首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study the regulation of macrophage expression of cyclooxygenase-2 (COX-2) in response to dsRNA and virus infection was examined. Treatment of RAW 264.7 macrophages with dsRNA results in COX-2 mRNA accumulation and protein expression and the production of PGE(2). Similar to dsRNA, encephalomyocarditis virus (EMCV) infection of RAW 264.7 cells stimulates COX-2 expression and PGE(2) accumulation. The dsRNA-dependent protein kinase (PKR), which has been shown to participate in the regulation of gene expression in response to dsRNA and virus infection, does not appear to participate in the regulation of COX-2 expression by macrophages. Expression of dominant negative mutants of PKR in RAW 264.7 cells fails to attenuate dsRNA- and EMCV-induced COX-2 expression or PGE(2) production. Furthermore, dsRNA and EMCV stimulate COX-2 expression and PGE(2) accumulation to similar levels in macrophages isolated from wild-type and PKR-deficient mice. Recently, a novel PKR-independent role for the calcium-independent phospholipase A(2) (iPLA(2)) in the regulation of inducible NO synthase expression by macrophages in response to virus infection has been identified. The selective iPLA(2) suicide substrate inhibitor bromoenol lactone prevents dsRNA- and EMCV-stimulated inducible NO synthase expression; however, bromoenol lactone does not attenuate dsRNA- or EMCV-induced COX-2 expression by macrophages. In contrast, inhibition of NF-kappaB activation prevents dsRNA-stimulated COX-2 expression and PGE(2) accumulation by macrophages. These findings indicate that virus infection and treatment with dsRNA stimulate COX-2 expression by a mechanism that requires the activation of NF-kappaB and that is independent of PKR or iPLA(2) activation.  相似文献   

2.
3.
4.
5.
The 60-kDa heat shock protein (HSP60), an endogenous ligand for the toll-like 4 receptor, is generated in response to inflammation, tissue injury, and/or stress and stimulates macrophages to produce cytotoxic and proinflammatory mediators including nitric oxide, tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and IL-12. In the present studies we report that HSP60 is an effective inducer of cyclooxygenase-2 (COX-2) in macrophages, as well as endothelial cells. In both cell types, the synthesis of COX-2 was coordinate with induction of nitric oxide synthase (NOS)-2 and with nitric oxide production. With the use of promoter constructs in transient transfection assays, optimal expression of COX-2 in macrophages was found to require nuclear factor (NF)-kappaB, the cAMP-response element (CRE), and NF-IL-6, but not the E-box. Mobility shift assays revealed that HSP60 induced NF-kappaB and CRE binding activity, while CCAAT/enhancer binding protein (C/EBP), which binds to NF-IL-6, was constitutively active in the cells. Both c-Jun and CRE binding protein (CREB) bound to the CRE, while C/EBP-beta bound to NF-IL-6. These data indicate that NF-kappaB, C/EBP-beta, c-Jun, and CREB are important in HSP60-induced expression of COX-2. The c-Jun-NH(2)-terminal kinase (JNK), p44/42 mitogen-activated protein (MAP) kinase [extracellular signal-regulated kinase 1/2 (ERK1/2)], and p38 MAP kinase were rapidly activated by HSP60 in the macrophages. PD-98059, an inhibitor of phosphorylation of ERK1/2, caused a marked inhibition of HSP60-induced COX-2 and NOS-2 expression. Unexpectedly, SB-203580, a p38 kinase antagonist, was found to block HSP60-induced expression of COX-2, but not NOS-2. These data indicate that both ERK1/2 kinase and p38 kinase play a role in regulating HSP60-induced expression of COX-2.  相似文献   

6.
7.
Macrophage prostaglandin E2 (PGE2) production is important in cellular immune suppression and in affecting the potential development of sepsis after trauma. We hypothesized that macrophage PGE2 production after trauma is regulated by mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-kappaB). Mice were subjected to trauma and splenic macrophages isolated 7 days later. Macrophages from traumatized mice showed increased cyclooxygenase-2 (COX-2) mRNA, protein expression, and PGE2 production compared with controls. Increased phosphorylation of extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38 kinase was observed in macrophages from traumatized mice. Pharmacologic inhibition of MAPK blocked trauma-induced COX-2 expression, and PGE2 production. Trauma macrophages showed increased IkappaBalpha phosphorylation and NF-kappaB binding to DNA. Inhibiting IkappaBalpha blocked trauma-induced NF-kappaB activity, COX-2 expression and PGE2 production. This suggests that trauma-induced PGE2 production is mediated through MAPK and NF-kappaB activation and offers potential for modifying the macrophages' responses following injury.  相似文献   

8.
Endothelin-1 (ET-1) is a potent vasoconstrictor peptide with mitogenic actions linked to activation of tyrosine kinase signaling pathways. ET-1 induces cyclooxygenase-2 (COX-2), an enzyme that converts arachidonic acid to pro-inflammatory eicosanoids. Activation of each of the three major mitogen-activated protein kinase (MAPK) pathways, ERK1/2, JNK/SAPK, and p38 MAPK (p38), have been shown to enhance the expression of COX-2. Negative regulation of MAPK may occur via a family of dual specificity phosphatases referred to as mitogen-activated protein kinase phosphatases (MKP). The goal of this work was to test the hypothesis that wild type MKP-1 regulates the expression of ET-1-induced COX-2 expression by inhibiting the activation of p38 in cultured glomerular mesangial cells (GMC). An adenovirus expressing both wild type and a catalytically inactive mutant of MKP-1 (MKP-1/CS) were constructed to study ET-1-regulated MAPK signaling and COX-2 expression in cultured GMC. ET-1 stimulated the phosphorylation of ERK and p38 alpha MAPK and induced the expression of COX-2. Expression of COX-2 was partially blocked by U0126, a MEK inhibitor, and SB 203580, a p38 MAPK inhibitor. Adenoviral expression of MKP-1/CS augmented basal and ET-1-induced phosphorylation of p38 alpha MAPK with less pronounced effects on ERK1/2 phosphorylation. Ectopic expression of wild type MKP-1 blocked the phosphorylation of p38 alpha MAPK by ET-1 but increased the phosphorylation of p38 gamma MAPK. Co-precipitation studies demonstrated association of MKP-1 with p38 alpha MAPK and ERK1/2. Immunofluorescent image analysis demonstrated trapping of phospho-p38 MAPK in the cytoplasm by MKP-1/CS/green fluorescent protein. ET-1-stimulated expression of COX-2 was increased in MKP-1/CS versus LacZ or green fluorescent protein-infected control cells. These results indicate that MKP-1 demonstrates a relative selectivity for p38 alpha MAPK versus p38 gamma MAPK in GMC and is likely to indirectly regulate the expression of COX-2.  相似文献   

9.
10.
11.
Double-stranded (ds) RNA, which accumulates during viral replication, activates the antiviral response of infected cells. In this study, we have identified a requirement for extracellular signal-regulated kinase (ERK) in the regulation of interleukin 1 (IL-1) expression by macrophages in response to dsRNA and viral infection. Treatment of RAW 264.7 cells or mouse macrophages with dsRNA stimulates ERK phosphorylation that is first apparent following a 15-min incubation and persists for up to 60 min, the accumulation of iNOS and IL-1 mRNA following a 6-h incubation, and the expression of iNOS and IL-1 at the protein level following a 24-h incubation. Inhibitors of ERK activation prevent dsRNA-induced ERK phosphorylation and IL-1 expression by macrophages. The regulation of macrophage activation by ERK appears to be selective for IL-1, as ERK inhibition does not attenuate dsRNA-induced iNOS expression by macrophages. dsRNA stimulates both ERK activation and IL-1 expression by macrophages isolated from dsRNA-dependent protein kinase (PKR)-deficient mice, indicating that PKR does not participate in this antiviral response. These findings support a novel PKR-independent role for ERK in the regulation of the antiviral response of IL-1 expression and release by macrophages.  相似文献   

12.
We have previously demonstrated that p38 and extracellular signal-regulated protein kinase (ERK) mitogen-activated protein kinases (MAPK) are components of proinflammatory induced cytokine expression in human airway myocytes. The experiments described here further these studies by examining p38 MAPK and NF-kappaB regulation of cyclooxygenase-2 (COX-2) expression in response to a complex inflammatory stimulus consisting of 10 ng/ml interleukin (IL)-1beta, tumor necrosis factor-alpha (TNF-alpha), and interferon (IFN)-gamma. COX-2 expression was induced with this stimulus in a time-dependent manner, with maximal expression seen 12-20 h after treatment. Semiquantitative RT-PCR and immunoblotting experiments demonstrate decreased COX-2 expression following treatment with the p38 MAPK inhibitor SB-203580 (25 microM) or the proteosome inhibitor MG-132 (1 microM). SB-203580 did not affect cytokine-stimulated IkappaBalpha degradation, NF-kappaB nuclear binding activity, or NF-kappaB-dependent signaling from the COX-2 promoter, indicating that p38 MAPK and NF-kappaB may affect COX-2 expression via separate signaling pathways. SB-203580, but not MG-132, also increased the initial rate of COX-2 mRNA decay, indicating p38 MAPK, but not NF-kappaB, participates in the regulation of COX-2 mRNA stability. These findings suggest that although p38 MAPK and NF-kappaB signaling regulate steady-state levels of COX-2 expression, p38 MAPK additionally affects stability of COX-2 mRNA in cytokine-stimulated human airway myocytes.  相似文献   

13.
Double-stranded RNA (dsRNA) is produced during replicative viral infection or genotoxic stress. Thus knowledge of the cellular response to dsRNA is necessary to understand the effects of DNA damage or viral infection in biliary epithelia. We assessed the effect of dsRNA on biliary epithelial cell proliferation and apoptosis and the role of the stress-activated p38 MAPK signaling pathway in these responses. dsRNA did not induce apoptosis or proliferation in Mz-ChA-1 human malignant cholangiocytes, but decreased cytotoxicity induced by camptothecin or tumor necrosis factor-related apoptosis inducing ligand and decreased activity of caspases 3, 8, and 9. Furthermore, dsRNA increased p38 MAPK and JNK kinase active site phosphorylation but had no effect on either MAPK kinase (MEK)1/2 or protein kinase R phosphorylation. Inhibition of p38 MAPK with SB-203580 increased basal caspase activity. Thus dsRNA stimulates a p38 MAPK-dependent cell-survival pathway in biliary epithelial cells that may modulate the response of the biliary epithelia to dsRNA produced during genotoxic injury or virus infection.  相似文献   

14.
Recently, synthetic curcumin analogs are reported as potential active compounds against Mycobacterium tuberculosis (MTB). During the process of MTB infection, macrophages show increased apoptosis. The candidate virulence factors such as 19-kDa lipoprotein secreted by the MTB (P19) strongly influences macrophages by activation of Toll-like receptor 2 (TLR2) and mitogen-activated protein kinases (MAPKs). It has been reported that curcumin could affect the apoptosis of tumor cells via regulation of MAPKs. However, its effect on the P19-induced apoptosis of macrophages is unclear. This study investigates the effect of curcumin on the MAPKs signaling and apoptosis in human macrophages. The results showed that curcumin and P19 induced macrophage apoptosis in a time- and dose-dependent manner Low doses of curcumin (10 and 20 μM) protected macrophages from P19 induced apoptosis, accompanied by decreased production of cytokines and reduced activation of the c-Jun amino-terminal kinase (JNK) and p38 MAPK. The protective effect of curcumin on P19 induced apoptosis of macrophages were enhanced by treatment with the JNK-specific inhibitors, whereas SB203580, the inhibitor of p38 MAPK had no effect. Curcumin had no effect on the activity of extracellular signal-regulated protein kinase (ERK). Taken together, our data show that the JNK pathway, but not the p38 or ERK pathway, plays an important role in the protective effect of curcumin against P19 induced macrophage apoptosis, and regulation of the JNK pathway may partially elucidate the anti-tuberculosis activity of curcumin.  相似文献   

15.
Fibroblasts isolated from jaw cysts expressed calcium-sensing receptor (CasR). In the fibroblasts elevated extracellular Ca(2+) ([Ca(2+)](o)) increased fluo-3 fluorescence intensity, and the production of inositol(1,4,5)trisphosphate and active protein kinase C. Phospholipase C inhibitor U-73122 attenuated the Ca(2+)-induced increase in fluo-3 fluorescence intensity. Elevated [Ca(2+)](o) enhanced the expression of cyclooxygenase-2 (COX-2) mRNA and protein, and the secretion of prostaglandin E(2) in the fibroblasts. CasR activator neomycin also increased the expression of COX-2 mRNA, and U-73122 attenuated the Ca(2+)-induced expression of COX-2 mRNA. Elevated [Ca(2+)](o)-induced phosphorylation of extracellular signal-regulated protein kinase-1/2 (ERK1/2), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK), and U-73122 inhibited the Ca(2+)-induced phosphorylation. The inhibitors for each kinase, PD98059, SB203580, and SP600125, attenuated the Ca(2+)-induced expression of COX-2 mRNA. These results suggest that in jaw cyst fibroblasts elevated extracellular Ca(2+) may enhance COX-2 expression via the activation of ERK1/2, p38 MAPK, and JNK through CasR.  相似文献   

16.
This experiment focused on MAPK activation in host cell invasion and replication of T. gondii, as well as the expression of CC chemokines, MCP-1 and MIP-1 alpha , and enzyme, COX-2/prostaglandin E2 (PGE2) in infected cells via western blot, [3H]-uracil incorporation assay, ELISA and RT-PCR. The phosphorylation of ERK1/2 and p38 in infected HeLa cells was detected at 1 hr and/or 6 hr postinfection (PI). Tachyzoite proliferation was reduced by p38 or JNK MAPK inhibitors. MCP-1 secretion was enhanced in infected peritoneal macrophages at 6 hr PI. MIP-1 alpha mRNA was increased in macrophages at 18 hr PI. MCP-1 and MIP-1 alpha were reduced after treatment with inhibitors of ERK1/2 and JNK MAPKs. COX-2 mRNA gradually increased in infected RAW 264.7 cells and the secretion of COX-2 peaked at 6 hr PI. The inhibitor of JNK suppressed COX-2 expression. PGE2 from infected RAW 264.7 cells was increased and synthesis was suppressed by PD98059, SB203580, and SP600125. In this study, the activation of p38, JNK and/or ERK1/2 MAPKs occurred during the invasion and proliferation of T. gondii tachyzoites in HeLa cells. Also, increased secretion and expression of MCP-1, MIP-1 alpha , COX-2 and PGE2 were detected in infected macrophages, and appeared to occur via MAPK signaling pathways.  相似文献   

17.
Cyclooxygenase-2 (COX-2) appears to play an important role in inflammation and carcinogenesis, and 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) is a hydrophilic azo compound known to generate free radicals. Because reactive oxygen species (ROS) are known to elevate COX-2 expression, we evaluated the effect of AAPH on the expression of COX-2 in a human keratinocyte cell line, HaCaT. When cells were exposed to AAPH, marked COX-2 induction was observed. To clarify the signaling mechanism involved, we next investigated the effects of AAPH upon three major subfamilies of the mitogen-activated protein kinases (MAPKs). AAPH caused an increase in the phosphorylation of extracellular signal-regulated kinase (ERK), p38 and c-Jun NH(2)-terminal kinase (JNK). Furthermore, we found that PD98059, an ERK pathway inhibitor, and SB203580, a p38 MAPK inhibitor, diminished AAPH-induced COX-2 expression and PGE(2) production, whereas JNK inhibitor did not suppress COX-2 expression or PGE(2) production by AAPH. These findings suggest that the ERK and p38 MAPK pathways, but not the JNK pathway, are involved in AAPH-induced inflammatory progression. In addition, we found that both the water-soluble Vitamin E derivative, Trolox, and the green tea constituent, (-)-epigallocatechin gallate (EGCG), diminished AAPH-induced COX-2 expression and p38 activation.  相似文献   

18.
19.
20.
Mitogen-activated protein (MAP) kinases have been implicated as important mediators of the inflammatory response. Here we report that c-Jun NH(2)-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 MAP kinase activities are reprogrammed during the IL-6 induced macrophage-like differentiation of the murine myeloid M1 cell line. Moreover, p38 inhibition upregulates JNK and ERK activity in M1 cells and in thioglycollate-elicited peritoneal exudate macrophages. IL-6-induced M1 differentiation also induces expression of the anti-inflammatory cytokine IL-10, and p38 inhibition potentiates this increase in IL-10 expression in an ERK-dependent manner. Thus, we speculate that during inflammatory conditions in vivo macrophage p38 may regulate JNK and ERK activity and inhibit IL-10 expression. These data highlight the importance of p38 in the molecular mechanisms of macrophage function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号