首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the stage 4 chick blastoderm, an area located 0.6 mm posterior to Hensen's node, the post-nodal piece (PNP), consists of an undifferentiated population of cells, since the explants when cultivated in vitro in a variety of media do not develop into any histologically identifiable structures. However, addition of a specific low molecular weight RNA isolated from the 16-day-old chick embryonic heart promotes the appearance of a distinct mode of morphological and biochemical changes that is similar to that of embryonic cardiogenic process. The RNA-induced changes in the PNP also include a marked increase in acetylcholinesterase activity. The increase in enzymatic activity can be measured biochemically, as well as visualized histochemically.  相似文献   

2.
In the stage 4 chick blastoderm, an area located 0.6 mm posterior to Hensen's node, the post-nodal piece (PNP), consists of an undifferentiated population of cells, since the explants when cultivated in vitro in a variety of media do not develop into any histologically identifiable structures. However, addition of a specific low molecular weight RNA isolated from the 16-day-old chick embryonic heart promotes the appearance of a distinct mode of morphological and biochemical changes that is similar to that of embryonic cardiogenic process. The RNA-induced changes in the PNP also include a marked increase in acetylcholinesterase activity. The increase in enzymatic activity can be measured biochemically, as well as visualized histochemically.  相似文献   

3.
We studied early neurulation events in vitro by transplanting quail Hensen's node, central prenodal regions (before the nodus as such develops), or upper layer parts of it on the not yet definitively committed upper layer of chicken anti-sickle regions (of unincubated blastoderms), eventually associated with central blastoderm fragments. We could demonstrate by this quail-chicken chimera technique that after the appearance of a pronounced thickening of the chicken upper layer by the early inductive effect of neighboring endophyll, a floor plate forms by insertion of Hensen's node-derived quail cells into the median part of the groove. This favors, at an early stage, the floor plate "allocation" model that postulates a common origin for notochord and median floor plate cells from the vertebrate's secondary major organizer (Hensen's node in this case). A comparison is made with results obtained after transplantation of similar Hensen's nodes in isolated chicken endophyll walls or with previously obtained results after the use of the grafting procedure in the endophyll walls of whole chicken blastoderms.  相似文献   

4.
Hensen's node, also called the chordoneural hinge in the tail bud, is a group of cells that constitutes the organizer of the avian embryo and that expresses the gene HNF-3(&bgr;). During gastrulation and neurulation, it undergoes a rostral-to-caudal movement as the embryo elongates. Labeling of Hensen's node by the quail-chick chimera system has shown that, while moving caudally, Hensen's node leaves in its wake not only the notochord but also the floor plate and a longitudinal strand of dorsal endodermal cells. In this work, we demonstrate that the node can be divided into functionally distinct subregions. Caudalward migration of the node depends on the presence of the most posterior region, which is closely apposed to the anterior portion of the primitive streak as defined by expression of the T-box gene Ch-Tbx6L. We call this region the axial-paraxial hinge because it corresponds to the junction of the presumptive midline axial structures (notochord and floor plate) and the paraxial mesoderm. We propose that the axial-paraxial hinge is the equivalent of the neuroenteric canal of other vertebrates such as Xenopus. Blocking the caudal movement of Hensen's node at the 5- to 6-somite stage by removing the axial-paraxial hinge deprives the embryo of midline structures caudal to the brachial level, but does not prevent formation of the neural tube and mesoderm located posteriorly. However, the whole embryonic region generated posterior to the level of Hensen's node arrest undergoes widespread apoptosis within the next 24 hours. Hensen's node-derived structures (notochord and floor plate) thus appear to produce maintenance factor(s) that ensures the survival and further development of adjacent tissues.  相似文献   

5.
Acid phosphatase distribution and yolk drop infrastructure in Hensen's node of chick blastoderm at Hamburger-Hamilton stages 3 and 4 are described. At stage 3 large deposits of the reaction product are localised in type-A yolk drops, where signs of intensive degradation are seen. It seems that during this degradation lipid droplets are being formed in the degrading yolk drops. Partly digested yolk drops with a vesicular appearance are extruded from the cells, especially in deeper layers of the node. The phosphatase reaction product is also distributed into intercellular spaces. At stage 4 the cells of the node are more vacuolated and contain acid phosphatase and electron-dense yolk drops in lesser amounts. The possible physiological role of acid phosphatase in Hensen's node during g'astrulation is discussed.  相似文献   

6.
Previous analyses of labelled clones of cells within the developing nervous system of the mouse have indicated that descendants are initially dispersed rostrocaudally followed by more local proliferation, which is consistent with the progressing node's contributing descendants from a resident population of progenitor cells as it advances caudally. Here we electroporated an expression vector encoding green fluorescent protein into the chicken embryo near Hensen's node to test and confirm the pattern inferred in the mouse. This provides a model in which a proliferative stem zone is maintained in the node by a localized signal; those cells that are displaced out of the stem zone go on to contribute to the growing axis. To test whether fibroblast growth factor (FGF) signalling could be involved in the maintenance of the stem zone, we co-electroporated a dominant-negative FGF receptor with a lineage marker, and found that it markedly alters the elongation of the spinal cord primordium. The results indicate that FGF receptor signalling promotes the continuous development of the posterior nervous system by maintaining presumptive neural progenitors in the region near Hensen's node. This offers a potential explanation for the mixed findings on FGF in the growth and patterning of the embryonic axis.  相似文献   

7.
Chick Ghox 2.9 protein, a homeodomain-containing polypeptide, is first detected in the mid-gastrula stage embryo and its levels increase rapidly in the late gastrula. At this time, the initially narrow band of expression along the primitive streak expands laterally to form a shield-like domain that encompasses almost the entire posterior region of the embryo and extends anteriorly as far as Hensen's node. We have found that this expression domain co-localizes with a morphological feature that consists of a stratum of refractile, thickened mesoderm. Antibody-staining indicates that Ghox 2.9 protein is present in all cells of this mesodermal region. In contrast, expression within the ectoderm overlying the region of refractile mesoderm varies considerably. The highest levels of expression are found in ectoderm near the streak and surrounding Hensen's node, regions that recent fate mapping studies suggest that primarily destined to give rise to neurectoderm. At the definitive streak stage (Hamburger and Hamilton stage 4) the chick embryo is especially sensitive to the induction of axial malformations by retinoic acid. Four hours after the treatment of definitive streak embryos with a pulse of retinoic acid the expression of Ghox 2.9 protein is greatly elevated. This ectopic expression occurs in tissues anterior to Hensen's node, including floor plate, notochord, presumptive neural plate and lateral plate mesoderm, but does not occur in the anteriormost region of the embryo. The ectopic induction of Ghox 2.9 is strongest in ectoderm, and weaker in the underlying mesoderm. Endoderm throughout the embryo is unresponsive. At stage 11, Ghox 2.9 is normally expressed at high levels within rhombomere 4 of the developing hindbrain. In retinoic-acid-treated embryos which have developed to this stage, typical rhombomere boundaries are largely absent. Nevertheless, Ghox 2.9 is still expressed as a discrete band, but one that is widened and displaced to a more anterior position.  相似文献   

8.
Previous histological studies showed that in addition to a sinus node, an atrioventricular (AV) node, an AV bundle, left and right bundle branches, birds also possess a right AV‐Purkinje ring that is located in the atrial sheet of the right muscular AV‐valve along all its base length. The functionality of the AV‐Purkinje ring is unknown. In this work, we studied the topology of pacemaker myocytes in the atrial side of the isolated chicken spontaneously contracting right muscular AV‐valve using the method of microelectrode mapping of action potentials. We show that AV‐cells having the ability to show pacemaking reside in the right muscular AV‐valve. Pacemaker action potentials were exclusively recorded close to the base of the valve along its whole length from dorsal to the ventral attachment to the interventricular septum. These action potentials have much slower rate of depolarization, lower amplitude, and higher diastolic depolarization than action potentials of Purkinje (conducting) cells. We conclude the right AV‐valve has a ring bundle of pacemaker cells (but not Purkinje cells) in the adult chicken heart. J. Morphol. 277:363–369, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
By placing endophyll on the caudal area marginalis situated behind Rauber's sickle of avian unincubated blastoderms, we observed after using the quail-chick chimera system and culture the development of a (pre)neural plate or a miniature embryo, head-oriented towards this endophyll. A Rauber's sickle fragment placed in the same conditions gives no reaction. If we place endophyll close to Hensen's node (stage 4 Vakaet, 1962) on an isolated anti-sickle region of an avian unincubated blastoderm in vitro, a similar endophyll-oriented development takes place after culture. Under the same conditions, but in the absence of endophyll, a Hensen's node provokes a thickening of the upper layer in the immediate neighbourhood, eventually with formation of a neural axis, oriented according to the original caudocranial direction of the graft. Our study indicates that avian endophyll (from unincubated blastoderms) can induce in the upper layer a (pre)neural plate, with or without neural folds. By interaction with sickle endoblast coming from Rauber's sickle (the early gastrulation organizer: Callebaut and Van Nueten, 1994), or from Hensen's node (a later avian organizer: Waddington, 1932), it can orient or re-orient the head region and the caudocranial direction of an induced miniature embryo. The conclusions from our embryological experiments are in agreement with the results obtained by recent molecular biology studies.  相似文献   

10.
Summary RNA labelled during oogenesis or early embryogenesis was isolated from eggs of the leaf hopperEuscelis plebejus. The polyadenylated RNA fraction deposited during early oogenesis accounted for approximately 2.7% of the total RNA content of the newly laid egg. This fraction differed significantly in molecular weight (15–32 S) from poly(A)-containing RNA synthesised between early cleavage and early germ anlage stages (4–20S). Locally injected3H-uridine spread through the egg within approximately 3 h. A considerable fraction (25–35%) of label injected as3H-uridine during early cleavage was recovered in DNA at subsequent stages (10–20 h later); labelled RNA was not found prior to the cellular blastoderm stage. When the yolk-endoplasm was separated from the blastoderm cells, only the latter contained demonstrable amounts of RNA synthesised by the embryo. Of the precursor incorporated into embryonic RNA, approximately 10% was found in the polyadenylated fraction at the early blastoderm stage, but only 3% at the early germ anlage stage. No differences in size distribution of polyadenylated RNA were evident between anterior and posterior halves of the early germ anlage stage.Supported by the Deutsche Forschungsgemeinschaft, SFB 46  相似文献   

11.
Fate maps of chick Hensen's node were generated using DiI and the lineage of individual cells studied by intracellular injection of lysine-rhodamine-dextran (LRD). The cell types contained within the node are organized both spatially and temporally. At the definitive primitive streak stage (Hamburger and Hamilton stage 4), Hensen's node contains presumptive notochord cells mainly in its anterior midline and presumptive somite cells in more lateral regions. Early in development it also contains presumptive endoderm cells. At all stages studied (stages 3-9), some individual cells contribute progeny to more than one of these tissues. The somitic precursors in Hensen's node only contribute to the medial halves of the somites. The lateral halves of the somites are derived from a separate region in the primitive streak, caudal to Hensen's node.  相似文献   

12.
13.
Summary Protein synthesis in egg follicles and blastoderm embryos ofDrosophila melanogaster has been studied by means of two-dimensional gel electrophoresis. Up to 400 polypeptide spots have been resolved on autoradiographs. Stage 10 follicles (for stages see King, 1970) were labelled in vitro for 10 to 60 min with35S-methionine and cut with tungsten needles into an anterior fragment containing the nurse cells and a posterior fragment containing the oocyte and follicle cells. The nurse cells were found to synthesize a complex pattern of proteins. At least two proteins were detected only in nurse cells but not in the oocyte even after a one hour labelling period. Nurse cells isolated from stages 9, 10 and 12 follicles were shown to synthesize stage specific patterns of proteins. Several proteins are synthesized in posterior fragments of stage 10 follicles but not in anterior fragments. These proteins are only found in follicle cells. No oocyte specific proteins have been detected. Striking differences between the protein patterns of anterior and posterior fragments persist until the nurse cells degenerate. In mature stage 14 follicles, labelled in vivo, no significant differences in the protein patterns of isolated anterior and posterior fragments could be detected; this may be due to technical limitations. At the blastoderm stage localized synthesis of specific proteins becomes detectable again. When blastoderm embryos, labelled in vivo, are cut with tungsten needles and the cells are isolated from anterior and posterior halves, differences become apparent. The pole cells located at the posterior pole are highly active in protein synthesis and contribute several specific proteins which are found exclusively in the posterior region of the embryo. In this study synthesis of specific proteins could only be demonstrated at those developmental stages which are characterized by the presence of different cell types within the egg chamber, while no differences were detected when stage 14 follicles were cut and anterior and posterior fragments analyzed separately. The differences in the pattern of protein synthesis by pole cells and blastoderm cells indicate that even the earliest stages of determination are reflected by marked changes at the biochemical level.  相似文献   

14.
In vertebrates, the endoderm is established during gastrulation and gradually becomes regionalized into domains destined for different organs. Here, we present precise fate maps of the gastrulation stage chick endoderm, using a method designed to label cells specifically in the lower layer. We show that the first population of endodermal cells to enter the lower layer contributes only to the midgut and hindgut; the next cells to ingress contribute to the dorsal foregut and followed finally by the presumptive ventral foregut endoderm. Grafting experiments show that some migrating endodermal cells, including the presumptive ventral foregut, ingress from Hensen's node, not directly into the lower layer but rather after migrating some distance within the middle layer. Cell transplantation reveals that cells in the middle layer are already committed to mesoderm or endoderm, whereas cells in the primitive streak are plastic. Based on these results, we present a revised fate map of the locations and movements of prospective definitive endoderm cells during gastrulation.  相似文献   

15.
The rearrangement of ectodermal cells was studied in chimeras in which grafts were transplanted during late gastrula and early neurula stages to heterotopic locations in avian embryos. Three types of experiments were done. In all experiments, Hensen's node was extirpated completely and replaced with an epithelial plug derived from 1 of 3 regions of the prospective ectoderm. In type-1 experiments, Hensen's node was replaced with a plug consisting of precursor cells of the floor plate of the neural tube. In type-2 experiments, Hensen's node was replaced with a plug consisting of precursor cells of the lateral wall of the neural tube. In type-3 experiments, Hensen's node was replaced with a plug consisting of precursor cells of the epidermal ectoderm. In all experiments, the amount and direction of cell rearrangement that occurred in the transplanted ectodermal plug was essentially typical for prospective ectodermal cells normally residing within Hensen's node. That is, transplanted ectodermal cells underwent lateralto-medial cell-cell intercalation and contributed to the ventral midline of the neural tube along its entire rostrocaudal extent. In most embryos, a notochord was reconstituted from host cells, despite the fact that Hensen's node — the prime source of prospective notochordal cells in intact embryos — was extirpated completely; however, a few embryos had long notochordal gaps. In such essentially notochordless embryos, the ventral midline of the neural tube still derived from grafted cells, but it failed to form a floor plate, providing further confirmation of the results of several previous studies that the notochord is required to induce the floor plate. Collectively, our results provide evidence that the rearrangement of ectodermal cells does not require the presence of a trail of prospective floor plate cells (laid down by the regressing Hensen's node), or of a notochordal substrate, and that the continued presence of an organizer per se, ostensibly Hensen's node, is not required. In addition, our results demonstrate that the rearrangement of cells still occurs in the absence of boundaries between ectodermal cells of different phenotypes (e.g., between cells of the floor plate and lateral walls of the neural tube). Finally, our results reveal further that the amount and direction of cellular rearrangement is not regulated in a cell-autonomous fashion, but rather it is determined by the overall magnitude and vector of the displacement of the community of rearranging cells within a developmental field.  相似文献   

16.
Isolated chicken myoblasts had previously been utilized in many studies aiming at understanding the emergence and regulation of the adult myogenic precursors (satellite cells). However, in recent years only a small number of chicken satellite cell studies have been published compared to the increasing number of studies with rodent satellite cells. In large part this is due to the lack of markers for tracing avian myogenic cells before they become terminally differentiated and express muscle-specific structural proteins. We previously demonstrated that myoblasts isolated from fetal and adult chicken muscle display distinct schedules of myosin heavy-chain isoform expression in culture. We further showed that myoblasts isolated from newly hatched and young chickens already possess the adult myoblast phenotype. In this article, we report on the use of polyclonal antibodies against the chicken myogenic regulatory factor proteins MyoD and myogenin for monitoring fetal and adult chicken myoblasts as they progress from proliferation to differentiation in culture. Fetal-type myoblasts were isolated from 11-day-old embryos and adult-type myoblasts were isolated from 3-week-old chickens. We conclude that fetal myoblasts express both MyoD and myogenin within the first day in culture and rapidly transit into the differentiated myosin-expressing state. In contrast, adult myoblasts are essentially negative for MyoD and myogenin by culture Day 1 and subsequently express first MyoD and then myogenin before expressing sarcomeric myosin. The delayed MyoD-to-myogenin transition in adult myoblasts is accompanied by a lag in the fusion into myotubes, compared to fetal myoblasts. We also report on the use of a commercial antibody against the myocyte enhancer factor 2A (MEF2A) to detect terminally differentiated chicken myoblasts by their MEF2+ nuclei. Collectively, the results support the hypothesis that fetal and adult myoblasts represent different phenotypic populations. The fetal myoblasts may already be destined for terminal differentiation at the time of their isolation, and the adult myoblasts may represent progenitors that reside in an earlier compartment of the myogenic lineage.  相似文献   

17.
hedgehog is a segment polarity gene necessary to maintain the proper organization of each segment of the Drosophila embryo. We have identified the physical location of a number of rearrangement breakpoints associated with hedgehog mutations. The corresponding hh RNA is expressed in a series of segmental stripes starting at cellular blastoderm in the posterior portion of each segment. This RNA is localized predominantly within nuclei until stage 10, when the localization becomes primarily cytoplasmic. Expression of hh RNA in the posterior compartment is independent of most other segment polarity genes, including en, until the late extended germ-band stage (stage 11). Sequence analysis of the hedgehog locus suggests the protein product is a transmembrane protein, which may, therefore, be directly involved in cell-cell communication.  相似文献   

18.
19.
Summary The purpose of this study was to determine whether the organizer regions of early avian and amphibian embryos could induce supernumerary (SN) wing structures to develop when they were grafted to a slit in the anterior side of stage 19–23 chick wing buds. Supernumerary digits developed in 43% of the wings that received anterior grafts of Hensen's node from stage 4–6 quail or chick embryos; in addition, 16% of the wings had rods of SN cartilage, but not recognizable SN digits. The grafted quail tissue did not contribute to the SN structures. When tissue anterior or lateral to Hensen's node or lateral pieces of the area pellucida caudal to Hensen's node were grafted to anterior slits, the wings usually developed normally. No SN structures developed when Hensen's nodes were grafted to posterior slits in chick wing buds. Wings developed normally when pieces of the dorsal lip of the blastopore from stage 10–11.5 frog (Xenopus laevis and Rana pipiens) embryos were grafted to anterior slits. No SN digits developed when other tissues that have limb-inducing activity in adult urodele amphibians [chick otic vesicle, frog (Rana pipiens) lung and kidney] or that can act as heteroinductors in neural induction (rat kidney, lung, submaxillary gland and urinary bladder; mouse liver and submaxillary gland) were grafted to anterior slits in chick wing buds. SN digits also failed to develop following preaxial grafts of chick optic vesicles. These results suggest that although the anteroposterior polarity of the chick wing bud can be influenced by factors other than the ZPA (e.g., Hensen's node, retinoids), the wing is not so labile that it can respond to a wide variety of inductively-active tissues.  相似文献   

20.
Lateral blastoderm isolates (LBIs) at the late gastrula/early neurula stage (i.e., stage 3d/4) that lack Hensen's node (organizer) and primitive streak can reconstitute a functional organizer and primitive streak within 10-12 hours in culture. We used LBIs to study the initiation and regionalization of the body plan. A complete body plan forms in each LBI by 36 hours in culture, and normal craniocaudal, dorsoventral, and mediolateral axes are re-established. Thus, reconstitution of the organizer is sufficient to re-establish a fully patterned body plan. LBIs can be modified so that reconstitution of the organizer does not occur. In such modified LBIs, tissue-type specific differentiation (with the exception of heart differentiation) and reconstitution of the body plan fail to occur. Thus, the reconstitution of the organizer is not only sufficient to re-establish a fully patterned body plan, it is also required. Finally, our results show that formation and patterning of the heart is under the control of the organizer, and that such control is exerted during the early to mid-gastrula stages (i.e., stages 2-3a), prior to formation of the fully elongated primitive streak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号