首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recent development of a goat SNP genotyping microarray enables genome‐wide association studies in this important livestock species. We investigated the genetic basis of the black and brown coat colour in Valais Blacknecked and Coppernecked goats. A genome‐wide association analysis using goat SNP50 BeadChip genotypes of 22 cases and 23 controls allowed us to map the locus for the brown coat colour to goat chromosome 8. The TYRP1 gene is located within the associated chromosomal region, and TYRP1 variants cause similar coat colour phenotypes in different species. We thus considered TYRP1 as a strong positional and functional candidate. We resequenced the caprine TYRP1 gene by Sanger and Illumina sequencing and identified two non‐synonymous variants, p.Ile478Thr and p.Gly496Asp, that might have a functional impact on the TYRP1 protein. However, based on the obtained pedigree and genotype data, the brown coat colour in these goats is not due to a single recessive loss‐of‐function allele. Surprisingly, the genotype distribution and the pedigree data suggest that the 496Asp allele might possibly act in a dominant manner. The 496Asp allele was present in 77 of 81 investigated Coppernecked goats and did not occur in black goats. This strongly suggests heterogeneity underlying the brown coat colour in Coppernecked goats. Functional experiments or targeted matings will be required to verify the unexpected preliminary findings.  相似文献   

2.
The recent availability of a genome‐wide SNP array for the goat genome dramatically increases the power to investigate aspects of genetic diversity and to conduct genome‐wide association studies in this important domestic species. We collected and analysed genotypes from 52 088 SNPs in Boer, Cashmere and Rangeland goats that had both polled and horned individuals. Principal components analysis revealed a clear genetic division between animals for each population, and model‐based clustering successfully detected evidence of admixture that matched aspects of their recorded history. For example, shared co‐ancestry was detected, suggesting Boer goats have been introgressed into the Rangeland population. Further, allele frequency data successfully tracked the altered genetic profile that has taken place after 40 years of breeding Australian Cashmere goats using the Rangeland animals as the founding population. Genome‐wide association mapping of the POLL locus revealed a strong signal on goat chromosome 1. The 769‐kb critical interval contained the polled intersex syndrome locus, confirming the genetic basis in non‐European animals is the same as identified previously in Saanen goats. Interestingly, analysis of the haplotypes carried by a small set of sex‐reversed animals, known to be associated with polledness, revealed some animals carried the wild‐type chromosome associated with the presence of horns. This suggests a more complex basis for the relationship between polledness and the intersex condition than initially thought while validating the application of the goat SNP50 BeadChip for fine‐mapping traits in goat.  相似文献   

3.
Long‐term selection of goats for a certain production system and/or different environmental conditions will be reflected in the body morphology of the animals under selection. To investigate the variation contributing to different morphological traits and to identify genomic regions that are associated with body morphological traits in Sudanese goats, we genotyped 96 females belonging to four Sudanese goat breeds with the SNP52 BeadChip. After quality control of the data, the genome‐wide association study was performed using 95 goats and 24 027 informative single nucleotide polymorphisms (SNPs). Bicoastal diameter was significantly associated (LOD = 6.32) with snp10185‐scaffold1365‐620922 on chromosome 2. The minor allele has an additive effect, increasing the bicoastal diameter by 2.6 cm. A second significant association was found between body length and snp56482‐scaffold89‐467312 on chromosome 3 (LOD = 5.65). The minor allele is associated with increased body length. Additionally, five regions were suggestive for cannon bone, head width, rump length and withers height (LOD > 5). Only one gene (CNTNAP5) is located within the 1‐Mb region surrounding the significant SNP for bicoastal diameter on chromosome 2. The body length QTL on chromosome 3 harbors 49 genes. Further research is required to validate the observed associations and to prioritize candidate genes.  相似文献   

4.
Complete and highly accurate reference genomes and gene annotations are indispensable for basic biological research and trait improvement of woody tree species. In this study, we integrated single‐molecule sequencing and high‐throughput chromosome conformation capture techniques to produce a high‐quality and long‐range contiguity chromosome‐scale genome assembly of the soft‐seeded pomegranate cultivar ‘Tunisia’. The genome covers 320.31 Mb (scaffold N50 = 39.96 Mb; contig N50 = 4.49 Mb) and includes 33 594 protein‐coding genes. We also resequenced 26 pomegranate varieties that varied regarding seed hardness. Comparative genomic analyses revealed many genetic differences between soft‐ and hard‐seeded pomegranate varieties. A set of selective loci containing SUC8‐like, SUC6, FoxO and MAPK were identified by the selective sweep analysis between hard‐ and soft‐seeded populations. An exceptionally large selective region (26.2 Mb) was identified on chromosome 1. Our assembled pomegranate genome is more complete than other currently available genome assemblies. Our results indicate that genomic variations and selective genes may have contributed to the genetic divergence between soft‐ and hard‐seeded pomegranate varieties.  相似文献   

5.
Genetic engineering in livestock has been greatly enhanced through the use of artificial programmed nucleases such as the recently emerged clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated 9 (Cas9) system. We recently reported our successful application of the CRISPR/Cas9 system to engineer the goat genome through micro‐injection of Cas9 mRNA and sgRNAs targeting MSTN and FGF5 in goat embryos. The phenotypes induced by edited loss‐of‐function mutations of MSTN remain to be evaluated extensively. We demonstrate the utility of this approach by disrupting MSTN, resulting in enhanced body weight and larger muscle fiber size in Cas9‐mediated gene‐modified goats. The effects of genome modifications were further characterized by H&E staining, quantitative PCR, Western blotting and immunofluorescence staining. Morphological and genetic analyses indicated the occurrence of phenotypic and genotypic modifications. We further provide sufficient evidence, including breeding data, to demonstrate the transmission of the knockout alleles through the germline. By phenotypic and genotypic characterization, we demonstrated the merit of using the CRISPR/Cas9 approach for establishing genetically modified livestock with an enhanced production trait.  相似文献   

6.

Background

Domestic goats (Capra hircus) have been selected to play an essential role in agricultural production systems, since being domesticated from their wild progenitor, bezoar (Capra aegagrus). A detailed understanding of the genetic consequences imparted by the domestication process remains a key goal of evolutionary genomics.

Results

We constructed the reference genome of bezoar and sequenced representative breeds of domestic goats to search for genomic changes that likely have accompanied goat domestication and breed formation. Thirteen copy number variation genes associated with coat color were identified in domestic goats, among which ASIP gene duplication contributes to the generation of light coat-color phenotype in domestic goats. Analysis of rapidly evolving genes identified genic changes underlying behavior-related traits, immune response and production-related traits.

Conclusion

Based on the comparison studies of copy number variation genes and rapidly evolving genes between wild and domestic goat, our findings and methodology shed light on the genetic mechanism of animal domestication and will facilitate future goat breeding.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1606-1) contains supplementary material, which is available to authorized users.  相似文献   

7.
The genome of bread wheat (Triticum aestivum) is predicted to be greater than 16 Gbp in size and consist predominantly of repetitive elements, making the sequencing and assembly of this genome a major challenge. We have reduced genome sequence complexity by isolating chromosome arm 7DS and applied second‐generation technology and appropriate algorithmic analysis to sequence and assemble low copy and genic regions of this chromosome arm. The assembly represents approximately 40% of the chromosome arm and all known 7DS genes. Comparison of the 7DS assembly with the sequenced genomes of rice (Oryza sativa) and Brachypodium distachyon identified large regions of conservation. The syntenic relationship between wheat, B. distachyon and O. sativa, along with available genetic mapping data, has been used to produce an annotated draft 7DS syntenic build, which is publicly available at http://www.wheatgenome.info . Our results suggest that the sequencing of isolated chromosome arms can provide valuable information of the gene content of wheat and is a step towards whole‐genome sequencing and variation discovery in this important crop.  相似文献   

8.
9.
Domestic goats (Capra hircus) are spread across the five continents with a census of 1 billion individuals. The worldwide population of goats descends from a limited number of bezoars (Capra aegagrus) domesticated 10 000 YBP (years before the present) in the Fertile Crescent. The extraordinary adaptability and hardiness of goats favoured their rapid spread over the Old World, reaching the Iberian Peninsula and Southern Africa 7000 YBP and 2000 YBP respectively. Molecular studies have revealed one major mitochondrial haplogroup A and five less frequent haplogroups B, C, D, F and G. Moreover, the analysis of autosomal and Y‐chromosome markers has evidenced an appreciable geographic differentiation. The implementation of new molecular technologies, such as whole‐genome sequencing and genome‐wide genotyping, allows for the exploration of caprine diversity at an unprecedented scale, thus providing new insights into the evolutionary history of goats. In spite of a number of pitfalls, the characterization of the functional elements of the goat genome is expected to play a key role in understanding the genetic determination of economically relevant traits. Genomic selection and genome editing also hold great potential, particularly for improving traits that cannot be modified easily by traditional selection.  相似文献   

10.
《Ecology and evolution》2017,7(14):5170-5180
Detecting signatures of selection can provide a new insight into the mechanism of contemporary breeding and artificial selection and further reveal the causal genes associated to the phenotypic variation. However, the signatures of selection on genes entailing for profitable traits between Chinese commercial and indigenous goats have been poorly interpreted. We noticed footprints of positive selection at MC 1R gene containing SNP s genotyped in five Chinese native goat breeds. An experimental distribution of F ST was built based on approximations of F ST for each SNP across five breeds. We identified selection using the high F ST outlier method and found that MC 1R candidate gene show evidence of positive selection. Furthermore, adaptive selection pressure on specific codons was determined using different codon based on maximum‐likelihood methods; signature of positive selection in mammalian MC 1R was explored in individual codons. Evolutionary analyses were inferred under maximum likelihood models, the HyPhy package implemented in the DATAMONKEY Web Server. The results of codon selection displayed positive diversifying selection at the sites were mainly involved in development of genetic variations in coat color in various mammalian species. Positive diversifying selection inferred with recent evolutionary changes in domesticated goat MC 1R provides new insights that the gene evolution may have been modulated by domestication events in goats.  相似文献   

11.
12.
13.
Erigeron breviscapus is an important medicinal plant in Compositae and the first species to realize the whole process from the decoding of the draft genome sequence to scutellarin biosynthesis in yeast. However, the previous low‐quality genome assembly has hindered the optimization of candidate genes involved in scutellarin synthesis and the development of molecular‐assisted breeding based on the genome. Here, the E. breviscapus genome was updated using PacBio RSII sequencing data and Hi‐C data, and increased in size from 1.2 Gb to 1.43 Gb, with a scaffold N50 of 156.82 Mb and contig N50 of 140.95 kb, and a total of 43,514 protein‐coding genes were obtained and oriented onto nine pseudo‐chromosomes, thus becoming the third plant species assembled to chromosome level after sunflower and lettuce in Compositae. Fourteen genes with evidence for positive selection were identified and found to be related to leaf morphology, flowering and secondary metabolism. The number of genes in some gene families involved in flavonoid biosynthesis in E. breviscapus have been significantly expanded. In particular, additional candidate genes involved in scutellarin biosynthesis, such as flavonoid‐7‐O‐glucuronosyltransferase genes (F7GATs) were identified using updated genome. In addition, three candidate genes encoding indole‐3‐pyruvate monooxygenase YUCCA2 (YUC2), serine carboxypeptidase‐like 18 (SCPL18), and F‐box protein (FBP), respectively, were identified to be probably related to leaf development and flowering by resequencing 99 individuals. These results provided a substantial genetic basis for improving agronomic and quality traits of E. breviscapus, and provided a platform for improving other draft genome assemblies to chromosome‐level.  相似文献   

14.
Objective: To identify the genetic determinants of obesity using univariate and bivariate models in a genome scan. Research Methods and Procedures: We evaluated the genetic and environmental effects and performed a genome‐wide linkage analysis of obesity‐related traits in 478 subjects from 105 Mexican‐American nuclear families ascertained through a proband with documented coronary artery disease. The available obesity traits include BMI, body surface area (BSA), waist‐to‐hip ratio (WHR), and trunk fat mass as percentage of body weight. Heritability estimates and multipoint linkage analysis were performed using a variance components procedure implemented in SOLAR software. Results: The heritability estimates were 0.62 for BMI, 0.73 for BSA, 0.40 for WHR, and 0.38 for trunk fat mass as percentage of body weight. Using a bivariate genetic model, we observed significant genetic correlations between BMI and other obesity‐related traits (all p < 0.01). Evidence for univariate linkage was observed at 252 to approximately 267 cM on chromosome 2 for three obesity‐related traits (except for WHR) and at 163 to approximately 167 cM on chromosome 5 for BMI and BSA, with the maximum logarithm of the odds ratio score of 3.12 (empirical p value, 0.002) for BSA on chromosome 2. Use of the bivariate linkage model yielded an additional peak (logarithm of the odds ratio = 3.25, empirical p value, 0.002) at 25 cM on chromosome 7 for the pair of BMI and BSA. Discussion: The evidence for linkage on chromosomes 2q36‐37 and 5q36 is supported both by univariate and bivariate analysis, and an additional linkage peak at 7p15 was identified by the bivariate model. This suggests that use of the bivariate model provides additional information to identify linkage of genes responsible for obesity‐related traits.  相似文献   

15.
We used genotype data from the caprine 50k Illumina BeadChip for the assessment of genetic diversity within and between 10 local Swiss goat breeds. Three different cluster methods allowed the goat samples to be assigned to the respective breed groups, whilst the samples of Nera Verzasca and Tessin Grey goats could not be differentiated from each other. The results of the different genetic diversity measures show that Appenzell, Toggenburg, Valais and Booted goats should be prioritized in future conservation activities. Furthermore, we examined runs of homozygosity (ROH) and compared genomic inbreeding coefficients based on ROH (FROH) with pedigree‐based inbreeding coefficients (FPED). The linear relationship between FROH and FPED was confirmed for goats by including samples from the three main breeds (Saanen, Chamois and Toggenburg goats). FROH appears to be a suitable measure for describing levels of inbreeding in goat breeds with missing pedigree information. Finally, we derived selection signatures between the breeds. We report a total of 384 putative selection signals. The 25 most significant windows contained genes known for traits such as: coat color variation (MITF, KIT, ASIP), growth (IGF2, IGF2R, HRAS, FGFR3) and milk composition (PITX2). Several other putative genes involved in the formation of populations, which might have been selected for adaptation to the alpine environment, are highlighted. The results provide a contemporary background for the management of genetic diversity in local Swiss goat breeds.  相似文献   

16.
Populus euphratica is well adapted to extreme desert environments and is an important model species for elucidating the mechanisms of abiotic stress resistance in trees. The current assembly of P. euphratica genome is highly fragmented with many gaps and errors, thereby impeding downstream applications. Here, we report an improved chromosome‐level reference genome of P. euphratica (v2.0) using single‐molecule sequencing and chromosome conformation capture (Hi‐C) technologies. Relative to the previous reference genome, our assembly represents a nearly 60‐fold improvement in contiguity, with a scaffold N50 size of 28.59 Mb. Using this genome, we have found that extensive expansion of Gypsy elements in P. euphratica led to its rapid increase in genome size compared to any other Salicaceae species studied to date, and potentially contributed to adaptive divergence driven by insertions near genes involved in stress tolerance. We also detected a wide range of unique structural rearrangements in P. euphratica, including 2,549 translocations, 454 inversions, 121 tandem and 14 segmental duplications. Several key genes likely to be involved in tolerance to abiotic stress were identified within these regions. This high‐quality genome represents a valuable resource for poplar breeding and genetic improvement in the future, as well as comparative genomic analysis with other Salicaceae species.  相似文献   

17.
Anopheles atroparvus (Diptera: Culicidae) is one of the main malaria vectors of the Maculipennis group in Europe. Cytogenetic analysis based on salivary gland chromosomes has been used in taxonomic and population genetic studies of mosquitoes from this group. However, a high‐resolution cytogenetic map that could be used in physical genome mapping in An. atroparvus is still lacking. In the present study, a high‐quality photomap of the polytene chromosomes from ovarian nurse cells of An. atroparvus was developed. Using fluorescent in situ hybridization, 10 genes from the five largest genomic supercontigs on the polytene chromosome were localized and 28% of the genome was anchored to the cytogenetic map. The study established chromosome arm homology between An. atroparvus and the major African malaria vector Anopheles gambiae, suggesting a whole‐arm translocation between autosomes of these two species. The standard photomap constructed for ovarian nurse cell chromosomes of An. atroparvus will be useful for routine physical mapping. This map will assist in the development of a fine‐scale chromosome‐based genome assembly for this species and will also facilitate comparative and evolutionary genomics studies in the genus Anopheles.  相似文献   

18.
Identifying the genetic architecture underlying complex phenotypes is a notoriously difficult problem that often impedes progress in understanding adaptive eco‐evolutionary processes in natural populations. Host–parasite interactions are fundamentally important drivers of evolutionary processes, but a lack of understanding of the genes involved in the host's response to chronic parasite insult makes it particularly difficult to understand the mechanisms of host life history trade‐offs and the adaptive dynamics involved. Here, we examine the genetic basis of gastrointestinal nematode (Trichostrongylus tenuis) burden in 695 red grouse (Lagopus lagopus scotica) individuals genotyped at 384 genome‐wide SNPs. We first use genome‐wide association to identify individual SNPs associated with nematode burden. We then partition genome‐wide heritability to identify chromosomes with greater heritability than expected from gene content, due to harbouring a multitude of additive SNPs with individually undetectable effects. We identified five SNPs on five chromosomes that accounted for differences of up to 556 worms per bird, but together explained at best 4.9% of the phenotypic variance. These SNPs were closely linked to genes representing a range of physiological processes including the immune system, protein degradation and energy metabolism. Genome partitioning indicated genome‐wide heritability of up to 29% and three chromosomes with excess heritability of up to 4.3% (total 8.9%). These results implicate SNPs and novel genomic regions underlying nematode burden in this system and suggest that this phenotype is somewhere between being based on few large‐effect genes (oligogenic) and based on a large number of genes with small individual but large combined effects (polygenic).  相似文献   

19.
20.
Objective: Interest in mapping genetic variants that are associated with obesity remains high because of the increasing prevalence of obesity and its complications worldwide. Data on genetic determinants of obesity in African populations are rare. Research Methods and Procedures: We have undertaken a genome‐wide scan for body mass index (BMI) in 182 Nigerian families that included 769 individuals. Results: The prevalence of obesity was only 5%, yet polygenic heritability for BMI was in the expected range (0.46 ± 0.07). Tandem repeat markers (402) were typed across the genome with an average map density of 9 cM. Pedigree‐based analysis using a variance components linkage model demonstrated evidence for linkage on chromosome 7 (near marker D7S817 at 7p14) with a logarithm of odds (LOD) score of 3.8 and on chromosome 11 (marker D11S2000 at 11q22) with an LOD score of 3.3. Weaker evidence for linkage was found on chromosomes 1 (1q21, LOD = 2.2) and 8 (8p22, LOD = 2.3). Several candidate genes, including neuropeptide Y, DRD2, APOA4, lamin A/C, and lipoprotein lipase, lie in or close to the chromosomal regions where strong linkage signals were found. Discussion: The findings of this study suggest that, as in other populations with higher prevalences of obesity, positive linkage signals can be found on genome scans for obesity‐related traits. Follow‐up studies may be warranted to investigate these linkages, especially the one on chromosome 11, which has been reported in a population at the opposite end of the BMI distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号