首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast contraction of collagen gels is regarded as a model of wound contraction. Transforming growth factor (TGF)-beta added to such gels can augment contraction consistent with its suggested role as a mediator of fibrotic repair. Since fibroblasts isolated from fibrotic tissues have been suggested to express a "fibrotic phenotype," we hypothesized that TGF-beta exposure may lead to a persistent increase in fibroblasts' contractility. To evaluate this question, confluent human fetal lung fibroblasts were treated with serum-free Dulbecco modified Eagle medium (DMEM), with or without 100 pM [corrected] TGF-beta1, TGF-beta2, or TGF-beta3 for 48 h. Fibroblasts were then trypsinized and cast into gels composed of native type I collagen isolated from rat tail tendons. After 20 min for gelation, the gels were released and maintained in serum-free DMEM. TGF-beta-pretreated fibroblasts caused significantly more rapid gel contraction (52.5+/-0.6, 50.9+/-0.2, and 50.3+/-0.5% by TGF-beta1, -beta2, and -beta3 pretreated fibroblasts, respectively) than control fibroblasts (74.0+/-0.3%, P < 0.01). This effect is concentration dependent (50-200 nM), and all three isoforms had equal activity. The effect of TGF-beta1, however, persisted for only a short period of time following the removal of TGF-beta, and was lost with sequential passage. These observations suggest that the persistent increase in collagen-gel contractility, mediated by fibroblasts from fibrotic tissues, would not appear to be solely due to previous exposure of these cells to TGF-beta.  相似文献   

2.
3.
Keloids represent a dysregulated response to cutaneous wounding that results in an excessive deposition of extracellular matrix, especially collagen. However, the molecular mechanisms regulating this pathologic collagen deposition still remain to be elucidated. A previous study by this group demonstrated that transforming growth factor (TGF)-beta1 and -beta2 ligands were expressed at greater levels in keloid fibroblasts when compared with normal human dermal fibroblasts (NHDFs), suggesting that TGF-beta may play a fibrosis-promoting role in keloid pathogenesis.To explore the biomolecular mechanisms of TGF-beta in keloid formation, the authors first compared the expression levels of the type I and type II TGF-beta receptors in keloid fibroblasts and NHDFs. Next, they investigated the phosphorylation of Smad 3, an intracellular TGF-beta signaling molecule, in keloid fibroblasts and NHDFs. Finally, they examined the regulation of TGF-beta receptor II by TGF-beta1, TGF-beta2, and TGF-beta3 ligands.Our findings demonstrated an increased expression of TGF-beta receptors (types I and II) and increased phosphorylation of Smad 3 in keloid fibroblasts relative to NHDFs. These data support a possible role of TGF-beta and its receptors as fibrosis-inducing growth factors in keloids. In addition, all three isoforms of recombinant human TGF-beta proteins could further stimulate the expression of TGF-beta receptor II in both keloids and NHDFs. Taken together, these results substantiate the hypothesis that the elevated levels of TGF-beta ligands and receptors present in keloids may support increased signaling and a potential role for TGF-beta in keloid pathogenesis.  相似文献   

4.
Proliferation of mesenchymal precursors of osteogenic and chondrogenic cells and migration of these precursors to repair sites are important early steps in bone repair. Transforming growth factor-beta (TGF-beta) has been implicated in the promotion of bone repair and may have a role in these processes. Three isoforms of TGF-beta, TGF-beta1, -beta2, and -beta3, are expressed in fracture healing, however, their specific roles in the repair process are unknown. Differential actions of the TGF-beta isoforms on early events of bone repair were explored in the multipotent mesenchymal precursor cell line, C3H10T1/2. Cell migration was determined using a modified Boyden chamber in response to concentrations of each isoform ranging from 10(-12) to 10(-9) g/ml. All three isoforms demonstrated a dose-dependent chemotactic stimulation of untreated C3H10T1/2 cells. Checkerboard assays indicated that all three isoforms also stimulated chemokinesis of the untreated cells. C3H10T1/2 cells treated with all-trans-retinoic acid (ATRA) and expressing relatively higher levels of osteoblastic gene markers such as alkaline phosphatase and collagen type I, lower levels of chondrocytic gene markers collagen type II and aggrecan, and unchanged levels of the adipose marker adipsin did not demonstrate significant chemokinesis or chemotaxis in response to TGF-beta1 or -beta3 at concentrations ranging from 10(-12) to 10(-9) g/ml. In the ATRA-treated cells, TGF-beta2 stimulated a significant increase in chemotaxis only at the highest concentration tested. Cell proliferation was assessed by mitochondrial dehydrogenase activity and cell counts at TGF-beta concentrations from 10(-11) to 10(-8) g/ml. None of the TGF-beta isoforms stimulated cell proliferation in untreated or ATRA-treated C3H10T1/2 cells. Analysis of TGF-beta receptors (TGF-betaR1, -betaR2, and -betaR3) showed a 1.6- to 2.8-fold decrease in mRNA expression of these receptors in ATRA-treated cells. In conclusion: (1) while all three TGF-beta isoforms stimulate chemotaxis/chemokinesis of multipotent C3H10T1/2 cells, TGF-beta1 and -beta3 do not stimulate chemotaxis in C3H10T1/2 cells treated with ATRA while TGF-beta2 stimulated chemotaxis only at the highest concentration tested. (2) TGF-beta isoforms do not appear to stimulate cell proliferation in C3H10T1/2 cells in either a multipotent state or after ATRA treatment when expressing higher levels of alkaline phosphatase and collagen type I gene markers. (3) Decrease in mRNA expression for TGF-betaR1, -betaR2, and -betaR3 upon ATRA treatment could potentially explain the lack of chemotaxis/chemokinesis in these cells expressing higher levels of alkaline phosphatase and collagen type I.  相似文献   

5.
TGF-beta signals through TGF-beta receptors and Smad proteins. TGF-beta also augments fibroblast-mediated collagen gel contraction, an in vitro model of connective tissue remodeling. To investigate the importance of Smad2 or Smad3 in this augmentation process, embryo-derived fibroblasts from mice lacking expression of Smad2 or Smad3 genes were cast into native type I collagen gels. Fibroblast-populated gels were then released into 0.2% FCS-DMEM alone or with recombinant human TGF-beta1, beta2, beta3, or recombinant rat PDGF-BB. Gel contraction was determined using an image analyzer. All three isoforms of TGF-beta significantly augmented contraction of collagen gels mediated by fibroblasts with genotypes of Smad2 knockout (S2KO), Smad2 wildtype (S2WT), and Smad3 wildtype (S3WT), but not Smad3 knockout (S3KO) mice. PDGF-BB augmented collagen gel contraction by all fibroblast types. These results suggest that expression of Smad3 but not Smad2 may be critical in TGF-beta augmentation of fibroblast-mediated collagen gel contraction. Thus, the Smad3 gene could be a target for blocking contraction of fibrotic tissue induced by TGF-beta.  相似文献   

6.
The role of many growth factors and cytokines in the process of wound healing has been intensively investigated in recent two decades. Among them, transforming growth factor-betas (TGF-betas) are well known to have a potent stimulatory effect on collagen synthesis as shown in various in vivo experimental systems. In the present study, we examined the effects of various growth factors on the promoter activity of the proalpha2 (I) collagen gene (COL1A2) during the wound healing process. For this purpose, we utilized transgenic mice harboring the -17 kb promoter sequence of the mouse COL1A2 linked to either a firefly luciferase or a bacterial beta-galactosidase gene. These mice exhibited normal phenotypic expression and the wound healing process was not impaired. Full thickness wounds were made by punch biopsy. We examined the effects of TGF-beta1, -beta2, -beta3, basic fibroblast growth factor, platelet-derived growth factor, and connective tissue growth factor by applying them locally to the open wound every 2 days. Among the growth factors examined, all of the three isoforms of TGF- exhibited a more potent stimulatory effect on COL1A2 promoter activity than did other factors. In addition, while TGF-beta1 and -beta2 significantly increased the number of fibroblasts which were positive for X-Gal staining, TGF-beta3 treatment did not change the number of beta-galactosidase expressing cells. Accumulation of collagen fibers was observed to the same extent in the mice treated with TGF-beta1 and those with TGF-beta3. These findings suggest that TGF-beta1 and -beta3 have similar but not identical regulatory mechanisms of COL1A2 expression, and that their pathophysiological roles in wound healing might be different from each other.  相似文献   

7.
Abnormal growth of cardiac fibroblasts is critically involved in the pathophysiology of cardiac hypertrophy/remodeling. Hexarelin is a synthetic growth hormone secretagogue (GHS), which possesses a variety of cardiovascular protective activities mediated via the GHS receptor (GHSR), including improving cardiac dysfunction and remodeling. The cellular and molecular mechanisms underlying the effect of GHS on cardiac fibrosis are, however, not clear. In this report, cultured cardiac fibroblasts from 8-day-old rats were stimulated with ANG II or FCS to induce proliferation. The fibroblast proliferation and DNA and collagen synthesis were evaluated utilizing 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, (3)H-thymidine incorporation, and (3)H-proline incorporation. The level of mRNA of transforming growth factor (TGF)-beta was evaluated by RT-PCR, and the active TGF-beta1 release from cardiac fibroblasts was evaluated by ELISA. The level of cellular cAMP was measured by radioimmunoassay. In addition, the effects of 3,7-dimethyl-l-propargylxanthine (DMPX; a specific adenosine receptor A(2)R antagonist) and 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; a specific A(1)R antagonist) were tested. It was found that incubation with 10(-7) mol/l hexarelin for 24 h 1) inhibited the ANG II-induced proliferation and collagen synthesis and the 5% FCS- and TGF-beta-induced increase of DNA synthesis in cardiac fibroblast and 2) reduced ANG II-induced upregulation of TGF-beta mRNA expression and active TGF-beta1 release from fibroblasts. Hexarelin increased the cellular level of cAMP in cardiac fibroblasts. DMPX (10(-8) mol/l) but not DPCPX abolished the effect of hexarelin on cardiac fibroblast DNA synthesis. It is concluded that hexarelin inhibits DNA and collagen synthesis and proliferation of cardiac fibroblasts through activation of both GHSR and A(2)R and diminishment of ANG II-induced increase in TGF-beta expression and release.  相似文献   

8.
Generation of contractile forces as fibroblasts attach and migrate through collagenous substrates is a fundamental behavior, yet its regulation and consequences are obscure. Although the transforming growth factor-betas (TGF-beta) are similarly important in fibrosis and tissue repair, their role in contraction is controversial. Using a quantitative, 3D collagen culture model we have measured the effects of TGF-beta1 and -beta3 on contractile forces generated by human dermal fibroblasts. Maximal stimulation was between 7.5 and 15 ng/ml of TGF-beta1. Higher doses were inhibitory (30 ng/ml), giving a bell-shaped dose response. The initial rate of force generation was increased sevenfold (15 ng/ml). A similar response pattern was seen with TGF-beta3 alone. However, the addition of both isoforms together stimulated a biphasic increase in force generation, suggesting that there was a distinct temporal cooperativity between the two isforms. This very early onset (10-20 min) of stimulation suggested that TGF-beta might act through cell attachment and integrin function and the effect of TFG-beta on expression of fibronectin (FnR) and vitronectin (VnR) integrin receptors was monitored over the same time scale. TGF-beta1 dramatically up-regulated VnR expression, relative to FnR, over time but the optimal time for this was 2-4 h later than that of force stimulation. It is concluded that TGF-beta1 and -beta3 behave here primarily as mechanoregulatory growth factors and that stimulation of integrin expression may be a consequence of the altered cell stress.  相似文献   

9.
The development of myopia is associated with scleral remodeling, but it is unclear which factors regulate this process. This study investigated bone morphogenetic protein-2 (BMP-2) expression in the sclera of guinea pigs with lens-induced myopia (LIM) and after recovery from myopia and evaluated the effect of BMP-2 on extracellular matrix (ECM) synthesis in human scleral fibroblasts (HSFs) cultured in vitro. Lens-induced myopia was brought about in two groups of guinea pigs (the lens-induced myopia and myopia recovery groups) by placing -4.00 D lenses on the right eye for three weeks. The left eye served as a contralateral control. In the recovery group, the lenses were removed after one week. The refractive power and axial length of the eyes were measured, and the BMP-2 expression levels in the sclera were measured. After three weeks, the lens-induced eyes acquired relative myopia in both groups of guinea pigs. Immunostaining of the eyeballs revealed significantly decreased BMP-2 expression in the posterior sclera of the myopic eyes compared to the contralateral eyes. One week after lens removal, BMP-2 expression recovered, and no differences were observed between the experimental and contralateral eyes in the recovery group. HSFs were cultured with BMP-2 or transforming growth factor-β1 (TGF-β1). Type I and type III collagen synthesis was significantly up-regulated following BMP-2 treatment in culture after one and two weeks, but the ratio of type III to type I collagen mRNA was not increased. Biosynthesis of glycosaminoglycan (GAG) and aggrecan was increased in HSFs treated with BMP-2. Some chondrogenesis-associated genes expression increased in HSFs treated with BMP-2. From this study, we concluded that BMP-2 is involved in scleral remodeling in the development and recovery of lens-induced myopia.  相似文献   

10.
Gentle A  McBrien NA 《Cytokine》2002,18(6):344-348
AIMS: Studies in avian models of myopia have shown that refractive error development can be influenced by exogenously delivered fibroblast growth factor (FGF)-2. The present study sought to determine whether endogenous FGF-2 was associated with retinoscleral signalling or scleral remodelling during changes in refractive error in a mammalian model of myopia. METHODS: Myopia was induced in tree shrews over a 5-day period. One group of animals was then allowed 3 days of recovery from the induced myopia. Endogenous levels of FGF-2 were measured in scleral and retinal homogenates using ELISA. Real-time PCR was used to investigate scleral FGF-2 and FGF receptor (FGFR)-1 mRNA expression. RESULTS: No difference in FGF-2 content was found in posterior scleral or retinal extracts of myopic eyes (scleral -4+/-9%, retinal +23+/-17%) or recovering eyes (scleral -10+/-18%, retinal +1+/-13%), when compared with contralateral control eyes. In addition, no significant changes were found in scleral FGF-2 mRNA expression in myopic or recovering eyes (+106+/-56% and +14+/-12% respectively, P=0.21). However, FGF-2 concentration was significantly higher in anterior, relative to posterior, scleral regions in all animals (1602+/-105 vs 1030+/-50pg/mg respectively P<0.001). Expression of scleral FGFR-1 mRNA was upregulated in myopic eyes (+186+/-32%, P=0.01) but returned to control eye levels during recovery (+63+/-20%). CONCLUSIONS: The findings indicate that alterations in endogenous retinal or scleral FGF-2 levels are not associated with changes in scleral remodelling in this mammalian model of myopia. However, the reversible changes found in FGFR-1 expression in the sclera of myopic eyes mean that an indirect role for FGF-2 in the control of scleral remodelling is implicated. The anteroposterior difference found in scleral FGF-2 concentration indicates a role for this cytokine in the control of normal scleral growth and development and, presumably, eye size.  相似文献   

11.
Renal tubulointerstitial fibrosis is the common final pathway leading to end-stage renal failure. Tubulointerstitial fibrosis is characterized by fibroblast proliferation and excessive matrix accumulation. Transforming growth factor-beta1 (TGF-beta1) has been implicated in the development of renal fibrosis accompanied by alpha-smooth muscle actin (alpha-SMA) expression in renal fibroblasts. To investigate the molecular and cellular mechanisms involved in tubulointerstitial fibrosis, we examined the effect of TGF-beta1 on collagen type I (collagen) gel contraction, an in vitro model of scar collagen remodeling. TGF-beta1 enhanced collagen gel contraction by human renal fibroblasts in a dose- and time-dependent manner. Function-blocking anti-alpha1 or anti-alpha2 integrin subunit antibodies significantly suppressed TGF-beta1-stimulated collagen gel contraction. Scanning electron microscopy showed that TGF-beta1 enhanced the formation of the collagen fibrils by cell attachment to collagen via alpha1beta1 and alpha2beta1 integrins. Flow cytometry and cell adhesion analyses revealed that the stimulation of renal fibroblasts with TGF-beta1 enhanced cell adhesion to collagen via the increased expression of alpha1 and alpha2 integrin subunits within collagen gels. Fibroblast migration to collagen was not up-regulated by TGF-beta1. Furthermore, TGF-beta1 increased the expression of a putative contractile protein, alpha-SMA, by human renal fibroblasts in collagen gels. These results suggest that TGF-beta1 stimulates fibroblast-collagen matrix remodeling by increasing both integrin-mediated cell attachment to collagen and alpha-SMA expression, thereby contributing to pathological tubulointerstitial collagen matrix reorganization in renal fibrosis.  相似文献   

12.
The localization of TGF-beta 1, -beta 2 and -beta 3 was studied in the growth plate, epiphysis and metaphysis of the tibiotarsus of three-week-old chicks. The different TGF-beta isoforms were localized to hypertrophic chondrocytes, chondroclasts, osteoblasts and osteoclasts using immunohistochemical staining analysis with specific TGF-beta antibodies. TGF-betas in osteoclasts and chondroclasts were restricted to those cells located on the respective matrices. TGF-beta 3 localization was mainly cytoplasmic in the transitional (early hypertrophic) chondrocytes, but nuclear staining was also detected in some proliferating chondrocytes. The cell-specific localization of these TGF-beta isoforms supports the hypothesis that TGF-beta has a role in the coupling of new bone formation to bone and cartilage matrix resorption during osteochondral development and suggests that TGF-beta may be a marker of chondrocyte differentiation. TGF-beta localization preceded a marked increase in type II collagen mRNA expression in transitional chondrocytes, suggesting a role for TGF-beta in the induction of synthesis of extracellular matrix.  相似文献   

13.
Transforming growth factor-beta 1 (TGF-beta 1) has been found to occur as latent high molecular weight complexes, with or without an associated component denoted latent TGF-beta 1-binding protein (LTBP). We show here that a human glioblastoma cell line (U-1240 MG) secretes all isoforms of TGF-beta s found in mammalian cells (TGF-beta 1, -beta 2, and -beta 3). Approximately 26% of the secreted TGF-beta is in an active form. Latent TGF-beta s were partially purified from medium conditioned by the U-1240 MG cell line using anion exchange chromatography. Analysis of the different fractions by immunoblotting using antisera against precursor parts of the different TGF-beta isoforms, and against LTBP, revealed that not only TGF-beta 1 but also other isoforms of TGF-beta may occur in high molecular weight forms containing LTBP. In addition, each one of the TGF-beta isoforms occurred in smaller forms not containing LTBP. Interestingly, each of the TGF-beta isoforms was also seen in complexes of about 210 kDa containing associated component(s) distinct from LTBP. These results indicate that each of the different isoforms of TGF-beta is synthesized and secreted by this glioblastoma cell line in several different high molecular weight latent forms; the biological importance of the various latent TGF-beta complexes is discussed.  相似文献   

14.
Flexor tendon wound healing in zone II is complicated by adhesions to the surrounding fibro-osseous sheath. These adhesions can significantly alter tendon gliding and ultimately hand function. Lactate and transforming growth factor-beta (TGF-beta) are two important mediators of wound healing that have been demonstrated to independently increase collagen production by cells of the tendon sheath, epitenon, and endotenon. This study examined the effects of lactate on TGF-beta peptide and receptor production by flexor tendon cells. Tendon sheath fibroblasts, epitenon tenocytes, and endotenon tenocytes were isolated from rabbit flexor tendons and cultured separately. Cell cultures were supplemented with 50 mM lactate, and the expression of three TGF-beta peptide isoforms (beta1, beta2, and beta3) and three receptor isoforms (R1, R2, and R3) was quantified with enzyme-linked immunosorbent assays. TGF-beta functional activity was also assessed with the addition of tendon cell conditioned media to mink lung epithelial cells transfected with a luciferase reporter gene expression construct responsive to TGF-beta. Supplementation of the cell culture medium with lactate significantly (p < 0.05) increased the expression of all TGF-beta peptide and receptor isoforms in all three cell lines. Tendon sheath fibroblasts exhibited the greatest increases in beta1 and beta2 peptide isoform expression (30 and 23 percent, respectively), whereas endotenon tenocytes demonstrated the greatest increase in beta3 peptide expression (32 percent). Epitenon tenocytes exhibited the greatest increases in receptor isoform R1 and R2 expression (17 and 19 percent, respectively). All three tendon cell types demonstrated significant (p < 0.05) increases in TGF-beta functional activity when exposed to lactate. Epitenon tenocytes demonstrated the greatest increase in activity (>4 times control values), whereas tendon sheath fibroblasts demonstrated the highest overall levels of total TGF-beta functional activity. Lactate significantly increased TGF-beta peptide (beta1, beta2, and beta3) expression, receptor (R1, R2, and R3) expression, and functional activity, suggesting a common pathway regulating tendon cell collagen production. Modulation of lactate and TGF-beta levels may provide a means of modulating the effects of TGF-beta on adhesion formation in flexor tendon wound healing.  相似文献   

15.
Transforming growth factor-beta (TGF-beta) autoregulates its expression in several mammalian cell types. We now report that addition of TGF-beta s 1, 2, and 3 to primary chicken embryo cells differentially affects expression of the messenger RNAs for the different TGF-beta isoforms depending on the cell type. In cultured sternal chondrocytes, addition of TGF-beta s 1, 2, or 3 results in an increase in the steady-state levels of the messenger RNAs for TGF-beta s 2 and 3, but does not change expression of TGF-beta 4 mRNA. In contrast, in cultured cardiac myocytes, addition of TGF-beta s 1, 2, or 3 results in an increase in expression of TGF-beta s 3 and 4 mRNAs, but does not change expression of TGF-beta 2 mRNA. Moreover, expression of TGF-beta s 2, 3, and 4 mRNAs is not affected by addition of any of the TGF-beta s to fibroblasts. Addition of platelet-derived growth factor (PDGF), epidermal growth factor (EGF), or interleukin-1 (IL-1) to these chicken cells also has differential effects on expression of the different TGF-beta mRNAs depending on the cell type. Retinoic acid also has contrasting effects on chondrocytes and myocytes either increasing or decreasing, respectively, expression of TGF-beta s 2 and 3 mRNAs and TGF-beta 2 protein. Our results indicate a complex pattern of regulation of the different TGF-beta genes by themselves as well as by PDGF, EGF, IL-1, dexamethasone, TPA, and retinoic acid in chicken embryo cells.  相似文献   

16.
Dai HY  Kang WQ  Wang X  Yu XJ  Li ZH  Tang MX  Xu DL  Li CW  Zhang Y  Ge ZM 《Regulatory peptides》2007,140(1-2):88-93
As the most potent vasoconstrictor in mammals, urotensin II (U II) has recently been demonstrated to play an important role in adverse cardiac remodeling and fibrosis. However, the mechanisms of U II-induced myocardial fibrosis remain to be clarified. We postulated that U II alters transforming growth factor-beta1 (TGF-beta1) expression, and thereby modulates cardiac fibroblast collagen metabolism. Experiments were conducted using cardiac fibroblast from neonatal Wistar rats to determine the expression of TGF-beta1, and the role of U II receptor UT in this process. The functional role of TGF-beta1 and UT in modulating U II effects on type I, III collagen mRNA expression and 3H-proline incorporation was also analyzed. TGF-beta1 gene and protein expression were consistently identified in quiescent cardiac fibroblasts. U II increased the expression of TGF-beta1 mRNA and protein in a time-dependent manner. This effect was UT mediated, because UT antagonist urantide abolished U II-induced TGF-beta1 expression. U II-induced increase in type I, III collagen mRNA expression and 3H-proline incorporation were both inhibited by a specific TGF-beta1 neutralizing antibody and UT receptor antagonist urantide. Hence, our results indicate that TGF-beta1 is upregulated in cardiac fibroblasts by U II via UT and modulates profibrotic effects of U II. These findings provide novel insights into U II-induced cardiac remodeling.  相似文献   

17.
A CC chemokine CCL18 stimulates collagen production in pulmonary fibroblasts through an unknown signaling mechanism. In this study, involvement of Sp1 and Smad3 in CCL18 signaling in primary human pulmonary fibroblast cultures was investigated. Phosphorylation of Sp1, DNA-binding by Sp1, and the activity of an Sp1-dependent reporter were all increased in response to CCL18 stimulation. CCL18 did not stimulate a detectable increase in Smad3 phosphorylation or Smad3/4 DNA-binding activity, although some basal phosphorylation and DNA binding by Smad3/4 were noted. Transient overexpression of dominant negative mutants of Sp1 and Smad3 abrogated CCL18-dependent upregulation as well as basal production of collagen. These observations suggested that CCL18 activates collagen production in pulmonary fibroblasts through an Sp1-dependent pathway that also requires basal Smad3 activity. Possible involvement of autocrine TGF-beta in CCL18 signaling was considered. CCL18 stimulated increases in collagen mRNA and protein production without detectable changes in TGF-beta1, -beta2, and -beta3 mRNA or protein levels. Neutralizing anti-TGF-beta antibodies, latency-associated peptide, ALK5-specific inhibitor SD431542, and an inhibitor of the protease-dependent TGF-beta activation aprotinin, each failed to block CCL18-stimulated collagen production. These observations suggest that both CCL18 signaling in pulmonary fibroblasts and basal Smad3 activity are independent of autocrine TGF-beta.  相似文献   

18.
Human fibroproliferative disorders like hypertrophic scarring of the skin are characterized by increased contractility and excess extracellular matrix synthesis. A beneficial role of transforming growth factor (TGF)-beta in wound healing was proposed; however, chronic stimulation by this cytokine leads to fibrosis. In the present report, the intracellular TGF-beta signaling in fibroblasts derived from hypertrophic scars and normal skin was examined. In an attempt to intervene in profibrogenic TGF-beta functions, ectopic expression of Smad7 or dominant negative Smads3/4 completely inhibited contractility of scar-derived and normal fibroblasts after suspension in collagen gels. Both cell types displayed constitutive Smad2/3 phosphorylation and (CAGA)9-MLP-Luc activity with expression and phosphorylation of Smad3 being predominant in hypertrophic scar-derived fibroblasts. Down-regulation of intrinsic signaling with various TGF-beta antagonists, e.g. soluble TGF-beta receptor, latency-associated peptide, and anti-TGF-beta1 antibodies, confirms autocrine TGF-beta stimulation of both cell populations. Further, Smad7 expression inhibited alpha1 (I) collagen and alpha-smooth muscle actin expression. In summary, our data indicate that autocrine TGF-beta/Smad signaling is involved in contractility and matrix gene expression of fibroblasts from normal and hypertrophic scars. Smad7 inhibits these processes and may exert beneficial effects on excessive scar formation.  相似文献   

19.
The extracellular matrix profoundly affects cellular response to soluble motogens. In view of this critical aspect of matrix functionality, we have developed a novel assay to quantify chemo-regulated cell migration within biologically relevant 3-dimensional matrices. In this "sandwich" assay, target cells are plated at the interface between an upper and lower matrix compartment, either in the presence of an isotropic (uniform) or anisotropic (gradient) spatial distribution of test motogen. Cell migration in response to the different conditions is ascertained by quantifying their subsequent disposition within the upper and lower matrix compartments. The objective of this study has been to compare the motogenic activities of platelet-derived growth factor (PDGF-AB) and transforming growth factor-beta isoforms (TGF-beta1, -beta2 and -beta3) in the sandwich assay and the commonly employed transmembrane assay. As previously reported, dermal fibroblasts exhibited a motogenic response to isotropic and anisotropic distributions of all tested cytokines in the transmembrane assay. In contrast, only PDGF-AB and TGF-beta3 were active in the sandwich assay, each eliciting directionally unbiased (symmetrical) migration into the upper and lower type I collagen matrices in response to an isotropic cytokine distribution and a directionally biased response to an anisotropic distribution. TGF-beta1 and -beta2 were completely devoid of motogenic activity. These results are consistent with the reported differential bioactivities of PDGF and TGF-beta3 compared to TGF-beta1 and -beta2 in animal models of wound healing and suggest that the sandwich assay provides a means of obtaining physiologically relevant data regarding chemo-regulated cell migration.  相似文献   

20.
Characterization of the three mammalian transforming growth factor-beta (TGF-beta) isoforms, TGF-beta 1, -beta 2, and -beta 3, indicates that TGF-beta 3 is somewhat more potent (ED50 = 0.5 pM versus 2 pM) than TGF-beta 1 and TGF-beta 2 as a growth inhibitor of the Mv1Lu mink lung epithelial cell line. In the fetal bovine heart endothelial (FBHE) cell line, however, TGF-beta 1 and -beta 3 are at least 50-fold more potent than TGF-beta 2 which is a very weak growth inhibitor (ED50 greater than or equal to 0.5 nM). Thus, as growth inhibitors, TGF-beta 1 and -beta 3 resemble each other more than TGF-beta 2. The presence of serum alpha 2-macroglobulin in the FBHE cell assays decreases the biological potency of TGF-beta s, in particular TGF-beta 2. This effect of alpha 2-macroglobulin, however, is not sufficient to explain the low responsiveness of FBHE cells to TGF-beta 2. Evaluation of the role of TGF-beta receptors as determinants of cell-specific responsiveness to TGF-beta isoforms indicates that TGF-beta 1, -beta 2, and -beta 3 have similar affinity for the membrane proteoglycan, betaglycan. They differ, however, in their ability to bind to receptor types I and II which are implicated in TGF-beta signal transduction. TGF-beta 1 is similar, albeit not identical, to TGF-beta 3 and much more potent than TGF-beta 2 as a competitor for binding to the overall population of receptors I and II in all cell lines tested. A subset of receptors I and II has been identified in Mv1Lu cells which has high affinity for TGF-beta 2 (KD approximately 10 pM) and binds this factor at concentrations that are biologically active in Mv1Lu cells. This receptor subset could not be detected in FBHE cells, suggesting that cell-specific differences in the level of high affinity of TGF-beta 2 receptors may lead to cell-specific differences in responsiveness to this isoform. Thus, despite their structural and biological similarities, TGF-beta 1, -beta 2, and -beta 3 diverge in their ability to bind to receptors in a manner that correlates with their potency as growth inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号