and α‐hydroxyacids that are produced by long‐lived Mit mutants but not by other long‐lived mutants or by short‐lived mitochondrial mutants. We show that accumulation of these compounds is dependent on concerted inhibition of three α‐ketoacid dehydrogenases that share dihydrolipoamide dehydrogenase (DLD) as a common subunit, a protein previously linked in humans with increased risk of Alzheimer's disease. When the expression of DLD in wild‐type animals was reduced using RNA interference we observed an unprecedented effect on lifespan – as RNAi dosage was increased lifespan was significantly shortened, but, at higher doses, it was significantly lengthened, suggesting that DLD plays a unique role in modulating length of life. Our findings provide novel insight into the origin of the Mit phenotype.  相似文献   

11.
    
The pathology of spinocerebellar ataxia type 3, also known as Machado‐Joseph disease, is triggered by aggregation of toxic ataxin‐3 (ATXN3) variants containing expanded polyglutamine repeats. The physiological role of this deubiquitylase, however, remains largely unclear. Our recent work showed that ATX‐3, the nematode orthologue of ATXN3, together with the ubiquitin‐directed segregase CDC‐48, regulates longevity in Caenorhabditis elegans. Here, we demonstrate that the long‐lived cdc‐48.1; atx‐3 double mutant displays reduced viability under prolonged starvation conditions that can be attributed to the loss of catalytically active ATX‐3. Reducing the levels of the autophagy protein BEC‐1 sensitized worms to the effect of ATX‐3 deficiency, suggesting a role of ATX‐3 in autophagy. In support of this conclusion, the depletion of ATXN3 in human cells caused a reduction in autophagosomal degradation of proteins. Surprisingly, reduced degradation in ATXN3‐depleted cells coincided with an increase in the number of autophagosomes while levels of lipidated LC3 remained unaffected. We identified two conserved LIR domains in the catalytic Josephin domain of ATXN3 that directly interacted with the autophagy adaptors LC3C and GABARAP in vitro. While ATXN3 localized to early autophagosomes, it was not subject to lysosomal degradation, suggesting a transient regulatory interaction early in the autophagic pathway. We propose that the deubiquitylase ATX‐3/ATXN3 stimulates autophagic degradation by preventing superfluous initiation of autophagosomes, thereby promoting an efficient autophagic flux important to survive starvation.  相似文献   

12.
13.
14.
15.
    
Multiparental cross designs for mapping quantitative trait loci (QTL) provide an efficient alternative to biparental populations because of their broader genetic basis and potentially higher mapping resolution. We describe the development and deployment of a recombinant inbred line (RIL) population in durum wheat (Triticum turgidum ssp. durum) obtained by crossing four elite cultivars. A linkage map spanning 2664 cM and including 7594 single nucleotide polymorphisms (SNPs) was produced by genotyping 338 RILs. QTL analysis was carried out by both interval mapping on founder haplotype probabilities and SNP bi‐allelic tests for heading date and maturity date, plant height and grain yield from four field experiments. Sixteen QTL were identified across environments and detection methods, including two yield QTL on chromosomes 2BL and 7AS, with the former mapped independently from the photoperiod response gene Ppd‐B1, while the latter overlapped with the vernalization locus VRN‐A3. Additionally, 21 QTL with environment‐specific effects were found. Our results indicated a prevalence of environment‐specific QTL with relatively small effect on the control of grain yield. For all traits, functionally different QTL alleles in terms of direction and size of genetic effect were distributed among parents. We showed that QTL results based on founder haplotypes closely matched functional alleles at known heading date loci. Despite the four founders, only 2.1 different functional haplotypes were estimated per QTL, on average. This durum wheat population provides a mapping resource for detailed genetic dissection of agronomic traits in an elite background typical of breeding programmes.  相似文献   

16.
Sexual selection involving genetically disassortative mate choice is one of several evolutionary processes that can maintain or enhance population genetic variability. Examples of reproductive systems in which choosers (generally females) select mates depending on their major histocompatibility complex (MHC) genes have been reported for several vertebrate species. Notably, the role of MHC‐dependent choice not in mating contexts, but in other kinds of social interactions such as in the establishment of complex social systems, has not yet drawn significant scientific interest and is virtually absent from the literature. We have investigated male and female MHC‐dependent choice in an invasive population of North American raccoons (Procyon lotor) in Germany. Both male and female raccoons rely on olfaction for individual recognition. Males have an unusually complex social system in which older individuals choose unrelated younger ones to form stable male coalitions that defend territories and a monopoly over females. We have confirmed that females perform MHC‐disassortative mate choice and that this behaviour fosters genetic diversity of offspring. We have also observed that males build coalitions by choosing male partners depending on their MHC, but in an assortative manner. This is the first observation of antagonistic MHC‐dependent behaviours among sexes. We show that this is the only combination of MHC‐dependent partner choice that leads to outbreeding. In the case of introduced raccoons, such behaviours can act together to promote the invasive potential of the species by increasing its adaptive genetic divergence.  相似文献   

17.
    
Targeted capture of large fragments of genomic DNA that enrich for human leukocyte antigen (HLA) system haplotypes has utility in haematopoietic stem cell transplantation. Current methods of HLA matching are based on inference or familial studies of inheritance; and each approach has its own inherent limitations. We have designed and tested a probe–target‐extraction method for capturing specific HLA haplotypes by hybridization of peptide nucleic acid (PNA) probes to alleles of the HLA‐DRB1 gene. Short target fragments contained in plasmids were initially used to optimize the method followed by testing samples of genomic DNA from human subjects with preselected HLA haplotypes and obtained approximately 10% enrichment for the specific haplotype. When performed with high‐molecular‐weight genomic DNA, 99.0% versus 84.0% alignment match was obtained for the specific haplotype probed. The allele‐specific target enrichment that we obtained can facilitate the elucidation of haplotypes between the 65 kb separating the HLA‐DRB1 and the HLA‐DQA1 genes, potentially spanning a total distance of at least 130 kb. Allele‐specific target enrichment with PNA probes is a straightforward technique that has the capability to improve the resolution of DNA and whole genome sequencing technologies by allowing haplotyping of enriched DNA and crucially, retaining the DNA methylation profile.  相似文献   

18.
19.
    
Yersinia pestis was introduced to North America around 1900 and leads to nearly 100% mortality in prairie dog (Cynomys spp.) colonies during epizootic events, which suggests this pathogen may exert a strong selective force. We characterized genetic diversity at an MHC class II locus (DRB1) in Gunnison's prairie dog (C. gunnisoni) and quantified population genetic structure at the DRB1 versus 12 microsatellite loci in three large Arizona colonies. Two colonies, Seligman (SE) and Espee Ranch (ES), have experienced multiple plague‐related die‐offs in recent years, whereas plague has never been documented at Aubrey Valley (AV). We found fairly low allelic diversity at the DRB1 locus, with one allele (DRB1*01) at high frequency (0.67–0.87) in all colonies. Two other DRB1 alleles appear to be trans‐species polymorphisms shared with the black‐tailed prairie dog (C. ludovicianus), indicating that these alleles have been maintained across evolutionary time frames. Estimates of genetic differentiation were generally lower at the MHC locus (FST = 0.033) than at microsatellite markers (FST = 0.098). The reduced differentiation at DRB1 may indicate that selection has been important for shaping variation at MHC loci, regardless of the presence or absence of plague in recent decades. However, genetic drift has probably also influenced the DRB1 locus because its level of differentiation was not different from that of microsatellites in an FST outlier analysis. We then compared specific MHC alleles to plague survivorship in 60 C. gunnisoni that had been experimentally infected with Y. pestis. We found that survival was greater in individuals that carried at least one copy of the most common allele (DRB1*01) compared to those that did not (60% vs. 20%). Although the sample sizes of these two groups were unbalanced, this result suggests the possibility that this MHC class II locus, or a nearby linked gene, could play a role in plague survival.  相似文献   

20.
    
Black spot leads to great marigold losses worldwide. The disease is characterized by black spots on leaves and stems in its early stages, and the whole plant has black rot at the advanced stage. In this report, 6 of 217 Alternaria strains isolated from lesions of marigold plants in Beijing were randomly selected. The morphological characteristics and a pathogenic tree based on two protein‐coding genes (gpd and alt a 1) indicated that Alternaria tagetica is the causal agent of marigold black spot in Beijing. All six Alternaria strains could successfully re‐infect marigold, but they could not infect carrot or zinnia by either spore spray in a greenhouse or planting experiments in the epidemic area. This is the first report of the A. tagetica pathogen being isolated from marigold in Beijing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号