首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Traditional selection for sow reproductive longevity is ineffective due to low heritability and late expression of the trait. Incorporation of DNA markers into selection programs is potentially a more practical approach for improving sow lifetime productivity. Using a resource population of crossbred gilts, we explored pleiotropic sources of variation that influence age at puberty and reproductive longevity. Of the traits recorded before breeding, only age at puberty significantly affected the probability that females would produce a first parity litter. The genetic variance explained by 1‐Mb windows of the sow genome, compared across traits, uncovered regions that influence both age at puberty and lifetime number of parities. Allelic variants of SNPs located on SSC5 (27–28 Mb), SSC8 (36–37 Mb) and SSC12 (1.2–2 Mb) exhibited additive effects and were associated with both early expression of puberty and a greater than average number of lifetime parities. Combined analysis of these SNPs showed that an increase in the number of favorable alleles had positive impact on reproductive longevity, increasing number of parities by up to 1.36. The region located on SSC5 harbors non‐synonymous alleles in the arginine vasopressin receptor 1A (AVPR1A) gene, a G‐protein‐coupled receptor associated with social and reproductive behaviors in voles and humans and a candidate for the observed effects. This region is characterized by high levels of linkage disequilibrium in different lines and could be exploited in marker‐assisted selection programs across populations to increase sow reproductive longevity.  相似文献   

2.
A large proportion of gilts and sows are culled from reproduction populations because of anestrus and pubertal reproductive failure. Selecting early onset of puberty gilts has a favorable effect on sows’ reproductivity. However, age at puberty is hard to be routinely measured in commercial herds. With molecular genetic predictors, identifying individuals that have a propensity for early onset of puberty can be simplified. We previously performed genome scanning and a genome‐wide association study for puberty in an F2 resource population using 183 microsatellites and 62 125 SNPs respectively. The detection power and resolution of identified quantitative trait loci were very low. Herein, we re‐sequenced 19 founders of the F2 resource population in high coverage, and whole genome sequences of F2 individuals were imputed to perform an association study for reproductive traits. A total of 2339 SNPs associated with pubertal reproductive failure were identified in the region of 30.94–40.74 Mb on SSC7, with the top one, positioned at 33.36 Mb, explaining 16% of the phenotypic variances. We improved the magnitude of the P‐value by 10E+5 to 10E+7 using the whole genome sequence rather than using low/middle density markers as in previous studies, and we narrowed down the QTL confidence interval to 5.25 Mb. Combining the annotation of gene function, RAB23 and BAK1 were perceived as the most compelling candidate genes. The identified loci may be useful in culling sows failing to show estrus by marker‐assisted selection to increase reproductive efficiency of swine herds.  相似文献   

3.
Insulin‐like growth factor I (somatomedin C) (IGF1) influences gonadotrophin‐releasing hormone (GnRH) neurons during puberty, and GnRH release guides pubertal development. Therefore, genes of the IGF1 pathway are biological candidates for the identification of single‐nucleotide polymorphisms (SNPs) affecting age of puberty. In a genome‐wide association study, genotyped heifers were Tropical Composite (TCOMP, n = 866) or Brahman (BRAH, n = 843), with observation of age at first corpus luteum defining puberty. We examined SNPs in or near genes of the IGF1 pathway and report seven genes associated with age at puberty in cattle: IGF1R, IGFBP2, IGFBP4, PERK (HUGO symbol EIF2AK3), PIK3R1, GSK3B and IRS1. SNPs in the IGF1 receptor (IGF1R) showed the most promising associations: two SNPs were associated with puberty in TCOMP (P < 0.05) and one in BRAH (P = 0.00009). This last SNP explained 2% of the genetic variation (R2 = 2.04%) for age of puberty in BRAH. Hence, IGF1R was examined further. Additional SNPs were genotyped, and haplotypes were analysed. To test more SNPs in this gene, four new SNPs from dbSNP were selected and genotyped. Single SNP and haploytpe analysis revealed associations with age of puberty in both breeds. There were two haplotypes of 12 IGF1R SNPs associated with puberty in BRAH (P < 0.05) and one in TCOMP (P < 0.05). One haplotype of two SNPs was associated (P < 0.01) with puberty in BRAH, but not in TCOMP. In conclusion, the IGF1 pathway appeared more relevant for age of puberty in Brahman cattle, and IGF1R showed higher significance when compared with other genes from the pathway.  相似文献   

4.
We performed a genome‐wide association study to map the genetic determinants of carcass traits in 350 Duroc pigs typed with the Porcine SNP60 BeadChip. Association analyses were carried out using the gemma software. The proportion of phenotypic variance explained by the SNPs ranged between negligible to moderate (= 0.01–0.30) depending on the trait under consideration. At the genome‐wide level, we detected one significant association between backfat thickness between the 3rd and 4th ribs and six SNPs mapping to SSC12 (37–40 Mb). We also identified several chromosome‐wide significant associations for ham weight (SSC11: 51–53 Mb, three SNPs; 67–68 Mb, two SNPs), carcass weight (SSC11: 66–68 Mb, two SNPs), backfat thickness between the 3rd and 4th ribs (SSC12: 21 Mb, one SNP; 33–40 Mb, 17 SNPs; 51–58 Mb, two SNPs), backfat thickness in the last rib (SSC12: 37 Mb, one SNP; 40–41 Mb, nine SNPs) and lean meat content (SSC13: 34 Mb, three SNPs and SSC16: 45.1 Mb, one SNP; 62–63 Mb, 10 SNPs; 71–75 Mb, nine SNPs). The ham weight trait‐associated region on SSC11 contains two genes (UCHL3 and LMO7) related to muscle development. In addition, the ACACA gene, which encodes an enzyme for the catalysis of fatty acid synthesis, maps to the SSC12 (37–41 Mb) region harbouring trait‐associated regions for backfat thickness traits. Sequencing of these candidate genes may help to uncover the causal mutations responsible for the associations found in the present study.  相似文献   

5.
Male piglets are routinely castrated to eliminate boar taint. However, this treatment is undesirable, and alternative approaches, including genetic strategies to reduce boar taint, are demanded. Androstenone is one of the causative agents of boar taint, and a QTL region affecting this pheromone has previously been reported on SSC5: 22.6–24.8 Mb in Duroc. The QTL region is one of the few reported for androstenone that does not simultaneously affect levels of other sex steroids. The main objective of this study was to fine map this QTL. Whole genome sequence data from 23 Norwegian Duroc boars were analyzed to detect new polymorphisms within the QTL region. A subset of 161 SNPs was genotyped in 834 Duroc sires and analyzed for association with androstenone in adipose tissue and testosterone, estrone sulphate and 17β‐estradiol in blood plasma. Our results revealed 100 SNPs significantly associated with androstenone levels in fat (< 0.001) with 94 of the SNPs being in strong linkage disequilibrium in the region 23.03–24.27 Mb. This haplotype block contains at least four positional candidate genes (HSD17B6, SDR9C7, RDH16 and STAT6) involved in androstenone biosynthesis. No significant associations were found between any of the SNPs and levels of testosterone and estrogens, confirming previous findings. The amount of phenotypic variance explained by single SNPs within the haplotype block was as high as 5.4%. As the SNPs in this region significantly affect levels of androstenone without affecting levels of other sex steroids, they are especially interesting as genetic markers for selection against boar taint.  相似文献   

6.
Tumor necrosis factor alpha (TNF‐α) is a pro‐inflammatory cytokine with a role in activating adaptive immunity to viral infections. By inhibiting the capacity of plasmacytoid dendritic cells to produce interferon‐α and TNF‐α, porcine circovirus 2 (PCV2) limits the maturation of myeloid dendritic cells and impairs their ability to recognize viral and bacterial antigens. Previously, we reported QTL for viremia and immune response in PCV2‐infected pigs. In this study, we analyzed phenotypic and genetic relationships between TNF‐α protein levels, a potential indicator of predisposition to PCV2 co‐infection, and PCV2 susceptibility. Following experimental challenge with PCV2b, TNF‐α reached the peak at 21 days post‐infection (dpi), at which time a difference was observed between pigs that expressed extreme variation in viremia and growth (< 0.10). A genome‐wide association study (= 297) revealed that genotypes of 56 433 SNPs explained 73.9% of the variation in TNF‐α at 21 dpi. Major SNPs were identified on SSC8, SSC10 and SSC14. Haplotypes based on SNPs from a SSC8 (9 Mb) 1‐Mb window were associated with variation in TNF‐α (< 0.02), IgG (= 0.05) and IgM (< 0.13) levels at 21 dpi. Potential overlap of regulatory mechanisms was supported by the correlations between genomic prediction values of TNF‐α and PCV2 antibodies (21 dpi, > 0.22), viremia (14–21 dpi, > 0.29) and viral load (= 0.31, < 0.0001). Characterization of the QTL regions uncovered genes that could influence variation in TNF‐α levels as well as T‐ and B‐cell development, which can affect disease susceptibility.  相似文献   

7.
This study assessed the genetic diversity in the growth hormone 1 gene (GH1) within and between South African goat breeds. Polymerase chain reaction‐targeted gene amplification together with Illumina MiSeq next‐generation sequencing (NGS) was used to generate the full length (2.54 kb) of the growth hormone 1 gene and screen for SNPs in the South African Boer (SAB) (= 17), Tankwa (= 15) and South African village (= 35) goat populations. A range of 27–58 SNPs per population were observed. Mutations resulting in amino acid changes were observed at exons 2 and 5. Higher within‐breed diversity of 97.37% was observed within the population category consisting of SA village ecotypes and the Tankwa goats. Highest pairwise FST values ranging from 0.148 to 0.356 were observed between the SAB and both the South African village and Tankwa feral goat populations. Phylogenetic analysis indicated nine genetic clusters, which reflected close relationships between the South African populations and the other international breeds with the exception of the Italian Sarda breeds. Results imply greater potential for within‐population selection programs, particularly with SA village goats.  相似文献   

8.
9.
Sex in Oreochromis niloticus (Nile tilapia) is principally determined by an XX/XY locus but other genetic and environmental factors also influence sex ratio. Restriction Associated DNA (RAD) sequencing was used in two families derived from crossing XY males with females from an isogenic clonal line, in order to identify Single Nucleotide Polymorphisms (SNPs) and map the sex-determining region(s). We constructed a linkage map with 3,802 SNPs, which corresponded to 3,280 informative markers, and identified a major sex-determining region on linkage group 1, explaining nearly 96% of the phenotypic variance. This sex-determining region was mapped in a 2 cM interval, corresponding to approximately 1.2 Mb in the O. niloticus draft genome. In order to validate this, a diverse family (4 families; 96 individuals in total) and population (40 broodstock individuals) test panel were genotyped for five of the SNPs showing the highest association with phenotypic sex. From the expanded data set, SNPs Oni23063 and Oni28137 showed the highest association, which persisted both in the case of family and population data. Across the entire dataset all females were found to be homozygous for these two SNPs. Males were heterozygous, with the exception of five individuals in the population and two in the family dataset. These fish possessed the homozygous genotype expected of females. Progeny sex ratios (over 95% females) from two of the males with the “female” genotype indicated that they were neomales (XX males). Sex reversal induced by elevated temperature during sexual differentiation also resulted in phenotypic males with the “female” genotype. This study narrows down the region containing the main sex-determining locus, and provides genetic markers tightly linked to this locus, with an association that persisted across the population. These markers will be of use in refining the production of genetically male O. niloticus for aquaculture.  相似文献   

10.
Compromised eggshell quality causes considerable economic losses for the egg industry. Breeding for improved eggshell quality has been very challenging. Eggshell quality is a trait that would greatly benefit from marker‐assisted selection, which would allow the selection of sires for their direct contribution to the trait and would also allow implementation of measurements integrating a number of shell parameters that are difficult to measure. In this study, we selected the most promising autosomal quantitative trait loci (QTL) affecting eggshell quality on chromosomes 2, 3, 6 and 14 from earlier experiments and we extended the F2 population to include 1599 F2 females. The study was repeated on two commercial populations: Lohmann Tierzucht Rhode Island Red line (= 692 females) and a Hy‐Line White Plymouth Rock line (= 290 progeny tested males). We analyzed the selected autosomal QTL regions on the three populations with SNP markers at 4–13 SNPs/Mb density. QTL for eggshell quality were replicated on all studied regions in the F2 population. New QTL were detected for eggshell color on chromosomes 3 and 6. Marker associations with eggshell quality traits were validated in the tested commercial lines on chromosomes 2, 3 and 6, thus paving the way for marker‐assisted selection for improved eggshell quality.  相似文献   

11.
L. Zhou  W. Zhao  Y. Fu  X. Fang  S. Ren  J. Ren 《Animal genetics》2019,50(6):753-756
Body conformation at birth and teat number are economically important traits in the pig industry, as these traits are usually explored to evaluate the growth and reproductive potential of piglets. To detect genetic loci and candidate genes for these traits, we performed a GWAS on 269 pigs from a recently developed Chinese breed (Sushan) using 38  128 informative SNPs on the Affymetrix Porcine SNP 55K Array. In total, we detected one genome‐wide significant (P = 1.31e‐6) SNP for teat number on chromosome X and 15 chromosome‐wide significant SNPs for teat number, body weight, body length, chest circumference and cannon circumference at birth on chromosomes 1, 3, 4, 6, 7, 9, 10, 13, 14, 15, 17 and 18. The most significant SNP had an additive effect of 0.74 × total teat number, explaining 20% of phenotypic variance. Five significant SNPs resided in the previously reported quantitative trait loci for these traits and seven significant SNPs had a pleiotropic effect on multiple traits. Intriguingly, 12 of the genes nearest to the significant SNPs are functionally related to body conformation and teat number traits, including SPRED2, MKX, TMSB4X and ESR1. GO analysis revealed that candidate genes proximal to the significant SNPs were enriched in the G‐protein coupled receptor and steroid hormone‐mediated signaling pathway. Our findings shed light on the genetic basis of the measured traits and provide molecular markers especially for the genetic improvement of teat number in Sushan and related pigs.  相似文献   

12.
Osteochondrosis is a common developmental orthopedic disease characterized by a failure of endochondral ossification. Standardbred horses are recognized as being predisposed to tarsal osteochondrosis. Prior heritability estimates for tarsal osteochondrosis in European Standardbreds and related trotting breeds have been based on pedigree data and range from 17–29%. Here, we report on genetic architecture and heritability based on high‐density genotyping data in a cohort of North American Standardbreds (= 479) stringently phenotyped for tarsal osteochondrosis. Whole‐genome array genotyping data were imputed to ~2 million single nucleotide polymorphisms (SNPs). SNP‐based heritability of osteochondrosis in this population was explained by 2326 SNPs. The majority of these SNPs (86.6%) had small effects, whereas fewer SNPs had moderate or large effects (10% and 2.9% respectively), which is consistent with a polygenic/complex disease. Heritability was estimated at 0.24 ± 0.16 using two methods of restricted maximum likelihood analysis, as implemented in gcta (with and without a weighted relatedness matrix) and ldak software. Estimates were validated using bootstrapping. Heritability estimates were within the range previously reported and suggest that osteochondrosis is moderately heritable but that a significant portion of disease risk is due to environmental factors and/or genotype × environment interactions. Future identification of the genes/variants that have the most impact on disease risk may allow early recognition of high‐risk individuals.  相似文献   

13.
Insights into the genetic characteristics of a species provide important information for wildlife conservation programs. Here, we used the OvineSNP50 BeadChip developed for domestic sheep to examine population structure and evaluate genetic diversity of snow sheep (Ovis nivicola) inhabiting Verkhoyansk Range and Momsky Ridge. A total of 1,121 polymorphic SNPs were used to test 80 specimens representing five populations, including four populations of the Verkhoyansk Mountain chain: Kharaulakh Ridge–Tiksi Bay (TIK,= 22), Orulgan Ridge (ORU,= 22), the central part of Verkhoyansk Range (VER,= 15), Suntar‐Khayata Ridge (SKH,= 13), and Momsky Ridge (MOM,= 8). We showed that the studied populations were genetically structured according to a geographic pattern. Pairwise FST values ranged from 0.044 to 0.205. Admixture analysis identified = 2 as the most likely number of ancestral populations. A Neighbor‐Net tree showed that TIK was an isolated group related to the main network through ORU. TreeMix analysis revealed that TIK and MOM originated from two different ancestral populations and detected gene flow from MOM to ORU. This was supported by the f3 statistic, which showed that ORU is an admixed population with TIK and MOM/SKH heritage. Genetic diversity in the studied groups was increasing southward. Minimum values of observed (Ho) and expected (He) heterozygosity and allelic richness (Ar) were observed in the most northern population—TIK, and maximum values were observed in the most southern population—SKH. Thus, our results revealed clear genetic structure in the studied populations of snow sheep and showed that TIK has a different origin from MOM, SKH, and VER even though they are conventionally considered a single subspecies known as Yakut snow sheep (Ovis nivicola lydekkeri). Most likely, TIK was an isolated group during the Late Pleistocene glaciations of Verkhoyansk Range.  相似文献   

14.
The Atlantic bluefin tuna is a highly migratory species emblematic of the challenges associated with shared fisheries management. In an effort to resolve the species’ stock dynamics, a genomewide search for spatially informative single nucleotide polymorphisms (SNPs) was undertaken, by way of sequencing reduced representation libraries. An allele frequency approach to SNP discovery was used, combining the data of 555 larvae and young‐of‐the‐year (LYOY) into pools representing major geographical areas and mapping against a newly assembled genomic reference. From a set of 184,895 candidate loci, 384 were selected for validation using 167 LYOY. A highly discriminatory genotyping panel of 95 SNPs was ultimately developed by selecting loci with the most pronounced differences between western Atlantic and Mediterranean Sea LYOY. The panel was evaluated by genotyping a different set of LYOY (n = 326), and from these, 77.8% and 82.1% were correctly assigned to western Atlantic and Mediterranean Sea origins, respectively. The panel revealed temporally persistent differentiation among LYOY from the western Atlantic and Mediterranean Sea (FST = 0.008, p = .034). The composition of six mixed feeding aggregations in the Atlantic Ocean and Mediterranean Sea was characterized using genotypes from medium (n = 184) and large (n = 48) adults, applying population assignment and mixture analyses. The results provide evidence of persistent population structuring across broad geographic areas and extensive mixing in the Atlantic Ocean, particularly in the mid‐Atlantic Bight and Gulf of St. Lawrence. The genomic reference and genotyping tools presented here constitute novel resources useful for future research and conservation efforts.  相似文献   

15.
With the Illumina BovineSNP50K BeadChip, we performed a genome‐wide association study (GWAS) for two pigmentation traits in a Chinese Holstein population: proportion of black (PB) and teat colour (TC). A case–control design was used. Cases were the cows with PB <0.30 (= 129) and TC <2 points (= 140); controls were those with PB >0.90 (= 58) and TC >4 points (= 281). The RM test of roadtrips (version 1.2) was applied to detect SNPs for the two traits with 42 883 and 42 741 SNPs respectively. A total of nine and 12 genome‐wide significant (< 0.05) SNPs associated with PB and TC respectively were identified. Of these, two SNPs for PB were located within the KIT and IGFBP7 genes, and the other four SNPs were 23~212 kb away from the PDGFRA gene on BTA6; nine SNPs associated with TC were located within or 21~78.8 kb away from known genes on chromosomes 4, 11, 22, 23 and 24. By combing through our GWAS results and the biological functions of the genes, we suggest that the KIT, IGFBP7, PDGFRA, MITF, ING3 and WNT16 genes are promising candidates for PB and TC in Holstein cattle, providing a basis for further investigation on the genetic mechanism of pigmentation formation.  相似文献   

16.
17.
A genome‐wide association study was performed to identify single nucleotide polymorphisms (SNPs) associated with jumping performances of warmbloods in France. The 999 horses included in the study for jumping performances were sport horses [mostly Selle Français (68%), Anglo‐Arabians (13%) and horses from the other European studbooks]. Horses were genotyped using the Illumina EquineSNP50 BeadChip. Of the 54 602 SNPs available on this chip, 44 424 were retained after quality testing. Phenotypes were obtained by deregressing official breeding values for jumping competitions to use all available information, that is, the performances of each horse as well as those of its relatives. Two models were used to test the effects of the genotypes on deregressed phenotypes: a single‐marker mixed model and a haplotype‐based mixed model (significant: < 1E‐05; suggestive: < 1E‐04). Both models included a polygenic effect to take into account familial structures. For jumping performances, one suggestive quantitative trait locus (QTL) located on chromosome 1 (BIEC2_31196 and BIEC2_31198) was detected with both models. This QTL explains 0.7% of the phenotypic variance. RYR2, a gene encoding a major calcium channel in cardiac muscle in humans and mice, is located 0.55 Mb from this potential QTL.  相似文献   

18.
The objective of this study was to locate quantitative trait loci (QTL) causing variation in birth weight and age of puberty of doe kids in a population of Rayini cashmere goats. Four hundred and thirty kids from five half‐sib families were genotyped for 116 microsatellite markers located on the caprine autosomes. The traits recorded were birth weight of the male and female kids, body weight at puberty, average daily gain from birth to age of puberty and age at puberty of the doe kids. QTL analysis was conducted using the least squares interval mapping approach. Linkage analysis indicated significant QTL for birth weight on Capra hircus chromosomes (CHI) 4, 5, 6, 18 and 21. Five QTL located on CHI 5, 14 and 29 were associated with age at puberty. Across‐family analysis revealed evidence for overlapping QTL affecting birth weight (78 cM), body weight at puberty (72 cM), average daily gain from birth to age of puberty (72 cM) and age at puberty (76 cM) on CHI 5 and overlapping QTL controlling body weight at puberty and age at puberty on CHI 14 at 18–19 cM. The proportion of the phenotypic variance explained by the detected QTL ranged between 7.9% and 14.4%. Confirming some of the previously reported results for birth weight and growth QTL in goats, this study identified more QTL for these traits and is the first report of QTL for onset of puberty in doe kids.  相似文献   

19.
The objective of this study was to validate the association of significant SNPs identified from a previous genome‐wide association study with carcass weight (CWT) in a commercial Hanwoo population. We genotyped 13 SNPs located on BTA14 in 867 steers from Korea Hanwoo feedlot bulls. Of these 13 SNPs, five SNPs, namely rs29021868, rs110061498, rs109546980, rs42404006 and rs42303720, were found to be significantly associated (< 0.001) with CWT. These five significant markers spanned the 24.3 to 29.4 Mb region of BTA14. The most significant marker (rs29021868) for CWT in this study had a 13.07 kg allele substitution effect and accounted for 2.4% of the additive genetic variance in the commercial Hanwoo population. The SNP marker rs109546980 was found to be significantly associated with both CWT (< 0.001) and eye muscle area (< 0.001) and could potentially be exploited for marker‐assisted selection in Hanwoo cattle. We also genotyped the ss319607402 variation, which maps to intron2 of PLAG1 gene and which is already reported to be associated with height, to identify any significant association with carcass weight; however, no such association was observed in this Hanwoo commercial population.  相似文献   

20.
Single‐nucleotide polymorphisms (SNPs) are rapidly becoming the standard markers in population genomics studies; however, their use in nonmodel organisms is limited due to the lack of cost‐effective approaches to uncover genome‐wide variation, and the large number of individuals needed in the screening process to reduce ascertainment bias. To discover SNPs for population genomics studies in the fungal symbionts of the mountain pine beetle (MPB), we developed a road map to discover SNPs and to produce a genotyping platform. We undertook a whole‐genome sequencing approach of Leptographium longiclavatum in combination with available genomics resources of another MPB symbiont, Grosmannia clavigera. We sequenced 71 individuals pooled into four groups using the Illumina sequencing technology. We generated between 27 and 30 million reads of 75 bp that resulted in a total of 1, 181 contigs longer than 2 kb and an assembled genome size of 28.9 Mb (N50 = 48 kb, average depth = 125x). A total of 9052 proteins were annotated, and between 9531 and 17 266 SNPs were identified in the four pools. A subset of 206 genes (containing 574 SNPs, 11% false positives) was used to develop a genotyping platform for this species. Using this roadmap, we developed a genotyping assay with a total of 147 SNPs located in 121 genes using the Illumina® Sequenom iPLEX Gold. Our preliminary genotyping (success rate = 85%) of 304 individuals from 36 populations supports the utility of this approach for population genomics studies in other MPB fungal symbionts and other fungal nonmodel species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号