共查询到20条相似文献,搜索用时 15 毫秒
1.
Dispersal and migratory behavior are influential factors in determining how genetic diversity is distributed across the landscape. In migratory species, genetic structure can be promoted via several mechanisms including fidelity to distinct migratory routes. Particularly within North America, waterfowl management units have been delineated according to distinct longitudinal migratory flyways supported by banding data and other direct evidence. The greater white‐fronted goose (Anser albifrons) is a migratory waterfowl species with a largely circumpolar distribution consisting of up to six subspecies roughly corresponding to phenotypic variation. We examined the rangewide population genetic structure of greater white‐fronted geese using mtDNA control region sequence data and microsatellite loci from 23 locales across North America and Eurasia. We found significant differentiation in mtDNA between sampling locales with flyway delineation explaining a significant portion of the observed genetic variation (~12%). This is concordant with band recovery data which shows little interflyway or intercontinental movements. However, microsatellite loci revealed little genetic structure suggesting a panmictic population across most of the Arctic. As with many high‐latitude species, Beringia appears to have played a role in the diversification of this species. A common Beringian origin of North America and Asian populations and a recent divergence could at least partly explain the general lack of structure at nuclear markers. Further, our results do not provide strong support for the various taxonomic proposals for this species except for supporting the distinctness of two isolated breeding populations within Cook Inlet, Alaska (A. a. elgasi) and Greenland (A. a. flavirostris), consistent with their subspecies status. 相似文献
2.
Knowledge of the genetic and environmental influences on a character is pivotal for understanding evolutionary changes in quantitative traits in natural populations. Dominance and aggression are ubiquitous traits that are selectively advantageous in many animal societies and have the potential to impact the evolutionary trajectory of animal populations. Here we provide age‐ and sex‐specific estimates of additive genetic and environmental components of variance for dominance rank and aggression rate in a free‐living, human‐habituated bird population subject to natural selection. We use a long‐term data set on individually marked greylag geese (Anser anser) and show that phenotypic variation in dominance‐related behaviours contains significant additive genetic variance, parental effects and permanent environment effects. The relative importance of these variance components varied between age and sex classes, whereby the most pronounced differences concerned nongenetic components. In particular, parental effects were larger in juveniles of both sexes than in adults. In paired adults, the partner's identity had a larger influence on male dominance rank and aggression rate than in females. In sex‐ and age‐specific estimates, heritabilities did not differ significantly between age and sex classes. Adult dominance rank was only weakly genetically correlated between the sexes, leading to considerably higher heritabilities in sex‐specific estimates than across sexes. We discuss these patterns in relation to selection acting on dominance rank and aggression in different life history stages and sexes and suggest that different adaptive optima could be a mechanism for maintaining genetic variation in dominance‐related traits in free‐living animal populations. 相似文献
3.
Sebastián Escobar Jean‐Christophe Pintaud Henrik Balslev Rodrigo Bernal Mónica Moraes Ramírez Betty Millán Rommel Montúfar 《Ecology and evolution》2018,8(16):8030-8042
Andean orogenesis has driven the development of very high plant diversity in the Neotropics through its impact on landscape evolution and climate. The analysis of the intraspecific patterns of genetic structure in plants would permit inferring the effects of Andean uplift on the evolution and diversification of Neotropical flora. In this study, using microsatellite markers and Bayesian clustering analyses, we report the presence of four genetic clusters for the palm Oenocarpus bataua var. bataua which are located within four biogeographic regions in northwestern South America: (a) Chocó rain forest, (b) Amotape‐Huancabamba Zone, (c) northwestern Amazonian rain forest, and (d) southwestern Amazonian rain forest. We hypothesize that these clusters developed following three genetic diversification events mainly promoted by Andean orogenic events. Additionally, the distinct current climate dynamics among northwestern and southwestern Amazonia may maintain the genetic diversification detected in the western Amazon basin. Genetic exchange was identified between the clusters, including across the Andes region, discarding the possibility of any cluster to diversify as a distinct intraspecific variety. We identified a hot spot of genetic diversity in the northern Peruvian Amazon around the locality of Iquitos. We also detected a decrease in diversity with distance from this area in westward and southward direction within the Amazon basin and the eastern Andean foothills. Additionally, we confirmed the existence and divergence of O. bataua var. bataua from var. oligocarpus in northern South America, possibly expanding the distributional range of the latter variety beyond eastern Venezuela, to the central and eastern Andean cordilleras of Colombia. Based on our results, we suggest that Andean orogenesis is the main driver of genetic structuring and diversification in O. bataua within northwestern South America. 相似文献
4.
Michal Podhrázský Petr Musil Zuzana Musilová Jan Zouhar Matyáš Adam Jaroslav Závora Karel Hudec 《Ibis》2017,159(2):352-365
Global climate change can cause pronounced changes in species? migratory behaviour. Numerous recent studies have demonstrated climate‐driven changes in migration distance and spring arrival date in waterbirds, but detailed studies based on long‐term records of individual recapture or re‐sighting events are scarce. Using re‐sighting data from 430 marked individuals spanning a 60‐year period (winters 1956/1957 to 2015/2016), we assessed patterns in migration distance and spring arrival date, wintering‐site fidelity and survival in the increasing central European breeding population of Greylag Geese Anser anser. We demonstrate a long‐term decrease in migration distance, changes in the wintering range caused by winter partial short‐stopping, and the earlier arrival of geese on their breeding grounds. Greylag Geese marked on central Europe moulting grounds have not been recorded wintering in Spain since 1986 or in Tunisia and Algeria since 2004. The migration distance and spring arrival of geese indicated an effect of temperature at the breeding site and values of the NAO index. Greylag Geese migrate shorter distances and arrive earlier in milder winters. We suggest that shifts in the migratory behaviour of Central European Greylag Geese are individual temperature‐dependent decisions to take advantage of wintering grounds becoming more favourable closer to their breeding grounds, allowing birds to acquire breeding territories earlier. 相似文献
5.
An understanding of the genetic structure of populations in the wild is essential for long‐term conservation and stewardship in the face of environmental change. Knowledge of the present‐day distribution of genetic lineages (phylogeography) of a species is especially important for organisms that are exploited or utilize habitats that may be jeopardized by human intervention, including climate change. Here, we describe mitochondrial (mtDNA) and nuclear genetic (microsatellite) diversity among three populations of a migratory bird, the greater white‐fronted goose (Anser albifrons), which breeds discontinuously in western and southwestern Alaska and winters in the Pacific Flyway of North America. Significant genetic structure was evident at both marker types. All three populations were differentiated for mtDNA, whereas microsatellite analysis only differentiated geese from the Cook Inlet Basin. In sexual reproducing species, nonrandom mate selection, when occurring in concert with fine‐scale resource partitioning, can lead to phenotypic and genetic divergence as we observed in our study. If mate selection does not occur at the time of reproduction, which is not uncommon in long‐lived organisms, then mechanisms influencing the true availability of potential mates may be obscured, and the degree of genetic and phenotypic diversity may appear incongruous with presumed patterns of gene flow. Previous investigations revealed population‐specific behavioral, temporal, and spatial mechanisms that likely influence the amount of gene flow measured among greater white‐fronted goose populations. The degree of observed genetic structuring aligns well with our current understanding of population differences pertaining to seasonal movements, social structure, pairing behavior, and resource partitioning. 相似文献
6.
Zhi‐Qiang Liang Wei‐Tao Chen Deng‐Qiang Wang Shu‐Huan Zhang Chong‐Rui Wang Shun‐Ping He Yuan‐An Wu Ping He Jiang Xie Chuan‐Wu Li Juha Meril Qi‐Wei Wei 《Ecology and evolution》2019,9(7):3879-3890
Understanding genetic diversity patterns of endangered species is an important premise for biodiversity conservation. The critically endangered salamander Andrias davidianus, endemic to central and southern mainland in China, has suffered from sharp range and population size declines over the past three decades. However, the levels and patterns of genetic diversity of A. davidianus populations in wild remain poorly understood. Herein, we explore the levels and phylogeographic patterns of genetic diversity of wild‐caught A. davidianus using larvae and adult collection with the aid of sequence variation in (a) the mitochondrial DNA (mtDNA) fragments (n = 320 individuals; 33 localities), (b) 19 whole mtDNA genomes, and (c) nuclear recombinase activating gene 2 (RAG2; n = 88 individuals; 19 localities). Phylogenetic analyses based on mtDNA datasets uncovered seven divergent mitochondrial clades (A–G), which likely originated in association with the uplifting of mountains during the Late Miocene, specific habitat requirements, barriers including mountains and drainages and lower dispersal ability. The distributions of clades were geographic partitioned and confined in neighboring regions. Furthermore, we discovered some mountains, rivers, and provinces harbored more than one clades. RAG2 analyses revealed no obvious geographic patterns among the five alleles detected. Our study depicts a relatively intact distribution map of A. davidianus clades in natural species range and provides important knowledge that can be used to improve monitoring programs and develop a conservation strategy for this critically endangered organism. 相似文献
7.
Yali Si Yanjie Xu Fei Xu Xueyan Li Wenyuan Zhang Ben Wielstra Jie Wei Guanhua Liu Hao Luo John Takekawa Sivananintha Balachandran Tao Zhang Willem F. de Boer Herbert H. T. Prins Peng Gong 《Ecology and evolution》2018,8(12):6280-6289
East Asian migratory waterfowl have greatly declined since the 1950s, especially the populations that winter in China. Conservation is severely hampered by the lack of primary information about migration patterns and stopover sites. This study utilizes satellite tracking techniques and advanced spatial analyses to investigate spring migration of the greater white‐fronted goose (Anser albifrons) and tundra bean goose (Anser serrirostris) wintering along the Yangtze River Floodplain. Based on 24 tracks obtained from 21 individuals during the spring of 2015 and 2016, we found that the Northeast China Plain is far‐out the most intensively used stopover site during migration, with geese staying for over 1 month. This region has also been intensely developed for agriculture, suggesting a causal link to the decline in East Asian waterfowl wintering in China. The protection of waterbodies used as roosting area, especially those surrounded by intensive foraging land, is critical for waterfowl survival. Over 90% of the core area used during spring migration is not protected. We suggest that future ground surveys should target these areas to confirm their relevance for migratory waterfowl at the population level, and core roosting area at critical spring‐staging sites should be integrated in the network of protected areas along the flyway. Moreover, the potential bird–human conflict in core stopover area needs to be further studied. Our study illustrates how satellite tracking combined with spatial analyses can provide crucial insights necessary to improve the conservation of declining Migratory species. 相似文献
8.
Phylogeography and ecological niche models (ENMs) suggest that late Quaternary glacial cycles have played a prominent role in shaping present population genetic structure and diversity, but have not applied quantitative methods to dissect the relative contribution of past and present climate vs. other forces. We integrate multilocus phylogeography, climate‐based ENMs and multivariate statistical approaches to infer the effects of late Quaternary climate change on contemporary genetic variation of valley oak (Quercus lobata Née). ENMs indicated that valley oak maintained a stable distribution with local migration from the last interglacial period (~120 ka) to the Last Glacial Maximum (~21 ka, LGM) to the present compared with large‐scale range shifts for an eastern North American white oak (Quercus alba L.). Coast Range and Sierra Nevada foothill populations diverged in the late Pleistocene before the LGM [104 ka (28–1622)] and have occupied somewhat distinct climate niches, according to ENMs and coalescent analyses of divergence time. In accordance with neutral expectations for stable populations, nuclear microsatellite diversity positively correlated with niche stability from the LGM to present. Most strikingly, nuclear and chloroplast microsatellite variation significantly correlated with LGM climate, even after controlling for associations with geographic location and present climate using partial redundancy analyses. Variance partitioning showed that LGM climate uniquely explains a similar proportion of genetic variance as present climate (16% vs. 11–18%), and together, past and present climate explains more than geography (19%). Climate can influence local expansion–contraction dynamics, flowering phenology and thus gene flow, and/or impose selective pressures. These results highlight the lingering effect of past climate on genetic variation in species with stable distributions. 相似文献
9.
Jianxun Wu Wenping Wang Daogui Deng Kun Zhang Shuixiu Peng Xiaoxue Xu Yanan Zhang Zhongze Zhou 《Ecology and evolution》2019,9(8):4362-4372
Geographical patterns, climate, and environmental change have important influences on the distribution and spread of aquatic organisms. However, the relationships between the geographical pattern and phylogenetics of Daphnia as well as environmental change are not well known. The genetic diversity and phylogeography of seven D. similoides sinensis populations located in the middle and lower reaches of the Yangtze River were investigated based on the combination of mitochondrial (COI gene) and nuclear (14 microsatellite primers) markers. Based on the mitochondrial gene markers, D. similoides sinensis from the middle and lower reaches of the Yangtze River had one ancestral haplotype and two evolutionary clades. In addition, D. similoides sinensis population deviated from neutral evolution, showing signs of a bottleneck effect followed by population expansion. Based on the microsatellite markers, the seven D. similoides sinensis populations formed three main groups. The dendrogram (NJ/ME) showed that D. similoides sinensis based on the mitochondrial genes marker were obviously clustered two main clades, whereas there were three clades based on the microsatellite markers. Our results suggested that the habitat fragmentation due to the barrier of the dams and sluices promoted the genetic differentiation and phylogeography of D. similoides sinensis populations in the middle and lower reaches of the Yangtze River. 相似文献
10.
The domestication syndrome comprises phenotypic changes that differentiate crops from their wild ancestors. We compared the genomic variation and phenotypic differentiation of the two putative domestication traits seed size and seed colour of the grain amaranth Amaranthus caudatus, which is an ancient crop of South America, and its two close wild relatives and putative ancestors A. hybridus and A. quitensis. Genotyping 119 accessions of the three species from the Andean region using genotyping by sequencing (GBS) resulted in 9485 SNPs that revealed a strong genetic differentiation of cultivated A. caudatus from its two relatives. A. quitensis and A. hybridus accessions did not cluster by their species assignment but formed mixed groups according to their geographic origin in Ecuador and Peru, respectively. A. caudatus had a higher genetic diversity than its close relatives and shared a high proportion of polymorphisms with their wild relatives consistent with the absence of a strong bottleneck or a high level of recent gene flow. Genome sizes and seed sizes were not significantly different between A. caudatus and its relatives, although a genetically distinct group of A. caudatus from Bolivia had significantly larger seeds. We conclude that despite a long history of human cultivation and selection for white grain colour, A. caudatus shows a weak genomic and phenotypic domestication syndrome and proposes that it is an incompletely domesticated crop species either because of weak selection or high levels of gene flow from its sympatric close undomesticated relatives that counteracted the fixation of key domestication traits. 相似文献
11.
Evidence for biogeographic patterning of mitochondrial DNA sequences in Eastern horse populations 总被引:2,自引:0,他引:2
McGahern A Bower MA Edwards CJ Brophy PO Sulimova G Zakharov I Vizuete-Forster M Levine M Li S MacHugh DE Hill EW 《Animal genetics》2006,37(5):494-497
Equine mitochondrial DNA (mtDNA) phylogeny reconstruction reveals a complex pattern of variation unlike that seen in other large domesticates. It is likely that this pattern reflects a process of multiple and repeated, although not necessarily independent, domestication events. Until now, no clear geographic affiliation of clades has been apparent. In this study, amova analyses have revealed a significant non-random distribution of the diversity among equine populations when seven newly sequenced Eurasian populations were examined in the context of previously published sequences. The association of Eastern mtDNA types in haplogroup F was highly significant using Fisher's exact test of independence (P = 0.00000). For the first time, clear biogeographic partitioning has been detected in equine mtDNA sequence. 相似文献
12.
Combining chloroplast and nuclear microsatellites to investigate origin and dispersal of New World sweet potato landraces 总被引:2,自引:0,他引:2
We analysed a representative collection of New World sweet potato landraces (329 accessions from Mexico to Peru) with both chloroplast and nuclear microsatellite markers. Both kinds of markers supported the existence of two geographically restricted genepools, corresponding to accessions from the north-western part of South America and accessions from the Caribbean and Central America region. Our conservative cpSSRs markers revealed that the divergence between the two haplotype groups is associated with numerous mutation events concerning various markers, supporting the idea that this divergence may be ancient, predating domestication. For both kinds of markers, we found no significant difference in diversity between the two genepools and detected region-specific alleles in both groups. Previous studies have favoured the hypothesis of a single domestication of this crop. Our analysis suggests at least two independent domestications, in Central/Caribbean America and in the north-western part of South America. Sweet potato was then dispersed from these centres throughout tropical America. Comparison of nuclear and chloroplast data suggests that exchanges of clones and sexual reproduction were both important processes in landrace diversification in this clonally propagated crop. Our analysis provides useful tools for rationalizing the conservation and use of sweet potato germplasm collections. 相似文献
13.
BORJA MILÁ DAVID P. L. TOEWS THOMAS B. SMITH ROBERT K. WAYNE 《Biological journal of the Linnean Society. Linnean Society of London》2011,103(3):696-706
Using genetic data to study the process of population divergence is central to understanding speciation, yet distinguishing between recent divergence and introgressive hybridization is challenging. In a previous study on the phylogeography of the yellow‐rumped warbler complex using mitochondrial (mt)DNA data, we reported limited sequence divergence and a lack of reciprocal monophyly between myrtle and Audubon's warblers (Dendroica coronata and Dendroica auduboni, respectively), suggesting very recent isolation. In the present study, we report the results obtained from a subsequent sampling of Audubon's warbler in Arizona and Utah (‘memorabilis’ race), which shows that, although this taxon is similar to auduboni in plumage colour, most memorabilis individuals sampled (93%) carry haplotypes that belong to the divergent black‐fronted warbler lineage (Dendroica nigrifrons) of Mexico. Furthermore, the auduboni and nigrifrons lineages mix in southern Utah at a narrow, yet apparently ‘cryptic’ contact zone. Newly‐available evidence from nuclear markers indicating marked differentiation between auduboni and coronata has focused attention on the possibility of mtDNA introgression in the absence of nuclear gene flow, and the results of the present study are consistent with the hypothesis that the mtDNA of auduboni was indeed historically introgressed from the coronata lineage. Analysis of morphological traits shows that memorabilis is significantly differentiated from auduboni and nigrifrons in some traits, yet is overall intermediate between the two, which is consistent with a shared common ancestor for the auduboni/memorabilis/nigrifrons group. The striking, unexpected mtDNA pattern reported in the present study reveals a complex evolutionary history of the yellow‐rumped warbler complex, and cautions against the exclusive use of mtDNA to infer evolutionary relationships. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 696–706. 相似文献
14.
15.
16.
A. Ludwig L. Alderson E. Fandrey D. Lieckfeldt T. K. Soederlund K. Froelich 《Animal genetics》2013,44(4):383-386
The White Park Cattle (WPC) is an indigenous ancient breed from the British Isles which has a long‐standing history in heroic sagas and documents. The WPC has retained many primitive traits, especially in their grazing behaviour and preferences. Altogether, the aura of this breed has led to much speculation surrounding its origin. In this study, we sequenced the mitogenomes from 27 WPC and three intronic fragments of genes from the Y chromosome of three bulls. We observed six novel mitogenomic lineages that have not been found in any other cattle breed so far. We found no evidence that the WPC is a descendant of a particular North or West European branch of aurochs. The WPC mitogenomes are grouped in the T3 cluster together with most other domestic breeds. Nevertheless, both molecular markers support the primitive position of the WPC within the taurine breeds. 相似文献
17.
Ullasa Kodandaramaiah Thomas J. Simonsen Sean Bromilow Niklas Wahlberg Felix Sperling 《Ecology and evolution》2013,3(16):5167-5176
The satyrine butterfly Coenonympha tullia (Nymphalidae: Satyrinae) displays a deep split between two mitochondrial clades, one restricted to northern Alberta, Canada, and the other found throughout Alberta and across North America. We confirm this deep divide and test hypotheses explaining its phylogeographic structure. Neither genitalia morphology nor nuclear gene sequence supports cryptic species as an explanation, instead indicating differences between nuclear and mitochondrial genome histories. Sex‐biased dispersal is unlikely to cause such mito‐nuclear differences; however, selective sweeps by reproductive parasites could have led to this conflict. About half of the tested samples were infected by Wolbachia bacteria. Using multilocus strain typing for three Wolbachia genes, we show that the divergent mitochondrial clades are associated with two different Wolbachia strains, supporting the hypothesis that the mito‐nuclear differences resulted from selection on the mitochondrial genome due to selective sweeps by Wolbachia strains. 相似文献
18.
Gunilla Ståhls Ante Vujić Theodora Petanidou Pedro Cardoso Snezana Radenković Jelena Ačanski Celeste Pérez Bañón Santos Rojo 《Ecology and evolution》2016,6(7):2226-2245
We investigated the phylogeographic patterns of Merodon species (Diptera, Syrphidae) in the Eastern Mediterranean. Ten species were sampled on five different islands and mainland sites as a minimum. All samples were screened for their mtDNA COI barcode haplotype diversity, and for some samples, we additionally generated genomic fingerprints. The recently established zoogeographic distribution categories classify these species as having (1) Balkan distribution; (2) Anatolian distribution; (3) continental areas and large islands distribution; and (4) with wide distribution. The ancestral haplotypes and their geographical localities were estimated with statistical parsimony (TCS). TCS networks identified as the ancestral haplotype samples that originated from localities situated within the distributional category of the species in question. Strong geographical haplotype structuring was detected for many Merodon species. We were particularly interested to test the relative importance of current (Aegean Sea) and past Mid‐Aegean Trench) barriers to dispersal for Merodon flies in the Aegean. We employed phylogenetic β‐diversity (Pβtotal) and its partition in replacement (Pβrepl) and richness difference (Pβrich) to test the importance of each explanatory variable (interisland distance, MAT, and island area) in interisland differences using partial Mantel tests and hierarchical partitioning of variation. β‐Analyses confirmed the importance of both current and past barriers to dispersal on the evolution of group. Current interisland distance was particularly important to explain the replacement of haplotypes, while the MAT was driving differences in richness of haplotypes, revealing the MAT as a strong past barrier whose effects are still visible today in the phylogenetic history of the clade in the Aegean. These results support the hypothesis of a highly restricted dispersal and gene flow among Merodon populations between islands since late Pleistocene. Additionally, patterns of phylogeographic structure deduced from haplotype connections and ISSR genome fingerprinting data revealed a few putative cases of human‐mediated transfers of Merodon spp. 相似文献
19.
Tobias Windmaißer Stefan Kattari Günther Heubl Christoph Reisch 《Ecology and evolution》2016,6(21):7809-7819
The shrubby milkwort (Polygala chamaebuxus L.) is widely distributed in the Alps, but occurs also in the lower mountain ranges of Central Europe such as the Franconian Jura or the Bohemian uplands. Populations in these regions may either originate from glacial survival or from postglacial recolonization. In this study, we analyzed 30 populations of P. chamaebuxus from the whole distribution range using AFLP (Amplified Fragment Length Polymorphism) analysis to identify glacial refugia and to illuminate the origin of P. chamaebuxus in the lower mountain ranges of Central Europe. Genetic variation and the number of rare fragments within populations were highest in populations from the central part of the distribution range, especially in the Southern Alps (from the Tessin Alps and the Prealps of Lugano to the Triglav Massiv) and in the middle part of the northern Alps. These regions may have served, in accordance with previous studies, as long‐term refugia for the glacial survival of the species. The geographic pattern of genetic variation, as revealed by analysis of molecular variance, Bayesian cluster analysis and a PopGraph genetic network was, however, only weak. Instead of postglacial recolonization from only few long‐term refugia, which would have resulted in deeper genetic splits within the data set, broad waves of postglacial expansion from several short‐term isolated populations in the center to the actual periphery of the distribution range seem to be the scenario explaining the observed pattern of genetic variation most likely. The populations from the lower mountain ranges in Central Europe were more closely related to the populations from the southwestern and northern than from the nearby eastern Alps. Although glacial survival in the Bohemian uplands cannot fully be excluded, P. chamaebuxus seems to have immigrated postglacially from the southwestern or central‐northern parts of the Alps into these regions during the expansion of the pine forests in the early Holocene. 相似文献
20.
Ding ZL Oskarsson M Ardalan A Angleby H Dahlgren LG Tepeli C Kirkness E Savolainen P Zhang YP 《Heredity》2012,108(5):507-514
Global mitochondrial DNA (mtDNA) data indicates that the dog originates from domestication of wolf in Asia South of Yangtze River (ASY), with minor genetic contributions from dog-wolf hybridisation elsewhere. Archaeological data and autosomal single nucleotide polymorphism data have instead suggested that dogs originate from Europe and/or South West Asia but, because these datasets lack data from ASY, evidence pointing to ASY may have been overlooked. Analyses of additional markers for global datasets, including ASY, are therefore necessary to test if mtDNA phylogeography reflects the actual dog history and not merely stochastic events or selection. Here, we analyse 14,437 bp of Y-chromosome DNA sequence in 151 dogs sampled worldwide. We found 28 haplotypes distributed in five haplogroups. Two haplogroups were universally shared and included three haplotypes carried by 46% of all dogs, but two other haplogroups were primarily restricted to East Asia. Highest genetic diversity and virtually complete phylogenetic coverage was found within ASY. The 151 dogs were estimated to originate from 13-24 wolf founders, but there was no indication of post-domestication dog-wolf hybridisations. Thus, Y-chromosome and mtDNA data give strikingly similar pictures of dog phylogeography, most importantly that roughly 50% of the gene pools are shared universally but only ASY has nearly the full range of genetic diversity, such that the gene pools in all other regions may derive from ASY. This corroborates that ASY was the principal, and possibly sole region of wolf domestication, that a large number of wolves were domesticated, and that subsequent dog-wolf hybridisation contributed modestly to the dog gene pool. 相似文献