首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to determine the effects of varying intensities of exercise in normoxic and hypoxic environments on selected immune regulation and metabolic responses. Using a within-subjects design, subjects performed maximal tests on a cycle ergometer in both normoxic (PiO2 = 20.94%) and hypoxic (PiO2 = 14.65%) environments to determine [latin capital V with dot above]O2max. On separate occasions, subjects then performed four randomly assigned, 1-hour exercise bouts on a cycle ergometer (two each in normoxic and hypoxic environments). The hypoxic environment was created by reducing the O2 concentration of inspired air using a commercially available hypoxic chamber. The intensities for the exercise bouts were predetermined as 40 and 60% of their normoxic [latin capital V with dot above]O2max for the normoxic exercise bouts and as 40 and 60% of their hypoxic [latin capital V with dot above]O2max for the hypoxic exercise bouts. Blood samples were collected preexercise, postexercise, 15 minutes postexercise, 2 hours postexercise, and 24 hours postexercise for the determination of interleukin-1 (IL-1), tumor necrosis factor-[alpha] (TNF-[alpha]), glucose, glycerol, free fatty acids, epinephrine, norepinephrine, and cortisol. There were no significant differences (p < 0.05) between condition or intensity for IL-1 or TNF-[alpha]. Significant differences (p < 0.05) between intensities were demonstrated for epinephrine, norepinephrine, and cortisol (p < 0.05). A significant difference was identified between normoxic and hypoxic environments with respect to nonesterifed fatty acids (0.45 +/- 0.37 vs. 0.58 +/- 0.31 mEq x L-1, respectively; p = 0.012). During prolonged exercise at 40 and 60% of their respective [latin capital V with dot above]O2max values, hypoxia did not seem to dramatically alter the response of the selected immune system or metabolic markers. Exercise training that uses acute hypoxic environments does not adversely affect immune regulation system status and may be beneficial for those individuals looking to increase endurance performance.  相似文献   

2.
1. Previous studies in a variety of ecosystems have shown that ecologically and economically important benthic and bentho‐pelagic fishes avoid hypoxic (<2 mg O2 L?1) habitats by moving vertically or horizontally to more oxygenated areas. While avoidance of hypoxic conditions generally leads to a complete shift away from preferred benthic prey, some individual fish continue to consume benthic prey items in spite of bottom hypoxia, suggesting complex habitat utilisation and foraging patterns. For example, Lake Erie yellow perch (Perca flavescens) continue to consume benthic prey, despite being displaced vertically and horizontally by hypolimnetic hypoxia. 2. We hypothesised that hypolimnetic hypoxia can negatively affect yellow perch by altering their distribution and inducing energetically expensive foraging behaviour. To test this hypothesis, we used drifting hydroacoustics and trawl sampling to quantify water column distribution, sub‐daily vertical movement and foraging behaviour of yellow perch within hypoxic and normoxic habitats of Lake Erie’s central basin during August‐September 2007. We also investigated the effects of rapid changes in ambient oxygen conditions on yellow perch consumption potential by exposing yellow perch to various static and fluctuating oxygen conditions in a controlled laboratory experiment. 3. Our results indicate that, while yellow perch in general avoid hypoxic conditions, some individuals undertake foraging forays into hypoxic habitats where they experience greater fluctuations in abiotic conditions (pressure, temperature and oxygen concentration) than at normoxic sites. However, laboratory results suggest short‐term exposure to low oxygen conditions did not negatively impact consumption potential of yellow perch. 4. Detailed understanding of sub‐daily individual behaviours may be crucial for determining interactive individual‐ and ecosystem‐level effects of stressors such as hypoxia.  相似文献   

3.
Habitat matching is an important factor for the establishment of alien fishes in recipient environments. The piscivorous chub, Opsariichthys uncirostris uncirostris, originally exclusively inhabited large water areas; however, the species has been introduced and established in small irrigation ditches on Kyushu Island. The evaluation of the habitat use of the piscivorous chub suggested that this alien fish uses the lentic-type irrigation ditches as a nursery ground and the lotic-type ditches as a spawning ground. This finding implies that the establishment of the piscivorous chub may require connectivity between lentic and lotic habitats.  相似文献   

4.
5.
Although submerged vegetation is considered to be the most suitable refuge against predators and form of foraging habitat for small fishes, submerged plants are often scarce or lacking in turbid eutrophic lakes. To evaluate emergent (Zizania latifolia) and floating-leaved (Nelumbo nucifera) vegetation as refuge areas against predators and as foraging habitats for small fishes, we investigated the fauna, abundance, and size distribution of the fish community as well as the abundance of possible prey for small fishes in beds of each vegetation type in a eutrophic shallow lake: Lake Teganuma in Japan. The leaves and stems of N. nucifera occupied an area 4.2 times larger than that of Z. latifolia. The high coverage of the water surface with plants most likely induced the hypoxia found in the N. nucifera bed. The diversity of small fishes was greater in the Z. latifolia bed with piscivorous fish than in the N. nucifera bed without piscivorous fish. The diversity of fish species in the vegetation was enhanced when there was an increased diversity of possible food sources rather than an absence of predators. Some aquatic insects of the same species had a much lower δ13C signature at hypoxic locations than at less hypoxic locations in the N. nucifera bed. Such site differences within a bed were not observed in the organisms caught in the Z. latifolia bed. The insects in hypoxic zones with a δ13C signature lower than ?30 ‰ were more depleted in 13C than the surface sediment or attached algae, suggesting that the larvae in the hypoxic zones incorporated the organic materials generated by methane-oxidizing bacteria. We can therefore conclude that floating-leaved vegetation, especially a N. nucifera bed, is not suitable as a replacement for submerged vegetation because of its potential to induce hypoxia, which can decrease the diversity of the fish fauna.  相似文献   

6.
To assess the role that polymorphisms of cytochrome P450 genes play in genetic predisposition to chronic obstructive pulmonary disease (COPD), the allele and genotype distributions of CYPIA1 (2455 A/G, 3801T/C) and CYP1A2 (-2464T/delT, -163C/A) genes were studied in Tatar and Russian COPD patients and in cases of healthy individuals (Russian, Tatar and Bashkir), residents of Bashkortostan. It was shown that the CYP1A1 and CYP1A2 genes haplotypes frequency distribution patterns do not differed between Tatars and Russians ethnic groups (chi2 = 0.973, df = 3, p = 1.00 and chi2 = 1.546, df = 3, p = 0.92, respectively). Analysis of the the CYP1A1 and CYP1A2 genes haplotypes revealed statistically significant differences in the haplotypes frequency distributions between Bashkirs versus Russians and Tatars (chi2 = 12.328, df= 3,p = 0.008; chi2 = 9.218, df=3, p = 0.034, respectively for CYP1A1 gene and (chi2 = 18.779, df=3, p = 0.0001, chi = 14.326, df=3, p = 0.003, respectively for CYP1A2 gene). The (-2467)delT allele and CYP1A2*1D haplotype of CYPIA2 gene was associated with higher risk of COPD in Tatar ethnic group (OR = 1.83, 95% CI 1.24-2.71, chi2 = 9.48, p = 0.003 and chi2 = 9.733, p = 0.0027, Pcor = 0.008; OR = 3.908, 95% CI 1.56-10.19, respectively). On the other hand the CYP1A2*1A haplotype had protective effect (chi2 = 6.319, p = 0.0127, Pcor = 0.038; OR = 0.6012, 95% CI 0.402-0.898). But at the same time we did not find any differences in the genotypes and haplotypes frequency distributions of the CYP1A2 gene within the patients and healthy groups in Russian ethnic group. We also did not find any association of CYP1A1 gene with COPD in ethnic groups of Bashkortostan.  相似文献   

7.
The crayfish industry in Louisiana is the largest in the United States, with crayfish frequently harvested from waters that experience episodic or chronic hypoxia (dissolved oxygen [DO]≤ 2 mg/l). We examined physiological biomarkers (hemolymph lactate, glucose, and protein concentrations) of hypoxic stress in the red swamp crayfish Procambarus clarkii from chronically hypoxic natural habitats and laboratory hypoxia experiments. P. clarkii from normoxic and hypoxic areas in the Atchafalaya River Basin were sampled monthly from April to July 2010. Laboratory experiments subjected P. clarkii to severe hypoxia (1 mg/l DO), moderate hypoxia (2 mg/l DO), or normoxic conditions (control: DO>7.5 mg/l) for 12, 24, and 48 h. P. clarkii from normoxic and hypoxic natural habitats did not display significantly different hemolymph lactate or glucose concentrations; however, mean hemolymph protein concentration was significantly lower in crayfish from hypoxic areas. P. clarkii exposed to severe hypoxia in laboratory experiments had significantly higher hemolymph lactate and glucose concentrations for all three exposure times, whereas large differences in protein concentrations were not observed. These results suggest that elevated hemolymph lactate and glucose concentrations are responses to acute hypoxia in P. clarkii, while differences in protein concentrations are the result of chronic hypoxic exposure.  相似文献   

8.
Synopsis Suspension-feeding fishes use gill structures for both respiration (lamellae) and food capture (rakers). During hypoxic exposure in eutrophic lakes or poorly circulated sloughs, many fishes, including Sacramento blackfish, Orthodon microlepidotus, increase their gill water flows, in part by increasing ventilatory stroke volumes. Stroke volume increases could compromise particle sieving efficiency by spreading interdigitated gill rakers from adjacent gill arches, although blackfish capture food particles by raker-guided water flows to a sticky buccal root. Using van Dam-type respirometers, blackfish respiratory variables and feeding efficiency (Artemia nauplii) were measured under normoxia (> 130 torr PO2) and hypoxia (60 torr PO2). Compared with non-feeding, normoxic conditions, gill ventilation volume, frequency, stroke volume, and gape all increased, while O2 uptake efficiency decreased, during hypoxia and during feeding. O2 consumption increased during feeding treatments, and % uptake of nauplii showed no difference between normoxic and hypoxic groups. Thus, blackfish display respiratory adaptations, including increased ventilatory stroke volumes, to survive in hypoxic environments such as Clear Lake, California. Importantly, they have also evolved a particle capture mechanism that allows efficient suspension-feeding under both normoxic and hypoxic conditions.  相似文献   

9.
Myocardial iron deficiency complicates chronic intrauterine hypoxemia during diabetic pregnancies. To understand the effect of both conditions during fetal life on intracardiac iron prioritization, we measured heart myoglobin, cytochrome c, and elemental iron concentrations in six iron-deficient, hypoxic, five iron-sufficient, hypoxic, six iron-deficient, normoxic, and six iron-sufficient, normoxic newborn guinea pigs. The iron-deficient, hypoxic group had lower heart iron (p = 0.03) but higher myoglobin concentration (p < 0.0001) when compared with the iron-sufficient, normoxic group. The percentage of iron incorporated into myoglobin was higher than control in the iron-deficient, hypoxic group (23.2+/-7.2% vs. 5.2+/-0.8%; p < 0.001) and increased as total heart iron decreased (r = 0.97; p < 0.001). In contrast, heart cytochrome c concentration was lower than control in the iron-deficient, hypoxic group (p = 0.01), with equal percentages of heart iron incorporated into cytochrome c. This intracellular prioritization of myocardial iron to myoglobin and away from cytochrome c following combined fetal hypoxemia and iron deficiency may represent an adaptive mechanism to preserve myocardial tissue oxygenation, although at the expense of oxidative phosphorylative capability.  相似文献   

10.
11.
We recently demonstrated that delta-opioid receptor (DOR) activation protects cortical neurons against glutamate-induced injury. Because glutamate is a mediator of hypoxic injury in neurons, we hypothesized that DOR is involved in neuroprotection during O2 deprivation and that its activation/inhibition may alter neuronal susceptibility to hypoxic stress. In this work, we tested the effect of opioid receptor activation and inhibition on cultured cortical neurons in hypoxia (1% O2). Cell injury was assessed by lactate dehydrogenase release, morphology-based quantification, and live/dead staining. Our results show that 1) immature neurons (days 4 and 6) were not significantly injured by hypoxia until 72 h of exposure, whereas day 8 neurons were injured after only 24-h hypoxia; 2) DOR inhibition (naltrindole) caused neuronal injury in both day 4 and day 8 normoxic cultures and further augmented hypoxic injury in these neurons; 3) DOR activation ([D-Ala2,D-Leu5]enkephalin) reduced neuronal injury in day 8 cultures after 24 h of normoxic or hypoxic exposure and attenuated naltrindole-induced injury with prolonged exposure; and 4) mu- or kappa-opioid receptor inhibition (beta-funaltrexamine or nor-binaltorphimine) had little effect on neurons in either normoxic or hypoxic conditions. Collectively, these data suggest that DOR plays a crucial role in neuroprotection in normoxic and hypoxic environments.  相似文献   

12.
With more than 2000 fish species the Cyprinidae is the largest family of vertebrates. Lake Tana, a large lake (3050 km2) situated in the NW‐ highlands of Ethiopia, harbours, as far as we know the only remaining intact species flock of large (max. 100 cm FL) cyprinid fishes (15 Barbus spp.). One of the most intriguing aspects of this endemic Barbus species flock is the large number of piscivores (8). Cyprinid fishes seem not well designed for piscivory, they lack teeth in the oral jaw, have a small slit‐shaped pharyngeal cavity and all lack a stomach with low pH for digesting large prey. Many barbs are benthivorous species, like the ancestral barb in Lake Tana's isolated system. Why then is piscivory, which is rare among cyprinids, so common in Lake Tana Barbus? The aim of present study was to compare the performance and techniques of these piscivorous Barbus with known piscivores from other fish families. We studied prey handling times over prey size, prey capture using high‐speed movies, and assessed the effect of prey size on performance and prey selection in the field. Performances were explained by functional morphology of their feeding system. Overall, Lake Tana's piscivorous Barbus perform relatively 'poor', compared to piscivores from other fish families. For example, Lake Tana's piscivores are only able to handle prey fish smaller than 16% of their own body length. However, Lake Tana lacks potential piscivorous competitors, rendering the piscivorous Barbus by far the 'best' and apparently highly successful. They have adapted to all available macro‐habitats (littoral, offshore pelagic and offshore benthic), using different techniques (ambush, pursuit and cruising), a unique scenario for barbs.  相似文献   

13.
Piscivory is a key ecological function in aquatic ecosystems, mediating energy flow within trophic networks. However, our understanding of the nature of piscivory is limited; we currently lack an empirical assessment of the dynamics of prey capture and how this differs between piscivores. We therefore conducted aquarium‐based performance experiments, to test the feeding abilities of 19 piscivorous fish species. We quantified their feeding morphology, striking, capturing, and processing behavior. We identify two major functional groups: grabbers and engulfers. Grabbers are characterized by horizontal, long‐distance strikes, capturing their prey tailfirst and subsequently processing their prey using their oral jaw teeth. Engulfers strike from short distances, from high angles above or below their prey, engulfing their prey and swallowing their prey whole. Based on a meta‐analysis of 2,209 published in situ predator–prey relationships in marine and freshwater aquatic environments, we show resource partitioning between grabbers and engulfers. Our results provide a functional classification for piscivorous fishes delineating patterns, which transcend habitats, that may help explain size structures in fish communities.  相似文献   

14.
Anthropogenic habitats are increasingly prevalent in coastal marine environments. Previous research on sessile epifauna suggests that artificial habitats act as a refuge for nonindigenous species, which results in highly homogenous communities across locations. However, vertebrate assemblages that live in association with artificial habitats are poorly understood. Here, we quantify the biodiversity of small, cryptic (henceforth “cryptobenthic”) fishes from marine dock pilings across six locations over 35° of latitude from Maine to Panama. We also compare assemblages from dock pilings to natural habitats in the two southernmost locations (Panama and Belize). Our results suggest that the biodiversity patterns of cryptobenthic fishes from dock pilings follow a Latitudinal Diversity Gradient (LDG), with average local and regional diversity declining sharply with increasing latitude. Furthermore, a strong correlation between community composition and spatial distance suggests distinct regional assemblages of cryptobenthic fishes. Cryptobenthic fish assemblages from dock pilings in Belize and Panama were less diverse and had lower densities than nearby reef habitats. However, dock pilings harbored almost exclusively native species, including two species of conservation concern absent from nearby natural habitats. Our results suggest that, in contrast to sessile epifaunal assemblages on artificial substrates, artificial marine habitats can harbor diverse, regionally characteristic assemblages of vertebrates that follow macroecological patterns that are well documented for natural habitats. We therefore posit that, although dock pilings cannot function as a replacement for natural habitats, dock pilings may provide cost‐effective means to preserve native vertebrate biodiversity, and provide a habitat that can be relatively easily monitored to track the status and trends of fish biodiversity in highly urbanized coastal marine environments.  相似文献   

15.
Localized hypoxic habitats were created in Delta Marsh, Manitoba, Canada to determine the potential of regions of moderate hypoxia to act as refuges for forage fishes from piscine predators. Minnow traps and giving‐up density (GUD) plates (plexiglas plates covered with trout crumble and fine gravel) were used to assess habitat use and perceived habitat quality for forage fishes, respectively, while passive integrated transponder tags provided data on habitat use by predator species to assess the level of predation risk. Data were collected both before and after a hypoxia manipulation (2–3 mg l?1 dissolved oxygen, DO) to create a before–after control–effect style experiment. Fathead minnows Pimephales promelas were more abundant and consumed more food from GUD plates in hypoxic bays after the DO manipulation, indicating hypoxic locations were perceived as higher quality, lower‐risk habitats. The frequency of predator visits was not consistently affected. The duration of visits, and therefore the total time spent in these habitats, however, was significantly shorter. These predator data, combined with the prey information, are consistent with the hypothesis that hypoxic regions function as predator refuges. The refuge effect is not the result of predator exclusion, however; instead predators are rendered less capable of foraging and pose less of a threat in hypoxic locations.  相似文献   

16.
Pronounced seasonal and daily oxygen concentration changes are characteristic for Amazonian floodplain lakes. Studies on the fish fauna of the Lago Camaleão, Solimões River, Amazonas, Brazil, showed several fish species which are able to survive prolonged periods of heavy hypoxia. Twenty species belonging to eight families were observed in the laboratory in order to determine their respiratory adaptations to hypoxic conditions and oxygen concentrations at which the fish present respiratory adaptations. Finally, the fish species were distributed throughout the habitats of Lake Camaleão according to their adaptation responses. Ten fish species used the surface water for aquatic surface respiration, four species used atmospheric oxygen for aerial respiration, four species used oxygen supplied by the exudation of the roots of floating macrophytes and two exhibited a high tolerance to hypoxic conditions, and well-developed physiological biochemical mechanisms. The fish fauna is well adapted to low oxygen concentrations. The large variety of morpho-anatomical adaptations associated with biochemical and physiological mechanisms to tolerate hypoxic and anoxic conditions enable the 20 fish species to exploit several habitats of Lago Camaleão, such as floating aquatic macrophyte meadows, open water and near the shoreline.  相似文献   

17.
Gymnotiform electric fish assemblage structure is strongly correlated to dissolved oxygen (DO) availability, which exhibits considerable heterogeneity among Amazonian aquatic systems. DO is known to influence the respiratory morphology of gymnotiform fishes, and yet species-level variation among congeners endemic to alternative DO regimes has not been examined. We describe the DO environment experienced by four congeneric species of gymnotiforms (Brachyhypopomus) and correlate this to quantitative variation in a suite of gill metrics. Whitewater floodplain lakes flanking nutrient-rich whitewater rivers are seasonally hypoxic, exhibiting oxygen concentrations close to 0 mg/l from late April until September. In contrast, DO levels in blackwater floodplain lakes and in terra firme forest stream habitats remain high throughout the year. Two common species of Brachyhypopomus restricted to periodically anoxic whitewater floodplain exhibited a substantially greater gill size than two common species restricted to the perpetually well-oxygenated waters of blackwater floodplain lakes and terra firme stream systems. Discriminant Function Analysis (DFA) based on gill metrics separated the species that live in seasonally anoxic whitewater floodplain species from those that live in perpetually-well oxygenated habitats. Our observations suggest a history of adaptive divergence in the gill morphology of Brachyhypopomus associated with oxygen availability.  相似文献   

18.
The present study investigates the effect of low oxygen concentrations on thapsigargin-induced apoptosis and reactive oxygen species (ROS)-related signaling in articular chondrocytes. Chondrocytes were obtained from normal canine knee cartilage and were treated with different concentrations of thapsigargin for 24 h under normoxic (21% oxygen tension) or hypoxic (1% oxygen tension) conditions. The cells treated with thapsigargin under normoxic conditions showed a dose-dependent induction of apoptosis. However, the cellular changes and apoptotic events that occurred following thapsigargin treatment, were completely inhibited by hypoxia, including loss of mitochondrial transmembrane potential (MTP), ROS generation and JNK phosphorylation. Moreover, the cells exposed to hypoxic conditions showed increased expression of the anti-apoptotic proteins xIAP-2 and Bcl-2. We demonstrate that hypoxia inhibited thapsigargin-induced apoptosis in chondrocytes by regulating ROS-related signaling and the expression of anti-apoptotic proteins. We propose that maintaining hypoxic conditions in articular cartilage may be required for the prevention of chondrocyte and cartilage diseases such as arthritis.  相似文献   

19.
Hypoxia-inducible factor 1 (HIF-1) is regulated by the oxygen-dependent hydroxylation of proline residues by prolyl hydroxylases (PHDs). We recently developed a novel PHD inhibitor, TM6008, that suppresses the activity of PHDs, inducing continuous HIF-1α activation. In this study, we investigated how TM6008 affects cell survival after hypoxic conditions capable of inducing HIF-1α expression and how TM6008 regulates PHDs and genes downstream of HIF-1α. After SHSY-5Y cells had been subjected to hypoxia, TM6008 was added to the cell culture medium under normoxic conditions. Apoptotic cell death was significantly augmented just after the hypoxic conditions, compared with cell death under normoxic conditions. Notably, when TM6008 was added to the media after the cells had been subjected to hypoxia, the expression level of HIF-1α increased and the number of cell deaths decreased, compared with the results for cells cultured in media without TM6008 after hypoxia, during the 7-day incubation period under normoxic conditions. Moreover, the protein expression levels of heme oxygenase 1, erythropoietin, and glucose transporter-3, which were genes downstream of HIF-1α, were elevated in media to which TM6008 had been added, compared with media without TM6008, during the 7-day incubation period under normoxic conditions. However, the protein expression levels of PHD2 and p53 which suppressed cell proliferation were suppressed in the media to which TM6008 had been added. Thus, TM6008, which suppresses the protein expressions of PHD2 and p53, might play an important role in cell survival after hypoxic conditions, with possible applications as a new compound for treatment after ischemic stroke.  相似文献   

20.
The reproduction trade-off for an animal is a conflicting choice in which resources (e.g., time and/or energy) allocated to one reproduction trait (e.g., parental care) become unavailable to other traits (e.g., future reproduction events). Here, we tested three hypotheses related to the parental care of the Amazonian dwarf cichlid Apistogramma hippolytae in its natural habitat of Central Amazonia: (1) brood-caring females have a lower feeding frequency than individuals that are not involved in this behavior; (2) females that spend more time on nest defense have lower feeding rates; and (3) females can recognize the species that present the greatest danger to its offspring and move farther from the nest to chase away these piscivorous fishes. We also described for the first time the reproductive behavior (including courtship) and parental care of this species. The results showed that maternal care produces a reduction in the rate of feeding of mothers, a greater amount of time is spent chasing invaders away from the nest, and reproductive females are able to distinguish species-specific predators. These observations support the hypotheses of this study and also suggest a trade-off between current and future reproduction events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号