首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhodopsin is the photosensitive protein of the rod photoreceptor in the vertebrate retina and is a paradigm for the superfamily of G-protein-coupled receptors (GPCRs). Natural rhodopsin contains an 11-cis-retinylidene chromophore. We have prepared the 9-cis analogue isorhodopsin in a natural membrane environment using uniformly (13)C-enriched 9-cis retinal. Subsequently, we have determined the complete (1)H and (13)C assignments with ultra-high field solid-state magic angle spinning NMR. The 9-cis substrate conforms to the opsin binding pocket in isorhodopsin in a manner very similar to that of the 11-cis form in rhodopsin, but the NMR data reveal an improper fit of the 9-cis chromophore in this binding site. We introduce the term "induced misfit" to describe this event. Downfield proton NMR ligation shifts (Deltasigma(lig)(H) > 1 ppm) are observed for the 16,17,19-H and nearby protons of the ionone ring and for the 9-methyl protons. They provide converging evidence for global, nonspecific steric interactions between the chromophore and protein, and contrast with the specific interactions over the entire ionone ring and its substituents detected for rhodopsin. The Deltasigma(lig)(C) pattern of the polyene chain confirms the positive charge delocalization in the polyene associated with the protonation of the Schiff base nitrogen. In line with the misalignment of the ionone ring, an additional and anomalous perturbation of the (13)C response is detected in the region of the 9-cis bond. This provides evidence for strain in the isomerization region of the polyene and supports the hypothesis that perturbation of the conjugation around the cis bond induced by the protein environment assists the selective photoisomerization.  相似文献   

2.
The nature of the primary photochemical events in rhodopsin and isorhodopsin is studied by using low temperature actinometry, low temperature absorption spectroscopy, and intermediate neglect of differential overlap including partial single and double configuration interaction (INDO-PSDCI) molecular orbital theory. The principal goal is a better understanding of how the protein binding site influences the energetic, photochemical, and spectroscopic properties of the bound chromophore. Absolute quantum yields for the isorhodopsin (I) to bathorhodopsin (B) phototransformation are assigned at 77 K by using the rhodopsin (R) to bathorhodopsin phototransformation as an internal standard (phi R----B = 0.67). In contrast to rhodopsin photochemistry, isorhodopsin displays a wavelength dependent quantum yield for photochemical generation of bathorhodopsin at 77 K. Measurements at seven wavelengths yielded values ranging from a low of 0.089 +/- 0.021 at 565 nm to a high of 0.168 +/- 0.012 at 440 nm. An analysis of these data based on a variety of kinetic models suggests that the I----B phototransformation encounters a small activation barrier (approximately 0.2 kcal mol-1) associated with the 9-cis----9-trans excited-state torsional-potential surface. The 9-cis retinal chromophore in solution (EPA, 77 K) has the smallest oscillator strength relative to the other isomers: 1.17 (all-trans), 0.98 (9-cis), 1.04 (11-cis), and 1.06 (13-cis). The effect of conformation is quite different for the opsin-bound chromophores. The oscillator strength of the lambda max absorption band of I is observed to be anomalously large (1.11) relative to the lambda max absorption bands of R (0.98) and B (1.07). The wavelength-dependent photoisomerization quantum yields and the anomalous oscillator strength associated with isorhodopsin provide important information on the nature of the opsin binding site. Various models of the binding site were tested by using INDO-PSDCI molecular orbital theory to predict the oscillator strengths of R, B, and I and to calculate the barriers and energy storage associated with the photochemistry of R and I for each model. Our experimental and theoretical investigation leads to the following conclusions: (a) The counterion (abbreviated as CTN) is not intimately associated with the imine proton in R, B, or I. The counterion lies underneath the plane of the chromophore in R and I, and the primary chromophore-counterion electrostatic interactions involve C15-CTN and C13-CTN. These interactions are responsible for the anomalous oscillator strength of I relative to R and B.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Vogel R  Lüdeke S  Radu I  Siebert F  Sheves M 《Biochemistry》2004,43(31):10255-10264
Meta III is an inactive intermediate thermally formed following light activation of the visual pigment rhodopsin. It is produced from the Meta I/Meta II photoproduct equilibrium of rhodopsin by a thermal isomerization of the protonated Schiff base C=N bond of Meta I, and its chromophore configuration is therefore all-trans 15-syn. In contrast to the dark state of rhodopsin, which catalyzes exclusively the cis to trans isomerization of the C11=C12 bond of its 11-cis 15-anti chromophore, Meta III does not acquire this photoreaction specificity. Instead, it allows for light-dependent syn to anti isomerization of the C15=N bond of the protonated Schiff base, yielding Meta II, and for trans to cis isomerizations of C11=C12 and C9=C10 of the retinal polyene, as shown by FTIR spectroscopy. The 11-cis and 9-cis 15-syn isomers produced by the latter two reactions are not stable, decaying on the time scale of few seconds to dark state rhodopsin and isorhodopsin by thermal C15=N isomerization, as indicated by time-resolved FTIR methods. Flash photolysis of Meta III produces therefore Meta II, dark state rhodopsin, and isorhodopsin. Under continuous illumination, the latter two (or its unstable precursors) are converted as well to Meta II by presumably two different mechanisms.  相似文献   

4.
Photoisomerization of the chromophore of squid rhodopsin is dependent upon the irradiation temperature. Above 0 degrees C, only 11-cis in equilibrium all-trans reaction proceeds and the all-trans leads to 9-cis reaction is limited to extremely low efficiency. At liquid nitrogen temperature, 11 cis in equilibrium all-trans in equilibrium 9-cis reaction takes place. At intermediary low temperatures (-80 degrees C to -15 degrees C) another isomer of retinal may be produced by the irradiation, which forms a pigment having an absorbance maximum at 465 nm (P-465). The formation of P-465 decreases remarkably in the narrow temperature range from -30 degrees C to 0 degrees C where mesorhodopsin converts to metarhodopsin. Medsorhodopsin is quite different from metarhodopsin in the photoisomerization of the chromophore because P-465 is produced from the former but not from the latter. No P-465 is produced both at liquid nitrogen temperature and above 0 degrees C. P-465 is more labile than any of the other photoproducts so far known, that is isorhodopsin, alkaline and acid metarhodopsins. P-465 is converted to metarhodopsin by irradiation.  相似文献   

5.
13C- and 2H-labeled retinal derivatives have been used to assign normal modes in the 1100-1300-cm-1 fingerprint region of the resonance Raman spectra of rhodopsin, isorhodopsin, and bathorhodopsin. On the basis of the 13C shifts, C8-C9 stretching character is assigned at 1217 cm-1 in rhodopsin, at 1206 cm-1 in isorhodopsin, and at 1214 cm-1 in bathorhodopsin. C10-C11 stretching character is localized at 1098 cm-1 in rhodopsin, at 1154 cm-1 in isorhodopsin, and at 1166 cm-1 in bathorhodopsin. C14-C15 stretching character is found at 1190 cm-1 in rhodopsin, at 1206 cm-1 in isorhodopsin, and at 1210 cm-1 in bathorhodopsin. C12-C13 stretching character is much more delocalized, but the characteristic coupling with the C14H rock allows us to assign the "C12-C13 stretch" at approximately 1240 cm-1 in rhodopsin, isorhodopsin, and bathorhodopsin. The insensitivity of the C14-C15 stretching mode to N-deuteriation in all three pigments demonstrates that each contains a trans (anti) protonated Schiff base bond. The relatively high frequency of the C10-C11 mode of bathorhodopsin demonstrates that bathorhodopsin is s-trans about the C10-C11 single bond. This provides strong evidence against the model of bathorhodopsin proposed by Liu and Asato [Liu, R., & Asato, A. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 259], which suggests a C10-C11 s-cis structure. Comparison of the fingerprint modes of rhodopsin (1098, 1190, 1217, and 1239 cm-1) with those of the 11-cis-retinal protonated Schiff base in methanol (1093, 1190, 1217, and 1237 cm-1) shows that the frequencies of the C-C stretching modes are largely unperturbed by protein binding. In particular, the invariance of the C14-C15 stretching mode at 1190 cm-1 does not support the presence of a negative protein charge near C13 in rhodopsin. In contrast, the frequencies of the C8-C9 and C14-C15 stretches of bathorhodopsin and the C10-C11 and C14-C15 stretches of isorhodopsin are significantly altered by protein binding. The implications of these observations for the mechanism of wavelength regulation in visual pigments and energy storage in bathorhodopsin are discussed.  相似文献   

6.
The 77-K resonance Raman vibrational spectrum of intact goldfish rod photoreceptors containing 3,4-dehydro (A2) retinal is dominated by scattering from the 9-cis component of the steady state at all excitation wavelengths. Intact goldfish photoreceptors were regenerated with an A1-retinal chromophore to determine whether this behavior is caused by the protein or the chromophore. The resulting Raman spectrum was typical of an A1-pigment exhibiting significant scattering from all three components of the steady state: rhodopsin, bathorhodopsin, and isorhodopsin. Furthermore, regeneration of bovine opsin with A2-retinal produces a characteristic "A2-Raman spectrum" that is dominated by scattering from the 9-cis pigment. We conclude that the differences between the Raman spectra of the A1-and A2-pigments are caused by some intrinsic difference in the photochemical properties of the retinal chromophores. To quantitate these observations, the 77-K adsorption spectra and the photochemical quantum yields (phi) of the native A2-goldfish and the regenerated A2-bovine pigments were measured. In the goldfish A2-pigment, the value of phi 4 (9-cis----trans) is 0.05; phi 3 (trans----9-cis) is 0.10; and phi 2 (trans----11-cis) is 0.35. By contrast, in the bovine A1-pigment, these quantum yields are 0.10, 0.053, and 0.50, respectively. The reduced value of phi 4 and the increased value of phi 3 in the goldfish pigment confirms that the 9-cis isomer is photochemically more stable in A2-pigments.  相似文献   

7.
A washed and concentrated suspension of bacteria (e.g. Proteus mirabilis) causes a rapid and almost complete conversion of photolyzed rhodopsin to isorhodopsin. Upon ultrasonication of the bacteria the activity is retained in the supernatant. The isorhodopsin formation is very sensitive to oxygen. This suggests that an easily oxidized bacterial product is able to isomerize in darkness all-trans-retinaldehyde present in a photolyzed rhodopsin preparation to the 9-cis-isomer.  相似文献   

8.
Fourier-transform infrared difference spectroscopy has been used to detect the vibrational modes in the chromophore and protein that change in position and intensity between octopus rhodopsin and its photoproducts formed at low temperature (85 K), bathorhodopsin and isorhodopsin. The infrared difference spectra between octopus rhodopsin and octopus bathorhodopsin, octopus bathorhodopsin and octopus isorhodopsin, and octopus isorhodopsin and octopus rhodopsin are compared to analogous difference spectra for the well-studied bovine pigments, in order to understand the similarities in pigment structure and photochemical processes between the vertebrate and invertebrate systems. The structure-sensitive fingerprint region of the infrared spectra for octopus bathorhodopsin shows strong similarities to spectra of both all-trans-retinal and bovine bathorhodopsin, thus confirming chemical extraction data that suggest that octopus bathorhodopsin contains an all-trans-retinal chromophore. In contrast, we find dramatic differences in the hydrogen out-of-plane modes of the two bathorhodopsins, and in the fingerprint lines of the rhodopsins and isorhodopsins for the two pigments. These observations suggest that while the primary effect of light in the octopus rhodopsin system, as in the bovine rhodopsin system, is 11-cis/11-trans isomerization, the protein-chromophore interactions for the two systems are quite different. Finally, striking similarities and differences in infrared lines attributable to changes in amino acid residues in the opsin are found between the two pigment systems. They suggest that no carboxylic acid or tyrosine residues are affected in the initial changes of light-energy transduction in octopus rhodopsin. Comparing the amino acid sequences for octopus and bovine pigments also allows us to suggest that the carboxylic acid residues altered in the bovine transitions are Glu-122 and/or Glu-134.  相似文献   

9.
Evidence is presented that lumirhodopsin (containing all-trans retinal) is not directly photoconverted to bathorhodopsin (all-trans) at 77 degrees K as previously suggested (Yoshizawa and Wald. 1963. Nature (Lond.) 197:1279-1286). Rather, lumirhodopsin is converted to a new species, L' (11-cis and/or 9-cis retinal) which, on warming to room temperature, is indistinguishable from rhodopsin or isorhodopsin. The quantum efficiency for the conversion of lumirhodopsin to L' is estimated to be 0.5 +/- 0.1. This value is significantly higher than that of other all-trans to cis conversions for bovine rhodopsin intermediates, indicating that the opsin conformation has a significant effect on a pigment's quantum efficiency.  相似文献   

10.
The visual pigment content of rod photoreceptors in Xenopus larvae was reduced greater than 90% through a combination of vitamin A-deficient diet and constant light. Thereafter, a dose of either all-trans-retinol or 9-cis-retinal was injected intramuscularly, leading to the formation of a rhodopsin (lambdamax 504 nm) or isorhodopsin (lambdamax 487-493 nm) pigment, respectively. Electrophysiological measurements were made of the threshold and spectral sensitivity of the aspartate-isolated PIII (photoreceptoral) component of the electroretinogram. These measures established that either rhodopsin or isorhodopsin subserved visual transduction with the same efficiency as the 519 nm porphyropsin pigment encountered normally. When animals with rhodopsin or isorhodopsin were kept in darkness or placed on a cyclical lighting regimen for 8 days, retinal densitometry showed that either pigment was being converted to porphyropsin; significantly more porphyropsin was formed as a result of cyclical lighting than after complete darkness.  相似文献   

11.
McKee TD  Lewis MR  Kono M 《Biochemistry》2007,46(43):12248-12252
The crystal structures of rhodopsin depict the inactive conformation of rhodopsin in the dark. The 11-cis retinoid chromophore, the inverse agonist holding rhodopsin inactive, is well-resolved. Thr118 in helix 3 is the closest amino acid residue next to the 9-methyl group of the chromophore. The 9-methyl group of retinal facilitates the transition from an inactive metarhodopsin I to the active metarhodopsin II intermediate. In this study, a site-specific mutation of Thr118 to the bulkier Trp was made with the idea to induce an active conformation of the protein. The data indicate that such a mutation does indeed result in an active protein that depends on the presence of the ligand, specifically the 9-methyl group. As a result of this mutation, 11-cis retinal has been converted to an agonist. The apoprotein form of this mutant is no more active than the wild-type apoprotein. However, unlike wild-type rhodopsin, the covalent linkage of the ligand can be attacked by hydroxylamine in the dark. The combination of the Thr118Trp mutation and the 9-methyl group of the chromophore behaves as a "steric doorstop" holding the protein in an open and active conformation.  相似文献   

12.
A comparative study on the chromophore (retinal) binding sites of the opsin (R-photopsin) from chicken red-sensitive cone visual pigment (iodopsin) and that scotopsin) from bovine rod pigment (rhodopsin) was made by the aid of geometric isomers of retinal (all-trans, 13-cis, 11-cis, 9-cis, and 7-cis) and retinal analogues including fluorinated (14-F, 12-F, 10-F, and 8-F) and methylated (12-methyl) 11-cis-retinals. The stereoselectivity of R-photopsin for the retinal isomers and analogues was almost identical with that of scotopsin, indicating that the shapes of the chromophore binding sites of both opsins are similar, although the former appears to be somewhat more restricted than the latter. The rates of pigment formation from R-photopsin were considerably greater than those from scotopsin. In addition, all the iodopsin isomers and analogues were more susceptible to hydroxylamine than were the rhodopsin ones. These observations suggest that the retinal binding site of iodopsin is located near the protein surface. On the basis of the spectral properties of fluorinated analogues, a polar group in the chromophore binding site of iodopsin as well as rhodopsin was estimated to be located near the hydrogen atom at the C10 position of the retinylidene chromophore. A large difference in wavelength between the absorption maxima of iodopsin and rhodopsin was significantly reduced in the 9-cis and 7-cis pigments. On the assumption that the retinylidene chromophore is anchored rigidly at the alpha-carbon of the lysine residue and loosely at the cyclohexenyl ring, each of the two isomers would have the Schiff-base nitrogen at a position altered from that of the 11-cis pigments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
K Marr  K S Peters 《Biochemistry》1991,30(5):1254-1258
The enthalpy and volume changes for the conversion of rhodopsin and isorhodopsin to lumirhodopsin have been investigated by time-resolved photoacoustic calorimetry. The conversion of rhodopsin to lumirhodopsin is endothermic by 3.9 +/- 5.9 kcal/mol and is accompanied by an increase in volume of 29.1 +/- 0.8 mL/mol. The lumirhodopsins produced from rhodopsin and isorhodopsin are energetically equivalent.  相似文献   

14.
In vertebrate rods, photoisomerization of the 11-cis retinal chromophore of rhodopsin to the all-trans conformation initiates a biochemical cascade that closes cGMP-gated channels and hyperpolarizes the cell. All-trans retinal is reduced to retinol and then removed to the pigment epithelium. The pigment epithelium supplies fresh 11-cis retinal to regenerate rhodopsin. The recent discovery that tens of nanomolar retinal inhibits cloned cGMP-gated channels at low [cGMP] raised the question of whether retinoid traffic across the plasma membrane of the rod might participate in the signaling of light. Native channels in excised patches from rods were very sensitive to retinoid inhibition. Perfusion of intact rods with exogenous 9- or 11-cis retinal closed cGMP-gated channels but required higher than expected concentrations. Channels reopened after perfusing the rod with cellular retinoid binding protein II. PDE activity, flash response kinetics, and relative sensitivity were unchanged, ruling out pharmacological activation of the phototransduction cascade. Bleaching of rhodopsin to create all-trans retinal and retinol inside the rod did not produce any measurable channel inhibition. Exposure of a bleached rod to 9- or 11-cis retinal did not elicit channel inhibition during the period of rhodopsin regeneration. Microspectrophotometric measurements showed that exogenous 9- or 11-cis retinal rapidly cross the plasma membrane of bleached rods and regenerate their rhodopsin. Although dark-adapted rods could also take up large quantities of 9-cis retinal, which they converted to retinol, the time course was slow. Apparently cGMP-gated channels in intact rods are protected from the inhibitory effects of retinoids that cross the plasma membrane by a large-capacity buffer. Opsin, with its chromophore binding pocket occupied (rhodopsin) or vacant, may be an important component. Exceptionally high retinoid levels, e.g., associated with some retinal degenerations, could overcome the buffer, however, and impair sensitivity or delay the recovery after exposure to bright light.  相似文献   

15.
Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts   总被引:2,自引:0,他引:2  
C Pande  A Pande  K T Yue  R Callender  T G Ebrey  M Tsuda 《Biochemistry》1987,26(16):4941-4947
We report here the resonance Raman spectra of octopus rhodopsin and its photoproducts, bathorhodopsin and acid metarhodopsin. These studies were undertaken in order to make comparisons with the well-studied bovine pigments, so as to understand the similarities and the differences in pigment structure and photochemical processes between vertebrates and invertebrates. The flow method was used to obtain the Raman spectrum of rhodopsin at 13 degrees C. The bathorhodopsin spectrum was obtained by computer subtraction of the spectra containing different photostationary mixtures of rhodopsin, isorhodopsin, hypsorhodopsin, and bathorhodopsin, obtained at 12 K using the pump-probe technique and from measurements at 80 K. Like their bovine counterparts, the Schiff base vibrational mode appears at approximately 1660 cm-1 in octopus rhodopsin and the photoproducts, bathorhodopsin and acid metarhodopsin, suggesting a protonated Schiff base linkage between the chromophore and the protein. Differences between the Raman spectra of octopus rhodopsin and bathorhodopsin indicate that the formation of bathorhodopsin is associated with chromophore isomerization. This inference is substantiated by the chromophore chemical extraction data which show that, like the bovine system, octopus rhodopsin is an 11-cis pigment, while the photoproducts contain an all-trans pigment, in agreement with previous work. The octopus rhodopsin and bathorhodopsin spectra show marked differences from their bovine counterparts in other respects, however. The differences are most dramatic in the structure-sensitive fingerprint and the HOOP regions. Thus, it appears that although the two species differ in the specific nature of the chromophore-protein interactions, the general process of visual transduction is the same.  相似文献   

16.
We have performed resonance enhanced Raman measurements of retinal isomers in solution (all-trans, 11-cis, 9-cis, and 13-cis) and cetyltrimethylammonium bromide (CTAB) detergent extracts of bovine rhodopsin near physiological temperatures (17 degrees C). In order to measure these photolabile systems, we have developed a general technique which allows Raman measurements of any photosensitive material. This technique involves imposing a molecular velocity transverse to the Raman exciting laser beam sufficient to ensure that any given molecule moves through the beam so that it has little probability of absorbing a photon. We have also measured the resonance Raman spectra of crystals of the same retinal isomers. The data show that each isomer has a distinct and characteristic Raman spectra and that the spectrum of 11-cis-retinal is quite similar but not identical with that of rhodopsin and similarly for 9-cis-retinal compared with isorhodopsin. In agreement with previous work, the Raman data demonstrate that retinal and opsin are joined by a protonated Schiff base. Due to the fact that the Raman spectra of 11-cis-retinal (solution) and rhodopsin show bands near 998 and 1018 cm(-1), a spectral region previously assigned to C-Me stretching motions, it is suggested that 11-cis-retinal in solution is compased of a mixture of 12-s-trans and 12-s-cis, and that the conformation of rhodopsin is (perhaps distorted) 12-s-trans.  相似文献   

17.
Iodopsin can replace its chromophore (11-cis retinal) by added 9-cis retinal, resulting in the formation of isoiodopsin. NaBH4 bleaches iodopsin in the dark. In a relatively low concentration of digitonin, the scotopsin (the protein moiety of chicken rhodopsin) removes 11-cis retinal from iodopsin in the dark. These facts suggest that the linkage of the chromophore to opsin in the iodopsin molecule (presumably a Schiff-base linkage) is accessible to these reagents, which is different from the situation in rhodopsin.  相似文献   

18.
This article reviews the primary reaction processes in rhodopsin, a photoreceptive pigment for twilight vision. Rhodopsin has an 11-cis retinal as the chromophore, which binds covalently with a lysine residue through a protonated Schiff base linkage. Absorption of a photon by rhodopsin initiates the primary photochemical reaction in the chromophore. Picosecond time-resolved spectroscopy of 11-cis locked rhodopsin analogs revealed that the cis-trans isomerization of the chromophore is the primary reaction in rhodopsin. Then, generation of femtosecond laser pulses in the 1990s made it possible to follow the process of isomerization in real time. Formation of photorhodopsin within 200 fsec was observed by a transient absorption (pump–probe) experiment, which also revealed that the photoisomerization in rhodopsin is a vibrationally coherent process. Femtosecond fluorescence spectroscopy directly captured excited-state dynamics of rhodopsin, so that both coherent reaction process and unreacted excited state were observed. Faster photoreaction of the chromophore in rhodopsin than that in solution implies that the protein environment facilitates the efficient isomerization process. Such contributions of the protein residues have been monitored by infrared spectroscopy of rhodopsin, bathorhodopsin, and isorhodopsin (9-cis rhodopsin) at low temperatures. The crystal structure of bovine rhodopsin recently reported will lead to better understanding of the mechanism in future.  相似文献   

19.
The torsion model with which we proposed to interpret the specific properties of the photoisomerization reaction of rhodopsin has been developed to apply to isorhodopsin I, isorhodopsin II and some intermediates. Based on this model, optical absorption wavelengths and oscillator strengths, as well as rotational strengths of visual pigments, analogues and intermediates at low temperatures are analyzed by varying twisted conformations of the chromophores. As a result, it was found that most of the optical data could be very well accounted for quantitatively by the torsion model. The twisting characters in the chromophore of rhodopsin are very similar to those of isorhodopsin. The obtained conformations of the chromophores are very similar in rhodopsin and its analogues, and in isorhodopsin and its analogues. Those of the chromophores of bathorhodopsin, lumirhodopsin and metarhodopsin I are similar to one another except that the conjugated chain of metarhodopsin I bends considerably when compared with the other intermediates.  相似文献   

20.
Magic-angle spinning NMR spectra have been obtained of the bathorhodopsin photointermediate trapped at low temperature (less than 130 K) by using isorhodopsin samples regenerated with retinal specifically 13C-labeled at positions 8, 10, 11, 12, 13, 14, and 15. Comparison of the chemical shifts of the bathorhodopsin resonances with those of an all-trans-retinal protonated Schiff base (PSB) chloride salt show the largest difference (6.2 ppm) at position 13 of the protein-bound retinal. Small differences in chemical shift between bathorhodopsin and the all-trans PSB model compound are also observed at positions 10, 11, and 12. The effects are almost equal in magnitude to those previously observed in rhodopsin and isorhodopsin. Consequently, the energy stored in the primary photoproduct bathorhodopsin does not give rise to any substantial change in the average electron density at the labeled positions. The data indicate that the electronic and structural properties of the protein environment are similar to those in rhodopsin and isorhodopsin. In particular, a previously proposed perturbation near position 13 of the retinal appears not to change its position significantly with respect to the chromophore upon isomerization. The data effectively exclude charge separation between the chromophore and a protein residue as the main mechanism for energy storage in the primary photoproduct and argue that the light energy is stored in the form of distortions of the bathorhodopsin chromophore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号