首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
XRCC1 and DNA strand break repair   总被引:16,自引:0,他引:16  
Caldecott KW 《DNA Repair》2003,2(9):955-969
DNA single-strand breaks can arise indirectly, as normal intermediates of DNA base excision repair, or directly from damage to deoxyribose. Because single-strand breaks are induced by endogenous reactive molecules such as reactive oxygen species, these lesions pose a continuous threat to genetic integrity. XRCC1 protein plays a major role in facilitating the repair of single-strand breaks in mammalian cells, via an ability to interact with multiple enzymatic components of repair reactions. Here, the protein-protein interactions facilitated by XRCC1, and the repair processes in which these interactions operate, are reviewed. Models for the repair of single-strand breaks during base excision repair and at direct breaks are presented.  相似文献   

2.
The association between metabolic polymorphisms and cigarette smoking-induced cancers has been documented. However, the role of DNA repair polymorphism in carcinogenesis is less clear. To investigate if the polymorphisms of metabolic traits and DNA repair modulate smoking-related DNA damage, we used sister chromatid exchange (SCE) as a marker of genetic damage to explore the relationship of microsomal epoxide hydrolase (mEH), glutathione S-transferase M1 (GSTM1), and X-ray cross-complementing group 1 (XRCC1) and cigarette smoking-induced SCE. Sixty-one workers without significant exposure to mutagens were recruited. Questionnaires were completed to obtain detailed occupational, smoking, and medical histories. SCE frequency in peripheral lymphocytes was determined using a standard cytogenetic assay and GSTM1, mEH (exons 3 and 4), XRCC1 (codon 399) genotypes were determined using polymerase chain reaction-restriction fragment length polymorphism (PCR/RFLP). Smokers had higher SCE frequency than non-smokers (8.4 versus 7.1, P<0.05). Among workers who had smoked equal to or greater than 10 cigarettes each day, those with XRCC1 Arg/Gln+Gln/Gln had higher SCE frequency than those with XRCC1 Arg/Arg after adjusting for potential confounders (9.0 versus 7.9, P<0.05). The interaction of XRCC1 and cigarettes smoked per day on SCE frequency was also observed (P=0.02). There was no significant interaction between cigarettes smoked per day with GSTM1 and mEH on SCE frequency. Our results support previous epidemiological studies that XRCC1 may play a role in cigarette smoking-induced lung cancer.  相似文献   

3.
4.
Cells can achieve error-free repair of DNA double-strand breaks (DSBs) by homologous recombination through gene conversion with or without crossover. In contrast, an alternative homology-dependent DSB repair pathway, single-strand annealing (SSA), results in deletions. In this study, we analyzed the effect of mRAD54, a gene involved in homologous recombination, on the repair of a site-specific I-SceI-induced DSB located in a repeated DNA sequence in the genome of mouse embryonic stem cells. We used six isogenic cell lines differing solely in the orientation of the repeats. The combination of the three recombination-test substrates used discriminated among SSA, intrachromatid gene conversion, and sister chromatid gene conversion. DSB repair was most efficient for the substrate that allowed recovery of SSA events. Gene conversion with crossover, indistinguishable from long tract gene conversion, preferentially involved the sister chromatid rather than the repeat on the same chromatid. Comparing DSB repair in mRAD54 wild-type and knockout cells revealed direct evidence for a role of mRAD54 in DSB repair. The substrate measuring SSA showed an increased efficiency of DSB repair in the absence of mRAD54. The substrate measuring sister chromatid gene conversion showed a decrease in gene conversion with and without crossover. Consistent with this observation, DNA damage-induced sister chromatid exchange was reduced in mRAD54-deficient cells. Our results suggest that mRAD54 promotes gene conversion with predominant use of the sister chromatid as the repair template at the expense of error-prone SSA.  相似文献   

5.
The Chinese hamster cell line mutant EM9, which has a reduced ability to repair DNA strand breaks, is noted for its highly elevated frequency of sister chromatid exchange, a property shared with cells from individuals with Bloom's syndrome. The defect in EM9 cells was corrected by fusion hybridization with normal human fibroblasts and by transfection with DNA from hybrid cells. The transformants showed normalization of sister chromatid exchange frequency but incomplete correction of the repair defect in terms of chromosomal aberrations produced by 5-bromo-2'-deoxyuridine.  相似文献   

6.
Ataxia-oculomotor apraxia 1 (AOA1) is an autosomal recessive neurodegenerative disease that is reminiscent of ataxia-telangiectasia (A-T). AOA1 is caused by mutations in the gene encoding aprataxin, a protein whose physiological function is currently unknown. We report here that, in contrast to A-T, AOA1 cell lines exhibit neither radioresistant DNA synthesis nor a reduced ability to phosphorylate downstream targets of ATM following DNA damage, suggesting that AOA1 lacks the cell cycle checkpoint defects that are characteristic of A-T. In addition, AOA1 primary fibroblasts exhibit only mild sensitivity to ionising radiation, hydrogen peroxide, and methyl methanesulphonate (MMS). Strikingly, however, aprataxin physically interacts in vitro and in vivo with the DNA strand break repair proteins XRCC1 and XRCC4. Aprataxin possesses a divergent forkhead associated (FHA) domain that closely resembles the FHA domain present in polynucleotide kinase, and appears to mediate the interactions with CK2-phosphorylated XRCC1 and XRCC4 through this domain. Aprataxin is therefore physically associated with both the DNA single-strand and double-strand break repair machinery, raising the possibility that AOA1 is a novel DNA damage response-defective disease.  相似文献   

7.
Equal sister chromatid exchange (SCE) has been thought to be an important mechanism of double-strand break (DSB) repair in eukaryotes, but this has never been proven due to the difficulty of distinguishing SCE products from parental molecules. To evaluate the biological relevance of equal SCE in DSB repair and to understand the underlying molecular mechanism, we developed recombination substrates for the analysis of DSB repair by SCE in yeast. In these substrates, most breaks are limited to one chromatid, allowing the intact sister chromatid to serve as the repair template; both equal and unequal SCE can be detected. We show that equal SCE is a major mechanism of DSB repair, is Rad51 dependent, and is stimulated by Rad59 and Mre11. Our work provides a physical analysis of mitotically occurring SCE in vivo and opens new perspectives for the study and understanding of DSB repair in eukaryotes.  相似文献   

8.
The autosomal recessive genetic disorder, Nijmegen Breakage Syndrome, is characterised by an excessively high risk for the development of lymphatic tumours and an extreme sensitivity towards ionising radiation. The most likely explanation for these characteristics, a deficiency in the repair of DNA lesions, has been greatly substantiated by the recent cloning of the gene mutated in Nijmegen Breakage Syndrome patients and the analysis of its protein product, nibrin. The direct involvement of this protein in the processing of DNA double strand breaks caused by ionising radiation and those also necessary for normal DNA metabolism can be correlated with many of the cellular and clinical aspects of the disease, including the cancer predisposition of patients and their heterozygous relatives. BioEssays 21:649–656, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

9.
XRCC1 is required for DNA single-strand break repair in human cells   总被引:5,自引:2,他引:5  
Brem R  Hall J 《Nucleic acids research》2005,33(8):2512-2520
The X-ray repair cross complementing 1 (XRCC1) protein is required for viability and efficient repair of DNA single-strand breaks (SSBs) in rodents. XRCC1-deficient mouse or hamster cells are hypersensitive to DNA damaging agents generating SSBs and display genetic instability after such DNA damage. The presence of certain polymorphisms in the human XRCC1 gene has been associated with altered cancer risk, but the role of XRCC1 in SSB repair (SSBR) in human cells is poorly defined. To elucidate this role, we used RNA interference to modulate XRCC1 protein levels in human cell lines. A reduction in XRCC1 protein levels resulted in decreased SSBR capacity as measured by the comet assay and intracellular NAD(P)H levels, hypersensitivity to the cell killing effects of the DNA damaging agents methyl methanesulfonate (MMS), hydrogen peroxide and ionizing radiation and enhanced formation of micronuclei following exposure to MMS. Lowered XRCC1 protein levels were also associated with a significant delay in S-phase progression after exposure to MMS. These data clearly demonstrate that XRCC1 is required for efficient SSBR and genomic stability in human cells.  相似文献   

10.
XRCC1 protein is essential for viability in mammals and is required for efficient DNA single-strand break repair and genetic stability following DNA base damage. We report here that XRCC1-dependent strand break repair in G(1) phase of the cell cycle is abolished by mutations created within the XRCC1 BRCT domain that interact with DNA ligase III. In contrast, XRCC1-dependent DNA strand break repair in S phase is largely unaffected by these mutations. These data describe a cell cycle-specific role for a BRCT domain, and we conclude that the XRCC1-DNA ligase III complex is required for DNA strand break repair in G(1) phase of the cell cycle but is dispensable for this process in S phase. The S-phase DNA repair process can remove both strand breaks induced in S phase and those that persist from G(1) and can in part compensate for lack of repair in G(1). This process correlates with the appearance of XRCC1 nuclear foci that colocalize with Rad51 and may thus function in concert with homologous recombination.  相似文献   

11.
Liaw H  Lee D  Myung K 《PloS one》2011,6(6):e21424
Hyperphosphorylation of RPA2 at serine 4 and serine 8 (S4, S8) has been used as a marker for activation of the DNA damage response. What types of DNA lesions cause RPA2 hyperphosphorylation, which kinase(s) are responsible for them, and what is the biological outcome of these phosphorylations, however, have not been fully investigated. In this study we demonstrate that RPA2 hyperphosphorylation occurs primarily in response to genotoxic stresses that cause high levels of DNA double-strand breaks (DSBs) and that the DNA-dependent protein kinase complex (DNA-PK) is responsible for the modifications in vivo. Alteration of S4, S8 of RPA2 to alanines, which prevent phosphorylations at these sites, caused increased mitotic entry with concomitant increases in RAD51 foci and homologous recombination. Taken together, our results demonstrate that RPA2 hyperphosphorylation by DNA-PK in response to DSBs blocks unscheduled homologous recombination and delays mitotic entry. This pathway thus permits cells to repair DNA damage properly and increase cell viability.  相似文献   

12.
Molecular cloning of the human DNA excision repair gene ERCC-6.   总被引:14,自引:1,他引:13       下载免费PDF全文
The UV-sensitive, nucleotide excision repair-deficient Chinese hamster mutant cell line UV61 was used to identify and clone a correcting human gene, ERCC-6. UV61, belonging to rodent complementation group 6, is only moderately UV sensitive in comparison with mutant lines in groups 1 to 5. It harbors a deficiency in the repair of UV-induced cyclobutane pyrimidine dimers but permits apparently normal repair of (6-4) photoproducts. Genomic (HeLa) DNA transfections of UV61 resulted, with a very low efficiency, in six primary and four secondary UV-resistant transformants having regained wild-type UV survival. Southern blot analysis revealed that five primary and only one secondary transformant retained human sequences. The latter line was used to clone the entire 115-kb human insert. Coinheritance analysis demonstrated that five of the other transformants harbored a 100-kb segment of the cloned human insert. Since it is extremely unlikely that six transformants all retain the same stretch of human DNA by coincidence, we conclude that the ERCC-6 gene resides within this region and probably covers most of it. The large size of the gene explains the extremely low transfection frequency and makes the gene one of the largest cloned by genomic DNA transfection. Four transformants did not retain the correcting ERCC-6 gene and presumably have reverted to the UV-resistant phenotype. One of these appeared to have amplified an endogenous, mutated CHO ERCC-6 allele, indicating that the UV61 mutation is leaky and can be overcome by gene amplification.  相似文献   

13.
The Chinese hamster ovary (CHO-K1) cell mutant XRS-6 is defective in rejoining of DNA double-strand breaks and is hypersensitive to X-rays, gamma-rays, and bleomycin. Radiation resistance or sensitivity of somatic cell hybrids constructed from the fusion of XRS-6 cells with primary human fibroblasts strongly correlated with the retention of human chromosome 2 isozyme and molecular markers. Discordancies between some chromosome 2 markers and the radiation resistance phenotype in some of the hybrid cells suggested the location of the X-ray repair cross complementing 5 (XRCC5) gene on the p arm of chromosome 2. Introduction of human chromosome 2 by microcell-mediated chromosome transfer into the radiation-sensitive XRS-6 cells resulted in hybrid cells in which the radiation sensitivity was complemented. The chromosome 2p origin of the complementing human DNA in the microcell hybrids was supported by fluorescent in situ hybridization analysis of human metaphases using human DNA amplified from the hybrids by inter-Alu-PCR as chromosome-painting probes. XRCC5 is therefore provisionally assigned to human chromosome 2p.  相似文献   

14.
Goldfarb T  Lichten M 《PLoS biology》2010,8(10):e1000520
Recombination between homologous chromosomes of different parental origin (homologs) is necessary for their accurate segregation during meiosis. It has been suggested that meiotic inter-homolog recombination is promoted by a barrier to inter-sister-chromatid recombination, imposed by meiosis-specific components of the chromosome axis. Consistent with this, measures of Holliday junction-containing recombination intermediates (joint molecules [JMs]) show a strong bias towards inter-homolog and against inter-sister JMs. However, recombination between sister chromatids also has an important role in meiosis. The genomes of diploid organisms in natural populations are highly polymorphic for insertions and deletions, and meiotic double-strand breaks (DSBs) that form within such polymorphic regions must be repaired by inter-sister recombination. Efforts to study inter-sister recombination during meiosis, in particular to determine recombination frequencies and mechanisms, have been constrained by the inability to monitor the products of inter-sister recombination. We present here molecular-level studies of inter-sister recombination during budding yeast meiosis. We examined events initiated by DSBs in regions that lack corresponding sequences on the homolog, and show that these DSBs are efficiently repaired by inter-sister recombination. This occurs with the same timing as inter-homolog recombination, but with reduced (2- to 3-fold) yields of JMs. Loss of the meiotic-chromosome-axis-associated kinase Mek1 accelerates inter-sister DSB repair and markedly increases inter-sister JM frequencies. Furthermore, inter-sister JMs formed in mek1Δ mutants are preferentially lost, while inter-homolog JMs are maintained. These findings indicate that inter-sister recombination occurs frequently during budding yeast meiosis, with the possibility that up to one-third of all recombination events occur between sister chromatids. We suggest that a Mek1-dependent reduction in the rate of inter-sister repair, combined with the destabilization of inter-sister JMs, promotes inter-homolog recombination while retaining the capacity for inter-sister recombination when inter-homolog recombination is not possible.  相似文献   

15.
XRCC1 protein is required for DNA single-strand break repair and genetic stability but its biochemical role is unknown. Here, we report that XRCC1 interacts with human polynucleotide kinase in addition to its established interactions with DNA polymerase-beta and DNA ligase III. Moreover, these four proteins are coassociated in multiprotein complexes in human cell extract and together they repair single-strand breaks typical of those induced by reactive oxygen species and ionizing radiation. Strikingly, XRCC1 stimulates the DNA kinase and DNA phosphatase activities of polynucleotide kinase at damaged DNA termini and thereby accelerates the overall repair reaction. These data identify a novel pathway for mammalian single-strand break repair and demonstrate a concerted role for XRCC1 and PNK in the initial step of processing damaged DNA ends.  相似文献   

16.
The genes and gene products involved in the mammalian DNA repair processes have yet to be identified. Toward this end we made use of a number of DNA repair-proficient transformants that were generated after transfection of DNA from repair-proficient human cells into a mutant hamster line that is defective in the initial incision step of the excision repair process. In this report, biochemical evidence is presented that demonstrates that these transformants are repair proficient. In addition, we describe the molecular identification and cloning of unique DNA sequences closely associated with the transfected human DNA repair gene and demonstrate the presence of homologous DNA sequences in human cells and in the repair-proficient DNA transformants. The chromosomal location of these sequences was determined by using a panel of rodent-human somatic cell hybrids. Both unique DNA sequences were found to be on human chromosome 19.  相似文献   

17.
In the current model of DNA SSBR, PARP1 is regarded as the sensor of single-strand breaks (SSBs). However, biochemical studies have implicated LIG3 as another possible SSB sensor. Using a laser micro-irradiation protocol that predominantly generates SSBs, we were able to demonstrate that PARP1 is dispensable for the accumulation of different single-strand break repair (SSBR) proteins at sites of DNA damage in live cells. Furthermore, we show in live cells for the first time that LIG3 plays a role in mediating the accumulation of the SSBR proteins XRCC1 and PNKP at sites of DNA damage. Importantly, the accumulation of LIG3 at sites of DNA damage did not require the BRCT domain-mediated interaction with XRCC1. We were able to show that the N-terminal ZnF domain of LIG3 plays a key role in the enzyme''s SSB sensing function. Finally, we provide cellular evidence that LIG3 and not PARP1 acts as the sensor for DNA damage caused by the topoisomerase I inhibitor, irinotecan. Our results support the existence of a second damage-sensing mechanism in SSBR involving the detection of nicks in the genome by LIG3.  相似文献   

18.
Transformation frequencies were measured in CHO mutant EM9 after transfection with intact or modified plasmid pSV2-gpt. The mutant and wild-type strain behaved similarly under all conditions except when homologous recombination was required to produce an intact plasmid. Therefore, the defect of the mutant which renders it slow in DNA strand break rejoining and high in sister chromatid exchange induction reduces its ability to recombine foreign DNA molecules.  相似文献   

19.
Alterations in expression and structure of the DNA repair gene XRCC1.   总被引:3,自引:0,他引:3  
The repair-associated gene XRCC1 was previously cloned by complementing the hamster mutant EM9, which has a high rate of spontaneous SCE and hypersensitivity to DNA damaging agents. In analyzing XRCC1 gene expression, similar levels of steady-state mRNA were found in normal cells, Bloom's syndrome cells with altered SCE, and in squamous carcinoma cells with differential X-ray sensitivity. An EcoRI restriction fragment-length polymorphism previously identified in XRCC1 did not correlate with the repair phenotypes of these cells. The mRNA of XRCC1 decreased to 20-40% after treatment of cells with a DNA damaging agent. XRCC1 also showed tissue specific expression in rats. The mRNA levels were high in testis (7-8 fold), ovary (3-4 fold) and brain (4-5 fold), when compared with those in intestine, liver and spleen (1-2 fold). These data and the high levels of XRCC1 protein detected in testis indicate that XRCC1 may play an important role in DNA processing during meiogenesis and recombination in germ cells.  相似文献   

20.
Cadmium (Cd) is a toxic heavy metal of continuing occupational and environmental concern with a wide variety of adverse effects. Several studies have shown that cadmium produces DNA strand breaks, DNA-protein cross-links, oxidative DNA damage, chromosomal aberrations, dysregulation of gene expression resulting in enhanced proliferation, depressed apoptosis and/or altered DNA repair. This study was undertaken to investigate the ability of cadmium chloride (CdCl(2)) and cadmium sulphate (CdSO(4)) to induce point mutations in codon 12 of the K-ras protooncogene assessed by polymerase chain reaction-single strand conformation polymorphisms (PCR-SSCP) and RFLP-enriched PCR methods. Also their genotoxic effects were analyzed by the comet assay and sister chromatid exchanges test. The human lung fibroblast cell line MRC-5 was used for the experiments. Sister chromatid exchanges assay (SCEs) frequencies were significantly increased in cells exposed to cadmium salts in relation to controls (p<0.001). Despite the slow increment observed in the three comet parameters considered when cells were treated with cadmium chloride, significant differences between groups were only found in the variable comet moment (CM) (p<0.005). On the other hand, when cells were exposed to cadmium sulphate, the Kruskal-Wallis test showed highly significant differences between groups for migration, tail moment and comet moment parameters (p<0.001). Nevertheless, a null or weak point mutation induction in K-ras protooncogene was detected using polymerase chain reaction-low ionic strength-single strand conformation polymorphisms (PCR-LIS-SSCP) and RFLP-enriched PCR methods when cells were treated with cadmium salts. Thus, inorganic cadmium produces genotoxicity in human lung fibroblast MRC-5 cells, in the absence of significant point mutation of the K-ras gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号