首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Pluripotent stem cells only exist in a narrow window during early embryonic development, whereas multipotent stem cells are abundant throughout embryonic development and are retainedin various adult tissues and organs. While pluripotent stem cell lines have been established from several species, including mouse, rat, and human, it is still challenging to establish stable multipotent stem cell lines from embryonic or adult tissues. Based on current knowledge, we anticipate that by manipulating extrinsic and intrinsic signaling pathways, most if not all types of stem cells can be maintained in a long-term culture. In this article, we summarize current culture conditions established for the long-term maintenance of authentic pluripotent and multipotent stem cells and the signaling pathways involved. We also discuss the general principles of stem cell maintenance and propose several strategies on the establishment of novel stem cell lines through manipulation of signaling pathways. [BMB Reports 2015; 48(12): 668-676]  相似文献   

3.
Stem cells are self-renewing multipotent cells essential for development or homeostasis of many tissues. Stem cell populations can be found in most multicellular plants and animals. The mechanisms by which these populations are maintained are diverse, utilizing both intrinsic and extrinsic factors to regulate cell division and differentiation. The genetic tools of the fruitfly, Drosophila melanogaster, have permitted detailed characterization of two stem cell populations. In this review, we will examine these contrasting stem cell model systems from Drosophila and their relevance to stem cell populations in other organisms.  相似文献   

4.
Understanding the mechanisms of stem cell proliferation, self-renewal and differentiation is fundamental for stem cell biology. Stem cells proliferate by either symmetric division or asymmetric division. Through asymmetric division, stem cells self-renew and differentiate to mature cells. Stem cells could also divide symmetrically to give rise to differentiated cells. Besides intrinsic cues, proliferation and self-renewal of most stem cell types also rely on extrinsic signals from niche or surrounding cells. Failure in any of these factors may result in disturbed stem cell proliferation, self-renewal or differentiation and/or generate cancer stem cells that drive cancer development.  相似文献   

5.
The potential clinical use of stem cells for cell transplantation therapies to replace defective genes in myopathies is an area of intense investigation. Precursor cells derived from non-muscle tissue with myogenic potential have been identified in many tissues, including bone marrow and dermis, although the status of these putative stem cells requires clarification. The incorporation of circulating bone-marrow derived stem cells into regenerating adult skeletal muscle has been demonstrated in mice but the contribution of donor cells is so minimal that it would appear clinically irrelevant at this stage. The possibility of a true stem cell subpopulation within skeletal muscle that replenishes the satellite cells (conventional muscle precursors on the surface of myofibres) is also very attractive as a superior source of myoblasts for muscle construction. A full understanding of the intrinsic factors (i.e. gene expression within the stem cell) and extrinsic factors (i.e. signals from the external environment) which control the commitment of stem cells to the myogenic lineage, and the conditions which favour stem cell expansion in vivo is required before stem cells can be seriously considered for clinical cell therapy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Stem-cell-based approaches for regenerative medicine   总被引:2,自引:0,他引:2  
Recent success in transplantation of islets raises the hopes of diabetic patients that replacement therapies may be a feasible treatment of their disease. Although several lines of evidence suggest that stem cells exist in the pancreas, it is still technically hard for us to isolate or maintain the stem cells in vitro. The establishment of human embryonic stem (ES) cells has excited scientists regarding their potential medical use in tissue replacement therapy. When applied with appropriate signals, ES cells can be directed to differentiate into a specific cell lineage. Therefore, ES cells are no doubt an excellent source not only for regenerative medicine but also for studies of early events of pancreatic development, and to portray the pancreatic progenitor cells. Despite many attempts that have been tried, the efficiency of differentiation of ES cells into islets is still very low. This low efficiency reflects our lack of understanding of the intrinsic and extrinsic signals which regulate the developmental processes of the pancreas. In this review, I present a summary of recent works on ES cells, the identification of pancreatic progenitor cells from the adult pancreas, and refer to the possibilities of transdifferentiation from adult stem cells derived from other tissues.  相似文献   

7.
Stem cells are rare cells that are uniquely capable of both reproducing themselves (self-renewing) and generating the differentiated cell types that are needed to carry out specialized functions in the body. Stem cell behaviour, in particular the balance between self-renewal and differentiation, is ultimately controlled by the integration of intrinsic factors with extrinsic cues supplied by the surrounding microenvironment, known as the stem cell niche. The identification and characterization of niches within tissues has revealed an intriguing conservation of many components, although the mechanisms that regulate how niches are established, maintained and modified to support specific tissue stem cell functions are just beginning to be uncovered.  相似文献   

8.
Asymmetric cell division generates cell types with different fates. Recent studies have improved our understanding of the molecular mechanisms involved in asymmetric cell division in Arabidopsis thaliana. Genetic approaches have identified candidate intrinsic factors and signaling components that mediate extrinsic cues. WOX genes appear to be putative intrinsic determinants acting in early embryonic asymmetric divisions. A non-canonical mechanism involving specific SHORT ROOT (SHR)-SCARECROW (SCR) nuclear complexes is implicated in ground tissue asymmetric divisions. Asymmetric stem cell division requires extrinsic organizer signaling, whereas the involvement of intrinsic stem cell segregants is unknown. Finally, new studies on stomatal development have identified several intrinsic acting factors that specify cell fate and an extrinsic signaling cascade that controls the number and plane of asymmetric divisions.  相似文献   

9.
Stem cell dynamics in response to nutrient availability   总被引:1,自引:0,他引:1  
When nutrient availability becomes limited, animals must actively adjust their metabolism to allocate limited resources and maintain tissue homeostasis. However, it is poorly understood how tissues maintained by adult stem cells respond to chronic changes in metabolism. To begin to address this question, we fed flies a diet lacking protein (protein starvation) and assayed both germline and intestinal stem cells. Our results revealed a decrease in stem cell proliferation and a reduction in stem cell number; however, a small pool of active stem cells remained. Upon refeeding, stem cell number increased dramatically, indicating that the remaining stem cells are competent to respond quickly to changes in nutritional status. Stem cell maintenance is critically dependent upon intrinsic and extrinsic factors that act to regulate stem cell behavior. Activation of the insulin/IGF signaling pathway in stem cells and adjacent support cells in the germline was sufficient to suppress stem cell loss during starvation. Therefore, our data indicate that stem cells can directly sense changes in the systemic environment to coordinate their behavior with the nutritional status of the animal, providing a paradigm for maintaining tissue homeostasis under metabolic stress.  相似文献   

10.
Stem cells are defined by their intrinsic capacity to self-renew and differentiate. Cancer stem cells retain both these features but have lost homeostatic mechanisms which maintain normal cell numbers. The canonical Wnt/beta-catenin signaling pathway plays a central role in modulating the delicate balance between stemness and differentiation in several adult stem cell niches such as the hair follicles in the skin, the mammary gland, and the intestinal crypt. Accordingly, constitutive Wnt signaling activation, resulting from mutations in genes encoding its downstream components, underlies tumorigenesis in these tissues. In the majority of sporadic colorectal cancer cases, the rate-limiting event is either loss of APC function or oncogenic beta-catenin mutations. However, although the presence of these initiating mutations would predict nuclear beta-catenin accumulation throughout the tumor mass, heterogeneous intracellular distributions of this key Wnt signaling molecule are observed within primary tumors and their metastases. In particular, tumor cells located at the invasive front and those migrating into the adjacent stromal tissues show nuclear beta-catenin staining. Hence, different levels of Wnt signaling activity reflect tumor heterogeneity and are likely to account for distinct cellular activities such as proliferation and epithelial-mesenchymal transitions, which prompt tumor growth and malignant behavior, respectively. Several intrinsic (cell-autonomous and/or autocrine) and extrinsic (paracrine, derived from the tumor microenvironment) factors may explain this heterogeneity of Wnt/beta-catenin signaling activity within the tumor mass.  相似文献   

11.
The Drosophila ovary: an active stem cell community   总被引:1,自引:0,他引:1  
Kirilly D  Xie T 《Cell research》2007,17(1):15-25
Only a small number of cells in adult tissues (the stem cells) possess the ability to self-renew at every cell division,while producing differentiating daughter cells to maintain tissue homeostasis for an organism's lifetime.The Drosophilaovary harbors three different types of stem cell populations (germline stem cell (GSC),somatic stem cell (SSC) andescort stem cell (ESC)) located in a simple anatomical structure known as germarium,rendering it one of the best modelsystems for studying stem cell biology due to reliable stem cell identification and available sophisticated genetic toolsfor manipulating gene functions.Particularly,the niche for the GSC is among the first and best studied ones,and studieson the GSC and its niche have made many unique contributions to a better understanding of relationships between stemcells and their niche.So far,both the GSC and the SSC have been shown to be regulated by extrinsic factors originatingfrom their niche and intrinsic factors functioning within.Multiple signaling pathways are required for controlling GSCand SSC self-renewal and differentiation,which provide unique opportunities to investigate how multiple signals fromthe niche are interpreted in the stem cell.Since the Drosophila ovary contains three types of stem cells,it also providesoutstanding opportunities to study how multiple stem cells in a given tissue work collaboratively to contribute to tissuefunction and maintenance.This review highlights recent major advances in studying Drosophila ovarian stem cells andalso discusses future directions and challenges.  相似文献   

12.
Presently, worldwide attempts are being made to apply stem cells and stem cell-derived products to a wide range of clinical applications and for the development of cell-based therapies. In order to harness stem cells and manipulate them for therapeutic application, it is very important to understand the basic biology of stem cells and identify the factors that govern the dynamics of these cells in the body. Several signaling pathways have emerged as key regulators of stem cells. Some of these signaling pathways regulate the stem cell's proliferative capacity and therefore act as direct regulators of the stem cell, whereas others are involved in shaping and maintaining the stem cell niche and therefore act as indirect regulators of the stem cell. It is difficult to identify which signaling pathways critically affect the stem cell's behavior and which are important for maintaining the quiescent population. A stem cell receives different extrinsic signals compared with the bulk population and responds to them differently. In order to manipulate these adult cells for therapeutic approaches it is crucial to identify how signaling pathways regulate stem cells either directly by regulating proliferative status or indirectly by influencing the niche. The main challenge is to identify whether different factors provide diverse extrinsic signals to the stem cell and its daughter cell population, or whether there are intrinsic differences in stem cell and daughter cell populations that is reflected in their behavior. In this study, we will focus on the various aspects of stem cell biology and differentiation, as well as exploring the potential strategies to intervene the differentiation process in order to obtain the desired yield of cells applicable in regenerative medicine.  相似文献   

13.
The mechanisms that control differentiation of stem cells to specialised cell types probably include factors intrinsic to stem cells as well as extrinsic factors produced by the microenvironment of the stem cell niche. The Drosophila male germline is renewed from a population of stem cells located in the apical tip of the adult testis. The morphological relationship between germline stem cells and their surrounding somatic cells is well understood but the factors that regulate stem cell proliferation and differentiation are still being uncovered. This study examined the effect of stimulating Dpp signalling directly in male germ cells. Ectopic Dpp or Activin signalling resulted in overproliferation of both stem cell-like and spermatogonial-like cells in the apical region of the testis. A third cell population that expressed stem cell markers was seen to proliferate in the distal testis when Dpp signalling was either stimulated or repressed in germline stem cells.  相似文献   

14.
Adult stem cells maintain tissue homeostasis by their ability to both self-renew and differentiate to distinct cell types. Multiple signaling pathways have been shown to play essential roles as extrinsic cues in maintaining adult stem cell identity and activity. Recent studies also show dynamic regulation by epigenetic mechanisms as intrinsic factors in multiple adult stem cell lineages. Emerging evidence demonstrates intimate crosstalk between these two mechanisms. Misregulation of adult stem cell activity could lead to tumorigenesis, and it has been proposed that cancer stem cells may be responsible for tumor growth and metastasis. However, it is unclear whether cancer stem cells share commonalities with normal adult stem cells. In this review, we will focus on recent discoveries of epigenetic regulation in multiple adult stem cell lineages. We will also discuss how epigenetic mechanisms regulate cancer stem cell activity and probe the common and different features between cancer stem cells and normal adult stem cells.  相似文献   

15.
Stem cells have the ability for prolonged self‐renewal and differentiation into mature cells of various lineages, which makes them important cell sources for tissue engineering applications. Their remarkable ability to replenish and differentiate in vivo is regulated by both intrinsic and extrinsic cellular mechanisms. The anatomical location where the stem cells reside, known as the “stem cell niche or microenvironment,” provides signals conducive to the maintenance of definitive stem cell properties. Physiological condition including oxygen tension is an important component of the stem cell microenvironment and has been shown to play a role in regulating both embryonic and adult stem cells. This review focuses on oxygen as a signaling molecule and the way it regulates the stem cells' development into mesenchymal tissues in vitro. The physiological relevance of low oxygen tension as an environmental parameter that uniquely benefits stem cells' expansion and maintenance is described along with recent findings on the regulatory effects of oxygen on embryonic stem cells and adult mesenchymal stem cells. The relevance to tissue engineering is discussed in the context of the need to specifically regulate the oxygen content in the cellular microenvironment in order to optimize in vitro tissue development. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

16.
Epirubicin is an anthracycline and is widely used in tumor treatment, but has toxic and undesirable side effects on wide range of cells and hematopoietic stem cells (HSC). Osteoblasts play important roles in bone development and in supporting HSC differentiation and maturation. It remains unknown whether epirubicin-induced bone loss and hematological toxicity are associated with its effect on osteoblasts. In primary osteoblast cell cultures, epirubicin inhibited cell growth and decreased mineralization. Moreover, epirubicin arrested osteoblasts in the G2/M phase, and this arrest was followed by apoptosis in which both the extrinsic (death receptor-mediated) and intrinsic (mitochondrial-mediated) apoptotic pathways were evoked. The factors involved in the extrinsic apoptotic pathway were increased FasL and FADD as well as activated caspase-8. Those involved in the intrinsic apoptotic pathway were decreased Bcl-2; increased reactive oxygen species, Bax, cytochrome c; and activated caspase-9 and caspase-3. These results demonstrate that epirubicin induced osteoblast apoptosis through the extrinsic and intrinsic apoptotic pathways, leading to the destruction of osteoblasts and consequent lessening of their functions in maintaining bone density and supporting hematopoietic stem cell differentiation and maturation.  相似文献   

17.
干细胞发育中存在对称/不对称两种方式的交替分裂,精确调控维持正常发育。相关调控因素有外源性机制和内源性机制,发现于基本模式生物果蝇,主要包括干细胞周围微环境、细胞极性、纺锤体轴向和命运决定子不对称分布。调控机制的失常将导致干细胞分裂模式紊乱,可能造成肿瘤发生。简要综述了相关研究进展。  相似文献   

18.
多细胞生物的发育是从一个受精卵分化成多种类型细胞的过程。细胞多样性形成的基础是不等分裂,不等分裂是干细胞自我更新和自我维持的关键。干细胞不等分裂有细胞内和细胞外两种调节机制。果蝇神经干细胞增殖和分化、植物胚胎发育、表皮气孔形成及根内皮层的分化,是研究不等细胞分裂调节机制最多的发育背景。本综述介绍了果蝇神经干细胞和植物胚胎发育早期、表皮气孔发生及根皮层内皮层中细胞不等分裂内在调节机制的研究进展。  相似文献   

19.
L Jones 《Current biology : CB》2001,11(12):R484-R486
Much effort is being invested in defining the intrinsic and extrinsic factors that control stem cell maintenance and proliferation. Recent studies have identified a signaling hierarchy involved in coordinating the proliferation of germ line and somatic stem cells in the Drosophila ovary.  相似文献   

20.
The ability of dividing cells to produce daughters with different fates is an important developmental mechanism conserved from bacteria to fungi, plants, and metazoan animals. Asymmetric outcomes of a cell division can be specified by two general mechanisms: asymmetric segregation of intrinsic fate determinants or asymmetric placement of daughter cells into microenvironments that provide extrinsic signals that direct cells to different states. For both, spindle orientation must be coordinated with the localization of intrinsic determinants or source of extrinsic signals to achieve the proper asymmetric outcome. Recent work on spindle orientation in Drosophila melanogaster male germline stem cells and neuroblasts has brought into sharp focus the key role of differential centrosome behavior in developmentally programmed asymmetric division (for reviews see Cabernard, C., and C.Q. Doe. 2007. Curr. Biol. 17:R465-R467; Gonzalez, C. 2007. Nat. Rev. Genet. 8:462-472). These findings provide new insights and suggest intriguing new models for how cells coordinate spindle orientation with their cellular microenvironment to regulate and direct cell fate decisions within tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号