首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleotide‐Binding Oligomerization Domain 2 (NOD2) has been reported to be a candidate gene for Mycobacterium avium subsp. paratuberculosis (MAP) infection in a Bos taurus × Bos indicus mixed breed based on a genetic association with the c.2197T>C single nucleotide polymorphism (SNP). Nevertheless, this SNP has also been reported to be monomorphic in the B. taurus species. In the present work, 18 SNPs spanning the bovine NOD2 gene have been analysed in a genetic association study of two independent populations of Holstein‐Friesian cattle. We found that the C allele of SNP c.*1908C>T, located in the 3′‐UTR region of the gene, is significantly more frequent in infected animals than in healthy ones, which supports the idea that the bovine NOD2 gene plays a role in susceptibility to MAP infection. However, in silico analyses of the NOD2 nucleotide sequence did not yield definitive data about a possible direct effect of SNP c.*1908C>T on susceptibility to infection and led us to consider its linkage disequilibrium with the causative variant. A more exhaustive genetic association study including all putative, functional SNPs from this gene and subsequent functional analyses needs to be conducted to achieve a more complete understanding of how different variants of NOD2 may affect susceptibility to MAP infection in cattle.  相似文献   

2.
Mycobacterium avium ssp. paratuberculosis (MAP) infection in cattle causes significant economic losses to the dairy and beef industries resulting from reduced productivity, premature culling and mortality. Bovine Dectin-1, an important pattern recognition molecule that is able to generate a proinflammatory response by acting alongside Toll like receptor (TLR) signaling, is known to co-operate with TLR2 to specifically activate a macrophage proinflammatory response against mycobacterial infections. Therefore, the goal of this study was to identify single nucleotide polymorphisms (SNPs) in the gene encoding bovine Dectin-1 (CLEC7A) and to assess their association with susceptibility to MAP infection in dairy cattle. Blood and milk samples, collected from commercial dairy operations, were tested for MAP infection using blood and milk ELISAs and a resource population consisting of 197 infected and 242 healthy cattle was constructed. Pooled DNA was used for sequencing and eight single nucleotide polymorphisms (SNPs) were identified. Identified SNPs were genotyped on the resource population using the iPLEX MassARRAY system and statistical analysis was performed using logistic regression fitting the additive and dominance effects of each SNP in the model. Out of a total of eight identified SNPs, five were successfully genotyped, and three out of these five SNPs were found to be in complete linkage. Statistical analysis revealed a strong association between a non-synonymous SNP c.589A>G (p = 0.008), and MAP infection status of the resource population inferred by seropositivity in MAP antibody specific ELISAs. This SNP c.589A>G was located in the geneic region that encodes the carbohydrate recognition domain of bovine Dectin-1. Therefore, further investigation of its functional relevance is warranted.  相似文献   

3.
4.
5.
Toll-like receptor 4 gene (TLR4) that recognizes the Gram negative bacterial ligand LPS was sequenced in the Bos indicus Sahiwal cattle breed. Ninety four single nucleotide polymorphisms (SNPs) were detected within 10.8 kb gene region. Seventeen of the SNPs were in the coding regions and the one at position 9589(A > G) in exon3 resulted in an amino acid change from Valine to Isoleucine. These SNPs led to generation of 27 TLR4 gene haplotypes. All the Sahiwal animals studied presently showed the occurrence of the genotype CC at gene position 9662, which codes for the amino acid threonine at position 674 of the TLR4 protein, and which had been reported to be associated with lower somatic cell score and, therefore, a lower susceptibility to mastitis, in Taurus cattle. This nucleotide configuration of the Toll-like receptor 4 gene of the Bos indicus Sahiwal cattle breed could possibly indicate toward a lower susceptibility to mastitis in the Sahiwal animals. Monocyte chemo-attractant protein-1 (CCL2) gene encoding for small inducible cytokine A2 that belongs to the CC chemokine family was also sequence characterized in these Sahiwal animals. The CCL2 gene was observed to have 12 polymorphic sites in 3.3 kb region of which one SNP at position 2500 (A > G) in exon 3 resulted in amino acid change from Valine to Isoleucine at position 46 of the mature CCL2 peptide. Seventeen haplotypes of the CCL2 gene were predicted corresponding to 12 genotypes detected.  相似文献   

6.
Toll-like receptor 4 (TLR4) is a receptor protein that binds pathogen ligands, which are mainly associated with Gram-negative bacteria. The objective of this study was to investigate the association of nucleotide polymorphisms in TLR4 with infectious bovine keratoconjunctivitis (IBK), or pinkeye, incidence in American Angus cattle. Animals with previously calculated breeding values for IBK susceptibility were used to identify two SNPs in TLR4; Int1 (A/G) in intron1 (−26 Ex2 position) and Ex3 (C/T) in exon3 (1,678 position). To investigate the possible role of these SNPs in IBK susceptibility, the disease incidence information was collected on 370 calves raised in Iowa at two time points—June or August (disease season) and October (at weaning) and genotyped using PCR-RFLP protocols. In statistical models including year, pasture management group, and SNP, the Int1 SNP had a significant effect on IBK infection rates both in-season (P < 0.05) and at weaning (P < 0.01), whereas the Ex3 SNP was not significant (P > 0.79) at either time point. Furthermore, the Int1 SNP alone could account for 2.1% of phenotypic variation in IBK infection during the disease season and 3.0% of phenotypic variation in IBK infection at the time of weaning. These data indicate that there is a relationship between Int1 genotype and the rate of IBK infection in American Angus cattle.  相似文献   

7.
Transferrin (TF)‐mediated provision of iron is essential for a productive infection by many bacterial pathogens, and iron‐depletion of TF is a first line defence against bacterial infections. Therefore, the transferrin (TF) gene can be considered a candidate gene for disease resistance. We obtained the complete DNA sequence of the porcine TF gene, which spans 40 kb and contains 17 exons. We identified polymorphisms on a panel of 10 different pig breeds. Comparative intra‐ and interbreed sequence analysis revealed 62 polymorphisms in the TF gene including one microsatellite. Ten polymorphisms were located in the coding sequence of the TF gene. Four SNPs (c.902A>T, c.980G>A, c.1417A>G, c.1810A>C) were predicted to cause amino acid exchanges (p.Lys301Ile, p.Arg327Lys, p.Lys473Glu, p.Asn604His). We performed association analyses using six selected TF markers and 116 pigs experimentally infected with Actinobacillus pleuropneumoniae serotype 7. The analysis showed breed‐specific TF allele frequencies. In German Landrace, we found evidence for a possible association of the severity of A. pleuropneumoniae infection with TF genotypes.  相似文献   

8.
Mycobacterium avium ssp. paratuberculosis (MAP) causes a chronic, granulomatous inflammatory condition of the intestines in ruminants and wild-type species. It causes significant economic losses to the dairy and beef industries owing to reduced productivity, premature culling and mortality. Bovine peptidoglycan recognition protein 1 is an important pattern recognition molecule that is capable of directly killing microorganisms. The goal of this study was to identify single nucleotide polymorphisms (SNPs) in the gene encoding bovine peptidoglycan recognition protein 1 and to assess their association with susceptibility to MAP infection in dairy cattle. Blood and milk samples were collected from Holsteins in Southwestern and Eastern Ontario and tested for MAP infection using blood and milk ELISAs. A resource population consisting of 197 infected (S/P > 0.25) and 242 healthy (S/P < 0.10) cattle was constructed. Sequencing of pooled DNA was used to identify three SNPs (c.102G>C, c.480G>A and c.625C>A) that were genotyped in the resource population. Statistical analysis was performed using a logistic regression model fitting the additive and dominance effects of each SNP in the model. SNP c.480G>A (P = 0.054) was found to be associated with susceptibility to MAP infection. Cows with a copy of the major allele 'G' at this locus had an odds ratio of 1.51 (95% CI: 0.99-2.31) for being infected with MAP.  相似文献   

9.
The aim of the study was the analysis of the nucleotide‐binding oligomerization domain containing 2 (NOD2, formerly CARD15) as a candidate gene for Mycobacterium avium ssp. paratuberculosis infection in cattle. Eleven SNPs in the NOD2 gene were identified, and finally, four SNPs were included in a case–control study using 324 German Holstein cows tested for paratuberculosis using fecal culture and ELISA. The SNP (GenBank) AY518738S04:g.521G>A in exon 4 showed a significant association between the fecal culture status of the animals and NOD2 allele variants. The other three SNPs showed no associations in German Holstein cows.  相似文献   

10.
11.
The objective was to determine whether single nucleotide polymorphisms (SNPs) in the ANKRA2 and CD180 genes are associated with incidence of bovine respiratory disease (BRD) and presence of Mycobacterium avium subsp. paratuberculosis (MAP) in cattle. Two independent populations were used. The first population (BRD‐affected; N = 90) was composed of 31 half‐sib progeny, from a Brahman × Angus sire, that were treated for BRD. Untreated offspring from the sire were selected to serve as controls. The second population (MAP‐infected) of 330 animals of unknown parentage was evaluated for the presence of MAP in ileocecal lymph node and classified as positive or negative. Markers in both genes were assessed for association in these two populations. In the BRD‐affected population, five SNPs in the ANKRA2 gene were significantly associated (P < 0.05), and two SNPs were highly associated (P < 0.01) with incidence of BRD. In addition, two SNPs in the CD180 gene were found to be associated with this trait. In the MAP‐infected population, one SNP in the ANKRA2 gene was significantly associated (P < 0.05) with the presence or absence of MAP, and a SNP in the CD180 gene was highly associated (P < 0.01) with the trait. Haplotypes, using significant markers, showed a positive association with both incidence of BRD (P = 0.0001) and with the presence of MAP (P = 0.0032). Markers in the ANKRA2 and CD180 genes are associated with the ability of the animal to cope with pathogens.  相似文献   

12.
13.
Mycobacterium avium subsp. paratuberculosis (MAP) causes major problem in a wide range of animal species. In ruminant livestock including cattle, it causes a chronic disease called Johne’s disease, or paratuberculosis (pTB) which is currently considered as potential zoonosis, causing Crohn’s disease in humans. MAP infection susceptibility is suspected to be controlled by host genetics. Thus, selecting individuals according to their genetic structure could help to obtain bovine populations that are increasingly resistant to MAP infection. The aim of the present work was to investigate the association between toll-like receptor (TLR) \({ 1}\) (+1380 G/A), TLR1 (+1446 C/A), TLR4 (+10 C/T), TLR9 (+1310 G/A) and solute carrier family 11 member 1 (SLC11A1) (+1066 C/G) mutations and MAP infection status in 813 cattle comprising East Anatolian Red crossbred, Anatolian Black crossbred and Holstein breed. TLR1 (+1380 G/A) mutation showed an association with bovine MAP (\(P\!<\!0.05\)). For the TLR1 (+1380 G/A) locus, the odds ratio for AG and AA genotypes versus GG genotypes were 2.31 (1.24–4.30; 95% confidence interval (CI)) and 0<0.001 (<0.001 to >999.999; 95% CI) which indicated that a proportion of AG homozygote was significantly higher in pTB-affected animals as compared with the control. General linear model analysis demonstrated higher MAP antibody response in TLR1 (+1380 AG) genotype as compared with TLR1 (+1380 GG) (\(P\!<\! 0.0001\)). Present findings suggest that selection against TLR1 (+1380 G/A) may reduce the risk of pTB in bovine herds.  相似文献   

14.
15.
The objective of this study was to investigate an association between polymorphisms in the FABP4 gene and phenotypic variation for marbling and carcass weight (CWT) in a population of Hanwoo steers. We re‐sequenced 4.3 kb of the FABP4 gene region in 24 Hanwoo bulls and identified 16 SNPs and 1 microsatellite polymorphism. Of these 16 SNPs, three SNPs [g.2774G>C (intron I), g.3473A>T (intron II) and g.3631G>A (exon III, creating a p.Met >Val amino acid substitution)] were genotyped in 583 steers to assess their association with carcass traits. The g.3473A allele showed a significant increasing effect on CWT (P = 0.01) and the g.3631G allele was associated with higher marbling score (P = 0.006). One haplotype of these three SNPs (CAG) was significantly associated with CWT (P = 0.02) and marbling score (P = 0.05) and could potentially be of value for marker assisted selection in Hanwoo cattle. The CAG haplotype effect for CWT was larger (11.14 ± 5.03 kg) than the largest single locus effect of g.3473A>T (5.01 ± 2.2 kg).  相似文献   

16.
Recently, the SERPINA6 gene encoding corticosteroid‐binding globulin (CBG) has been proposed as a candidate gene for a quantitative trait locus (QTL) affecting cortisol level on pig chromosome 7. The QTL was repeatedly detected in different lines, including a Piétrain × (German Landrace × German Large White) cross (PiF1) and purebred German Landrace (LR). In this study, we investigated whether the known non‐synonymous polymorphisms c.44G>T, c.622C>T, c.770C>T, c.793G>A, c.832G>A and c.919G>A of SERPINA6 are sufficient to explain the QTL in these two populations. Our investigations revealed that SNPs c.44G>T, c.622C>T, c.793G>A and c.919G>A are associated with cortisol level in PiF1 (< 0.01). Haplotype analysis showed that these associations are largely attributable to differences between a major haplotype carrying SNPs c.793G>A and c.919G>A and a haplotype carrying SNPs c.44G>T and c.622C>T. Furthermore, some SNPs, particularly c.44G>T and c.622C>T and the carrier haplotype, showed association with meat quality traits including pH and conductivity (< 0.05). In LR, the non‐synonymous SNPs segregate at very low frequency (<5%) and/or show only weak association with cortisol level (SNPs c.832G>A and c.919G>A; < 0.05). These findings suggest that the non‐synonymous SNPs are not sufficient to explain the QTL across different breeds. Therefore, we examined whether the expression of SERPINA6 is affected by cis‐regulatory polymorphisms in liver, the major organ for CBG production. We found allelic expression imbalance of SERPINA6, which suggests that its expression is indeed affected by genetic variation in cis‐acting elements. This represents candidate causal variation for future studies of the molecular background of the QTL.  相似文献   

17.
The stearoyl‐CoA desaturase (delta‐9‐desaturase) gene encodes a key enzyme in the cellular biosynthesis of monounsaturated fatty acids. In our initial genome‐wide association study (GWAS) of Chinese Holstein cows, 19 SNPs fell in a 1.8‐Mb region (20.3–22.1 Mb) on chromosome 26 underlying the SCD gene and were highly significantly associated with C14:1 or C14 index. The aims of this study were to verify whether the SCD gene has significant genetic effects on milk fatty acid composition in dairy cattle. By resequencing the entire coding region of the bovine SCD gene, a total of six variations were identified, including three coding variations (g.10153G>A, g.10213T>C and g.10329C>T) and three intronic variations (g.6926A>G, g.8646G>A and g.16158G>C). The SNP in exon 3, g.10329C>T, was predicted to result in an amino acid replacement from alanine (GCG) to valine (GTG) in the SCD protein. An association study for 16 milk fatty acids using 346 Chinese Holstein cows with accurate phenotypes and genotypes was performed using the mixed animal model with the proc mixed procedure in sas 9.2. All six detected SNPs were revealed to be associated with six medium‐ and long‐chain unsaturated fatty acids (= 0.0457 to < 0.0001), specifically for C14:1 and C14 index (= 0.0005 to < 0.0001). Subsequently, strong linkage disequilibrium (D′ = 0.88–1.00) was observed among all six SNPs in SCD and the five SNPs (rs41623887, rs109923480, rs42090224, rs42092174 and rs42091426) within the 1.8‐Mb region identified in our previous GWAS, indicating that the significant association of the SCD gene with milk fatty acid content traits reduced the observed significant 1.8‐Mb chromosome region in GWAS. Haplotype‐based analysis revealed significant associations of the haplotypes encompassing the six SCD SNPs and one SNP (rs109923480) in a GWAS with C14:1, C14 index, C16:1 and C16 index (= 0.0011 to < 0.0001). In summary, our findings provide replicate evidence for our previous GWAS and demonstrate that variants in the SCD gene are significantly associated with milk fatty acid composition in dairy cattle, which provides clear evidence for an increased understanding of milk fatty acid synthesis and enhances opportunities to improve milk‐fat composition in dairy cattle.  相似文献   

18.

Background

Toll like receptors (TLR) play the central role in the recognition of pathogen associated molecular patterns (PAMPs). Mutations in the TLR1, TLR2 and TLR4 genes may change the ability to recognize PAMPs and cause altered responsiveness to the bacterial pathogens.

Results

The study presents association between TLR gene mutations and increased susceptibility to Mycobacterium avium subsp. paratuberculosis (MAP) infection. Novel mutations in TLR genes (TLR1- Ser150Gly and Val220Met; TLR2 – Phe670Leu) were statistically correlated with the hindrance in recognition of MAP legends. This correlation was confirmed subsequently by measuring the expression levels of cytokines (IL-4, IL-8, IL-10, IL-12 and IFN-γ) in the mutant and wild type moDCs (mocyte derived dendritic cells) after challenge with MAP cell lysate or LPS. Further in silico analysis of the TLR1 and TLR4 ectodomains (ECD) revealed the polymorphic nature of the central ECD and irregularities in the central LRR (leucine rich repeat) motifs.

Conclusion

The most critical positions that may alter the pathogen recognition ability of TLR were: the 9th amino acid position in LRR motif (TLR1–LRR10) and 4th residue downstream to LRR domain (exta-LRR region of TLR4). The study describes novel mutations in the TLRs and presents their association with the MAP infection.  相似文献   

19.
Clinical–chemical traits are essential parameters to quantify the health status of individuals and herds, but the knowledge about their genetic architecture is sparse, especially in swine. We have recently described three QTL for serum aspartate aminotransferase activity (sAST), and one of these maps to a region on SSC14 where the aspartate aminotransferase coding gene GOT1 is located. This QTL was only apparent under the acute burden of a model disease. The aim of the present study was to characterize GOT1 as a candidate gene and to test the effects of different GOT1 SNPs as potential quantitative trait nucleotides (QTNs) for sAST. Nine SNPs within GOT1 were identified, and SNP c.‐793C>G significantly increased the QTL effects and narrowed the confidence interval from 90 to 15 cM. Additionally, we found a significant association of SNP c.‐793C>G in a commercial outbred line, but with reversed phase. We conclude that GOT1 is a putative candidate gene for the sAST QTL on SSC14, and that SNP c.‐793C>G is close to the responsible QTN.  相似文献   

20.
Days open (DO), which is the interval from calving to conception, is an important trait related to reproductive performance in cattle. To identify quantitative trait loci for DO in Japanese Black cattle, we conducted a genome‐wide association study with 33 303 single nucleotide polymorphisms (SNPs) using 459 animals with extreme DO values selected from a larger group of 15 488 animals. We identified a SNP on bovine chromosome 2 (BTA2) that was associated with DO. After imputation using phased haplotype data inferred from 586 812 SNPs of 1041 Japanese Black cattle, six SNPs associated with DO were located in an 8.5‐kb region of high linkage disequilibrium on BTA2. These SNPs were located on the telomeric side at a distance of 177 kb from the parathyroid hormone 2 receptor (PTH2R) gene. The association was replicated in a sample of 1778 animals. In the replicated population, the frequency of the reduced‐DO allele (Q) was 0.63, and it accounted for 1.72% of the total genetic variance. The effect of a Q‐to‐q allele substitution on DO was a decrease of 3.74 days. The results suggest that the Q allele could serve as a marker in Japanese Black cattle to select animals with superior DO performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号