首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The chick talpid2 mutant displays polydactylous digits attributed to defects of the Hedgehog (HH) signaling pathway. We examined the talpid2 neural tube and show that patterning defects in the spinal cord and the midbrain are distinct from each other and from the limb. Unlike the Sonic Hedgehog (SHH) source in the limb, the SHH-rich floor plate (FP) is reduced in the talpid2 midbrain. This is accompanied by a severe depletion of medial cell populations that encounter high concentrations of SHH, an expansion of lateral cell populations that experience low concentrations of SHH and a broad deregulation of HH's principal effectors (PTC1, GLI1, GLI2, GLI3). Together with the failure of SHH misexpression to rescue the talpid2 phenotype, these results suggest that talpid2 is likely to have a tissue-autonomous, bidirectional (positive and negative) role in HH signaling that cannot be attributed to the altered expression of several newly cloned HH pathway genes (SUFU, DZIP1, DISP1, BTRC). Strikingly, FP defects in the spinal cord are accompanied by relatively normal patterning in the talpid2 mutant. We propose that this differential FP dependence may be due to the prolonged apposition of the notochord to the spinal cord, but not the midbrain during development.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
Suppressor of fused (SUFU) is an essential negative regulator of the mammalian Hedgehog (HH) signaling pathway and its loss is associated with cancer development. On a cellular level, endogenous SUFU can mainly be detected in the cytoplasm and the nucleus. However, immunostaining of pancreatic cancer specimen revealed the existence of cell types showing selective enrichment of endogenous SUFU in the nucleus. Following up on this observation, we found that a SUFU construct which was experimentally tethered exclusively to the nucleus was unable to antagonize endogenous HH signaling, in contrast to control SUFU. These data suggest that alterations in the normal subcellular distribution of SUFU might interfere with its established negative role on the HH pathway. Performing a multi-well kinase screen in human cells identified RIO kinase 3 (RIOK3) as a novel modulator of SUFU subcellular distribution. Functionally, RIOK3 acts as a SUFU-dependent positive regulator of HH signaling. Taken together, we propose that factors modulating the nucleo-cytoplasmic distribution of SUFU impact on the normal function of this tumor suppressing protein.  相似文献   

16.
17.
18.
An isoform of ZBP-89 predisposes the colon to colitis   总被引:1,自引:0,他引:1  
  相似文献   

19.
Treatment of acute myeloid leukemia (AML), an aggressive and heterogeneous hematological malignancy, remains a challenge. Despite advances in our understanding of the complex genetics and biology of AML pathophysiology, these findings have been translated to the clinic with only limited success, and poor outcomes persist for the majority of patients. Thus, novel treatment strategies are clearly needed for achieving deeper and prolonged remissions and for avoiding the development of resistance. Due to its profound role in (cancer) stem cell biology and differentiation, the Hedgehog (HH)/Glioma-associated Oncogene Homolog (GLI) signaling pathway may be an attractive novel therapeutic target in AML. In this review, we aim to provide a critical and concise overview of the currently known potential and challenges of HH/GLI targeting. We describe the biological role of the HH/GLI pathway in AML pathophysiology. We specifically focus on ways of targeting non-canonical HH/GLI signaling in AML, particularly in combination with standard treatment regimens, which may overcome some hurdles observed with approved HH pathway inhibitors in solid tumors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号