共查询到20条相似文献,搜索用时 121 毫秒
1.
Knowledge of the genetic and environmental influences on a character is pivotal for understanding evolutionary changes in quantitative traits in natural populations. Dominance and aggression are ubiquitous traits that are selectively advantageous in many animal societies and have the potential to impact the evolutionary trajectory of animal populations. Here we provide age‐ and sex‐specific estimates of additive genetic and environmental components of variance for dominance rank and aggression rate in a free‐living, human‐habituated bird population subject to natural selection. We use a long‐term data set on individually marked greylag geese (Anser anser) and show that phenotypic variation in dominance‐related behaviours contains significant additive genetic variance, parental effects and permanent environment effects. The relative importance of these variance components varied between age and sex classes, whereby the most pronounced differences concerned nongenetic components. In particular, parental effects were larger in juveniles of both sexes than in adults. In paired adults, the partner's identity had a larger influence on male dominance rank and aggression rate than in females. In sex‐ and age‐specific estimates, heritabilities did not differ significantly between age and sex classes. Adult dominance rank was only weakly genetically correlated between the sexes, leading to considerably higher heritabilities in sex‐specific estimates than across sexes. We discuss these patterns in relation to selection acting on dominance rank and aggression in different life history stages and sexes and suggest that different adaptive optima could be a mechanism for maintaining genetic variation in dominance‐related traits in free‐living animal populations. 相似文献
2.
Evidence for biogeographic patterning of mitochondrial DNA sequences in Eastern horse populations 总被引:2,自引:0,他引:2
McGahern A Bower MA Edwards CJ Brophy PO Sulimova G Zakharov I Vizuete-Forster M Levine M Li S MacHugh DE Hill EW 《Animal genetics》2006,37(5):494-497
Equine mitochondrial DNA (mtDNA) phylogeny reconstruction reveals a complex pattern of variation unlike that seen in other large domesticates. It is likely that this pattern reflects a process of multiple and repeated, although not necessarily independent, domestication events. Until now, no clear geographic affiliation of clades has been apparent. In this study, amova analyses have revealed a significant non-random distribution of the diversity among equine populations when seven newly sequenced Eurasian populations were examined in the context of previously published sequences. The association of Eastern mtDNA types in haplogroup F was highly significant using Fisher's exact test of independence (P = 0.00000). For the first time, clear biogeographic partitioning has been detected in equine mtDNA sequence. 相似文献
3.
Alla G. Oleinik Lubov A. Skurikhina Evgenia I. Bondar Vladimir A. Brykov 《Journal of Zoological Systematics and Evolutionary Research》2014,52(4):293-304
The northern Dolly Varden, Salvelinus malma malma, is a typical representative of arctic fauna distributed in northeastern Asia and northwestern North America. Because its spawning habitats were affected by Pleistocene glacial advances over most of its natural range, S. m. malma is among the most interesting objects of phylogeographic and microevolutionary studies. We reconstructed the genealogy of mtDNA haplotypes from 27 Alaskan and Asian populations to study the influence of glacial and geological vicariance events on the contemporary population genetic structure, phylogeographic subdivision and distribution of the northern Dolly Varden. Analysis of restriction site states in three PCR‐amplified mtDNA regions (ND1/ND2, ND5/ND6, Cytb/D‐loop; 47% of the mitochondrial genome) resolved 75 haplotypes in 436 fish. Similar patterns of subspecific variation apparent from hierarchical diversity and nested clade analyses of mtDNA haplotypes identify weak spatial differentiation and low levels of divergence. Our results suggest that (1) demographic history has been influenced by historical range expansions and recent isolation by distance, (2) present populations from Asia and North America were colonized from one main Beringian Refugium, and (3) that this taxon's ancestral population probably experienced a bottleneck in the Beringian Refugium during the late Pleistocene (Wisconsin) glacial period. 相似文献
4.
Dispersal and migratory behavior are influential factors in determining how genetic diversity is distributed across the landscape. In migratory species, genetic structure can be promoted via several mechanisms including fidelity to distinct migratory routes. Particularly within North America, waterfowl management units have been delineated according to distinct longitudinal migratory flyways supported by banding data and other direct evidence. The greater white‐fronted goose (Anser albifrons) is a migratory waterfowl species with a largely circumpolar distribution consisting of up to six subspecies roughly corresponding to phenotypic variation. We examined the rangewide population genetic structure of greater white‐fronted geese using mtDNA control region sequence data and microsatellite loci from 23 locales across North America and Eurasia. We found significant differentiation in mtDNA between sampling locales with flyway delineation explaining a significant portion of the observed genetic variation (~12%). This is concordant with band recovery data which shows little interflyway or intercontinental movements. However, microsatellite loci revealed little genetic structure suggesting a panmictic population across most of the Arctic. As with many high‐latitude species, Beringia appears to have played a role in the diversification of this species. A common Beringian origin of North America and Asian populations and a recent divergence could at least partly explain the general lack of structure at nuclear markers. Further, our results do not provide strong support for the various taxonomic proposals for this species except for supporting the distinctness of two isolated breeding populations within Cook Inlet, Alaska (A. a. elgasi) and Greenland (A. a. flavirostris), consistent with their subspecies status. 相似文献
5.
Central European Greylag Geese Anser anser show a shortening of migration distance and earlier spring arrival over 60 years 下载免费PDF全文
Michal Podhrázský Petr Musil Zuzana Musilová Jan Zouhar Matyáš Adam Jaroslav Závora Karel Hudec 《Ibis》2017,159(2):352-365
Global climate change can cause pronounced changes in species? migratory behaviour. Numerous recent studies have demonstrated climate‐driven changes in migration distance and spring arrival date in waterbirds, but detailed studies based on long‐term records of individual recapture or re‐sighting events are scarce. Using re‐sighting data from 430 marked individuals spanning a 60‐year period (winters 1956/1957 to 2015/2016), we assessed patterns in migration distance and spring arrival date, wintering‐site fidelity and survival in the increasing central European breeding population of Greylag Geese Anser anser. We demonstrate a long‐term decrease in migration distance, changes in the wintering range caused by winter partial short‐stopping, and the earlier arrival of geese on their breeding grounds. Greylag Geese marked on central Europe moulting grounds have not been recorded wintering in Spain since 1986 or in Tunisia and Algeria since 2004. The migration distance and spring arrival of geese indicated an effect of temperature at the breeding site and values of the NAO index. Greylag Geese migrate shorter distances and arrive earlier in milder winters. We suggest that shifts in the migratory behaviour of Central European Greylag Geese are individual temperature‐dependent decisions to take advantage of wintering grounds becoming more favourable closer to their breeding grounds, allowing birds to acquire breeding territories earlier. 相似文献
6.
Ding ZL Oskarsson M Ardalan A Angleby H Dahlgren LG Tepeli C Kirkness E Savolainen P Zhang YP 《Heredity》2012,108(5):507-514
Global mitochondrial DNA (mtDNA) data indicates that the dog originates from domestication of wolf in Asia South of Yangtze River (ASY), with minor genetic contributions from dog-wolf hybridisation elsewhere. Archaeological data and autosomal single nucleotide polymorphism data have instead suggested that dogs originate from Europe and/or South West Asia but, because these datasets lack data from ASY, evidence pointing to ASY may have been overlooked. Analyses of additional markers for global datasets, including ASY, are therefore necessary to test if mtDNA phylogeography reflects the actual dog history and not merely stochastic events or selection. Here, we analyse 14,437 bp of Y-chromosome DNA sequence in 151 dogs sampled worldwide. We found 28 haplotypes distributed in five haplogroups. Two haplogroups were universally shared and included three haplotypes carried by 46% of all dogs, but two other haplogroups were primarily restricted to East Asia. Highest genetic diversity and virtually complete phylogenetic coverage was found within ASY. The 151 dogs were estimated to originate from 13-24 wolf founders, but there was no indication of post-domestication dog-wolf hybridisations. Thus, Y-chromosome and mtDNA data give strikingly similar pictures of dog phylogeography, most importantly that roughly 50% of the gene pools are shared universally but only ASY has nearly the full range of genetic diversity, such that the gene pools in all other regions may derive from ASY. This corroborates that ASY was the principal, and possibly sole region of wolf domestication, that a large number of wolves were domesticated, and that subsequent dog-wolf hybridisation contributed modestly to the dog gene pool. 相似文献
7.
BORJA MILÁ DAVID P. L. TOEWS THOMAS B. SMITH ROBERT K. WAYNE 《Biological journal of the Linnean Society. Linnean Society of London》2011,103(3):696-706
Using genetic data to study the process of population divergence is central to understanding speciation, yet distinguishing between recent divergence and introgressive hybridization is challenging. In a previous study on the phylogeography of the yellow‐rumped warbler complex using mitochondrial (mt)DNA data, we reported limited sequence divergence and a lack of reciprocal monophyly between myrtle and Audubon's warblers (Dendroica coronata and Dendroica auduboni, respectively), suggesting very recent isolation. In the present study, we report the results obtained from a subsequent sampling of Audubon's warbler in Arizona and Utah (‘memorabilis’ race), which shows that, although this taxon is similar to auduboni in plumage colour, most memorabilis individuals sampled (93%) carry haplotypes that belong to the divergent black‐fronted warbler lineage (Dendroica nigrifrons) of Mexico. Furthermore, the auduboni and nigrifrons lineages mix in southern Utah at a narrow, yet apparently ‘cryptic’ contact zone. Newly‐available evidence from nuclear markers indicating marked differentiation between auduboni and coronata has focused attention on the possibility of mtDNA introgression in the absence of nuclear gene flow, and the results of the present study are consistent with the hypothesis that the mtDNA of auduboni was indeed historically introgressed from the coronata lineage. Analysis of morphological traits shows that memorabilis is significantly differentiated from auduboni and nigrifrons in some traits, yet is overall intermediate between the two, which is consistent with a shared common ancestor for the auduboni/memorabilis/nigrifrons group. The striking, unexpected mtDNA pattern reported in the present study reveals a complex evolutionary history of the yellow‐rumped warbler complex, and cautions against the exclusive use of mtDNA to infer evolutionary relationships. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 696–706. 相似文献
8.
Adeniyi C. Adeola Sheila C. Ommeh Robert W. Murphy Shi‐Fang Wu Min‐Sheng Peng Ya‐Ping Zhang 《Animal genetics》2015,46(5):576-579
We analyzed genetic diversity of 215 mitochondrial DNA (mtDNA) D‐loop sequences from seven populations of domesticated helmeted guinea fowl (Numida meleagris) in Nigeria and compared that with results of samples collected in Kenya (n = 4) and China (n = 22). In total, 241 sequences were assigned to 22 distinct haplotypes. Haplotype diversity in Nigeria was 0.693 ± 0.022. The network grouped most matrilines into two main haplogroups: A and B. There was an absence of a geographic signal, and two haplotypes dominated across all locations with the exception of the Kebbi population in the northwest of the country; AMOVA also confirmed this observation (FST = 0.035). The low genetic diversity may be a result of recent domestication, whereas the lack of maternal genetic structure likely suggests the extensive genetic intermixing within the country. Additionally, the differentiation of the Kebbi population may be due to a certain demographic history and/or artificial selection that shaped its haplotype profile. The current data do not permit us to make further conclusions; therefore, more research evidence from genetics and archaeology is still required. 相似文献
9.
X. Xia K. Qu G. Zhang Y. Jia Z. Ma X. Zhao Y. Huang H. Chen B. Huang C. Lei 《Animal genetics》2019,50(1):70-73
Complete mitochondrial DNA D‐loop sequences of 1105 individuals were used to assess the diversity of maternal lineages of cattle populations in China. In total, 250 taurine and 88 zebu haplotypes were identified. Five main haplogroups—T1a, T2, T3, T4 and T5—were identified in Bos taurus, whereas Bos indicus harbored two haplogroups—I1 and I2. Our results suggest that the distribution of T1a in Asia was concentrated mainly in the northeast region (northeast China, Korea and Japan); haplogroups T2, T3 and T4 were predominant in Chinese cattle; and T5 was sporadically detected in Mongolian and Pingwu cattle. In contrast to the widespread presence of I1, I2 was distributed only in southwestern China (Yunnan‐Guizhou Plateau and the Tibet Autonomous Region) and Xinjiang Uygur Autonomous Region. This is the first time that all five taurine haplogroups and two zebu haplogroups have been found in Mongolian cattle. In addition, eight individuals in Tibetan cattle carried the Bos grunniens mtDNA type. The high mtDNA diversity (H = 0.904 ± 0.008) and the weak genetic structure among the 57 Chinese cattle breeds/populations are consistent with their complex historical background, migration route and ecological environment. 相似文献
10.
The phylogenetic relationships of seven goose species and two of the subspecies representing the genus Anser were studied by approximately 1180 bp of mitochondrial DNA tRNAglu, control region and tRNAphe sequences. Despite obvious morphological and behavioural affinities among the species, their evolutionary relationships have not been studied previously. The small amount of genetic differentiation observed in the mitochondrial DNA indicates an extremely close evolutionary relationship between the Anser species. The sequence divergences between the species (0.9–5.5%) are among the lowest reported for avian species with speciation events of Anser geese dating to late Pliocene and Pleistocene. The species grouped into four mtDNA lineages: (1) snow and Ross’ goose, (2) greylag goose, (3) white‐fronted goose, and (4) bean, pink‐footed and lesser white‐fronted goose. The phylogenetic relationships of the most closely related species, bean, pink‐footed and lesser white‐fronted goose, indicate a period of rapid cladogenesis. The poor agreement between morphological relationships and the phylogenetic relationships indicated by mtDNA sequences implies that either ancestral polymorphism and lineage sorting, hybridization and introgression or convergent evolution has been involved. 相似文献
11.
Jinnan Ma Jinhua Liu Yongmei Shen Zhenxin Fan Bisong Yue Xiuyue Zhang 《Ecology and evolution》2019,9(22):12928-12939
The American cockroach (Periplaneta americana) is a globally invasive pest that can cause significant economic loss and threaten human health. Although it is abundant and lives in close proximity to humans, few studies have investigated the genetic diversity of P. americana. Our study analyzed 1,053 P. americana and other Periplaneta species' samples from different locations in China and the United States. A traditional tree‐based method using 17 unique mitochondrial COI haplotypes of P. americana and 20 haplotypes of the other Periplaneta species accurately identified P. americana with a barcoding threshold of 5.1%. To identify the population genetic structure of P. americana, we investigated wingless gene and pooled them with obtained mtDNA data for a combined analysis. Although the genetic diversity of the USA group was relatively higher than the China group, the number of haplotypes and alleles of both groups was small. The analysis of molecular variance (AMOVA), intraspecific phylogeny, and haplotype networks indicated that P. americana had very little global genetic differentiation. The weak geographic genetic structure might reflect the human‐mediated dispersal of P. americana. Despite no apparent phylogeographic assignment of mtDNA and nuclear lineages was observed in both BI trees, the integrated COI sequence data identified four distinct P. americana haplotype groups, showing four ancient maternal lineages of P. americana in China and the United States. 相似文献
12.
Rapid identification of the Asian gypsy moth and its related species based on mitochondrial DNA 下载免费PDF全文
Ying Wu Qiuyang Du Haiwen Qin Juan Shi Zhiyi Wu Weidong Shao 《Ecology and evolution》2018,8(4):2320-2325
The gypsy moth—Lymantria dispar (Linnaeus)—is a worldwide forest defoliator and is of two types: the European gypsy moth and the Asian gypsy moth. Because of multiple invasions of the Asian gypsy moth, the North American Plant Protection Organization officially approved Regional Standards for Phytosanitary Measures No. 33. Accordingly, special quarantine measures have been implemented for 30 special focused ports in the epidemic areas of the Asian gypsy moth, including China, which has imposed great inconvenience on export trade. The Asian gypsy moth and its related species (i.e., Lymantria monocha and Lymantria xylina) intercepted at ports are usually at different life stages, making their identification difficult. Furthermore, Port quarantine requires speedy clearance. As such, it is difficult to identify the Asian gypsy moth and its related species only by their morphological characteristics in a speedy measure. Therefore, this study aimed to use molecular biology technology to rapidly identify the Asian gypsy moth and its related species based on the consistency of mitochondrial DNA in different life stages. We designed 10 pairs of specific primers from different fragments of the Asian gypsy moth and its related species, and their detection sensitivity met the need for rapid identification. In addition, we determined the optimal polymerase chain reaction amplification temperature of the 10 pairs of specific primers, including three pairs of specific primers for the Asian gypsy moth (L. dispar asiatic), four pairs of specific primers for the nun moth (L. monocha), and three pairs of specific primers for the casuarina moth (L. xylina). In conclusion, using our designed primers, direct rapid identification of the Asian gypsy moth and its related species is possible, and this advancement can help improve export trade in China. 相似文献
13.
Rosalynn M. Anderson‐Lederer Wayne L. Linklater Peter A. Ritchie 《African Journal of Ecology》2012,50(4):404-413
The taxonomy of African black rhinoceros (Diceros bicornis) remains unresolved. Maintaining levels of genetic diversity and species rescue by reintroduction and restocking requires its resolution. We compared the sequences of the mitochondrial DNA (mtDNA) control region for a total of 101 D. bicornis from three subspecies: D. b. minor, D. b. michaeli and D. b. bicornis. A single unique haplotype was found within the 65 D. b. minor samples from KwaZulu‐Natal (KZN) Province, South Africa, 55 of which came from Hluhluwe‐iMfolozi Game Park (HiP) and Mkuzi Game Reserve (MGR) source populations. However, six different haplotypes were represented in eleven D. b. minor samples from Zimbabwe. Similarly, published autosomal microsatellite data indicate low levels of diversity within the KZN D. b. minor populations. The low levels of mtDNA diversity within the KZN metapopulation point to the possible need for genetic supplementation. However, there is a need to determine whether the low levels of genetic variation within KZN D. b. minor are a result of the recent bottleneck or whether KZN historically always had low diversity. 相似文献
14.
To understand the origin and genetic diversity of Italian horses, mitochondrial DNA D‐loop sequences were generated for 163 horses from seven breeds. Sequence analysis of a 480‐bp segment revealed a total of 84 haplotypes with 57 polymorphic sites, indicating multiple maternal origins and high genetic diversity. Comparison of the haplotypes with the equine mtDNA haplotype/haplogroup nomenclature showed a haplogroup distribution in the Italian breeds more similar to that found in the Middle East breeds than in the European breeds, probably due to the economic and cultural relationship with the Middle East in the past centuries. 相似文献
15.
The history of domestic sheep (Ovis aries) in Africa remains largely unknown. After being first introduced from the Near East, sheep gradually spread through the African continent with pastoral societies. The eastern part of Africa was important either for the first diffusion of sheep southward or for putative secondary introductions from the Arabian Peninsula or southern Asia. We analysed mitochondrial DNA control region sequences of 91 domestic sheep from Kenya and found a high diversity of matrilines from the widespread haplogroup B, whereas only a single individual from haplogroup A was detected. Our phylogeography analyses of more than 500 available mitochondrial DNA sequences also identified ancestral haplotypes that were probably first introduced in Africa and are now widely distributed. Moreover, we found no evidence of an admixture between East and West African sheep. The presence of shared haplotypes in eastern and ancient southern African sheep suggests the possible southward movement of sheep along the eastern part of Africa. Finally, we found no evidence of an extensive introduction of sheep from southern Asia into Africa via the Indian Ocean trade. The overall findings on the phylogeography of East African domestic sheep set the grounds for understanding the origin and subsequent movements of sheep in Africa. The richness of maternal lineages in Kenyan breeds is of prime importance for future conservation and breeding programmes. 相似文献
16.
Ullasa Kodandaramaiah Thomas J. Simonsen Sean Bromilow Niklas Wahlberg Felix Sperling 《Ecology and evolution》2013,3(16):5167-5176
The satyrine butterfly Coenonympha tullia (Nymphalidae: Satyrinae) displays a deep split between two mitochondrial clades, one restricted to northern Alberta, Canada, and the other found throughout Alberta and across North America. We confirm this deep divide and test hypotheses explaining its phylogeographic structure. Neither genitalia morphology nor nuclear gene sequence supports cryptic species as an explanation, instead indicating differences between nuclear and mitochondrial genome histories. Sex‐biased dispersal is unlikely to cause such mito‐nuclear differences; however, selective sweeps by reproductive parasites could have led to this conflict. About half of the tested samples were infected by Wolbachia bacteria. Using multilocus strain typing for three Wolbachia genes, we show that the divergent mitochondrial clades are associated with two different Wolbachia strains, supporting the hypothesis that the mito‐nuclear differences resulted from selection on the mitochondrial genome due to selective sweeps by Wolbachia strains. 相似文献
17.
Zhaofeng Wang Xin Shen Bin Liu Jianping Su Takahiro Yonezawa Yun Yu Songchang Guo Simon Y. W. Ho Carles Vilà Masami Hasegawa Jianquan Liu 《Journal of Biogeography》2010,37(12):2332-2344
Aim We aimed to examine the phylogeographical structure and demographic history of domestic and wild yaks (Bos grunniens) based on a wide range of samples and complete mitochondrial genomic sequences. Location The Qinghai‐Tibetan Plateau (QTP) of western China. Methods All available D‐loop sequences for 405 domesticated yaks and 47 wild yaks were examined, including new sequences from 96 domestic and 34 wild yaks. We further sequenced the complete mitochondrial genomes of 48 domesticated and 21 wild yaks. Phylogeographical analyses were performed using the mitochondrial D‐loop and the total genome datasets. Results We recovered a total of 123 haplotypes based on the D‐loop sequences in wild and domestic yaks. Phylogenetic analyses of this dataset and the mitochondrial genome data suggested three well‐supported and divergent lineages. Two lineages with six D‐loop haplogroups were recovered for all morphological breeds of domestic yaks across their distributions in the QTP, while one more lineage and more endemic haplogroups or haplotypes were found for wild yaks. Based on the mitochondrial genome data, the divergences of the three lineages were estimated to have occurred around 420,000 and 580,000 years ago, consistent with the geological records of two large glaciation events experienced in the QTP. Main conclusions There are distinct phylogeographical differences between wild and domestic yaks. However, there is no apparent geographical correlation between identified haplogroups and distributions of domestic yaks. Three differentiated lineages of yaks probably evolved allopatrically in different regions during the Pleistocene glaciation events, then reunited into a single gene pool during post‐glacial population expansion and migrations before the start of the domestication of yaks in the Holocene. 相似文献
18.
The complete mitochondrial DNA (mtDNA) control region (1043 base pairs) and 162-bp of flanking transfer RNA genes were sequenced in 316 European grayling, Thymallus thymallus, from 44 populations throughout the Western European range of the species. A total of 58 haplotypes were revealed with pairwise divergence ranging from 0.001 to 0.038. An inferred intraspecific phylogenetic tree revealed two well-supported clades within the Danube basin, one highly divergent clade in the Adriatic basin, and one large, diverse group representing most other populations. A deeply divergent haplotype fixed in the Loire basin in central France, more groups of haplotypes from distinct Danubian tributaries, and a relatively ancestral haplotype fixed in former tributaries of the Elbe in Denmark all suggest a complex pattern of interglacial and postglacial expansions originating from disjunct refugia throughout central Europe. Despite some evidence of human-mediated stock transfers, parsimony-network-based nested-clade analysis (NCA) supported specific inferences relating to corridors of postglacial expansion such as the lower Rhine (Moselle) and Elbe systems (Danish populations) serving as sources for expansion into the Baltic to the north as well as the upper Rhine and Danube to the south; and specific Rhine populations (Doller, Orbe and Reuss) serving as sources for colonization of the Rhone. The multiple divergent clades representing populations in the upper Danube, as well as the deeply divergent haplotypes found in the Adriatic and Loire basins (> 5% divergence from Asian outgroups) support the theory that European grayling have had a long history in Western Europe, pre-dating Pleistocene glacial cycles. The patterns of mtDNA divergence shown here support a perspective of rich inter- and intrabasin genetic diversity that should be protected from current trends to translocate brood stocks for rearing and release in response to declining populations, especially in southern European basins. 相似文献
19.
L. Pérez‐Pardal J. Grizelj A. Traoré V. Cubric‐Curik G. Arsenos T. Dovenski B. Marković I. Fernández M. Cuervo I. Álvarez A. Beja‐Pereira I. Curik F. Goyache 《Animal genetics》2014,45(1):144-147
A total of 132 mtDNA sequences from 10 Balkan donkey populations were analysed to ascertain their regional genetic structure and to contribute to the knowledge of the spreading of the species after domestication. The Balkan donkey sequences were compared with those from 40 Burkina Faso donkeys as an African outgroup to account for possible local Balkan scenarios. The 172 sequences gave 62 different haplotypes (55 in Balkan donkey). Virtually all the analysed populations had haplotypes assigned to either Clade 1 or Clade 2 even though the relative proportion of Clade 1 or 2 haplotypes differed across populations. Geographical maps constructed using factors computed via principal component analysis showed that the Balkan donkey populations are not spatially structured. AMOVA confirmed a lack of genetic structure in Balkan donkey mtDNA. Balkan populations were poorly differentiated (ΦST = 0.071). Differentiation between the Balkan donkey and the African outgroup also was low. The lack of correspondence between geographical areas and maternal genetic structure is consistent with the hypothesis suggesting a very quick spread of the species after domestication. The current research illustrates the difficulties to trace routes of expansion in donkey, as the species has no geographical structure. 相似文献
20.
Luis Cadahía Josef Harl Michael Duda Helmut Sattmann Luise Kruckenhauser Zoltn Fehr Laura Zopp Elisabeth Haring 《Journal of Zoological Systematics and Evolutionary Research》2014,52(2):163-169
The phylogenetic relationships among genera of the subfamily Ariantinae (Pulmonata, Helicidae), especially the sister‐group relationship of Cylindrus obtusus, were investigated with three mitochondrial (12S rRNA, 16S rRNA, Cytochrome c oxidase subunit I) and two nuclear marker genes (Histone H4 and H3). Within Ariantinae, C. obtusus stands out because of its aberrant cylindrical shell shape. Here, we present phylogenetic trees based on these five marker sequences and discuss the position of C. obtusus and phylogeographical scenarios in comparison with previously published results. Our results provide strong support for the sister‐group relationship between Cylindrus and Arianta confirming previous studies and imply that the split between the two genera is quite old. The tree reveals a phylogeographical pattern of Ariantinae with a well‐supported clade comprising the Balkan taxa which is the sister group to a clade with individuals from Alpine localities. Additional lineages representing samples from southern Alpine localities as well as from Slovakia split from more basal nodes, but their relationships are not clearly resolved. To achieve more definitive conclusions concerning the geographical origin of Ariantinae, still more sequence data are needed to obtain a tree with better resolution of basal nodes. The genetic data also provided new insights concerning the genus Cepaea, which was used as one of the outgroup taxa. Cepaea vindobonensis is only distantly related to Cepaea nemoralis and Cepaea hortensis, the latter two being more closely related to Eobania vermiculata. Thus, in our tree, the genus Cepaea is paraphyletic. 相似文献