首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The L11 ribosomal protein from Thermus thermophilus (TthL11) has been overproduced and purified to homogeneity using a two-step purification protocol. The overproduced protein carries a similar methylation pattern at Lys-3 as does its homolog from Escherichia coli. Chymotrypsin digested only a small part of the TthL11 protein and did not cleave TthL11 into two peptides, as in the case of EcoL11, but produced only a single N-terminal peptide. Tryptic digestion of TthL11 also produced an N-terminal peptide, in contrast to the C-terminal peptide obtained with L11 from Bacillus stearothermophilus. The recombinant protein forms a specific complex with a 55-nt 23S rRNA fragment known to interact with members of the L11 family from several organisms. Cooperative binding of TthL11 and thiostrepton to 23S rRNA leads to an increased protection of TthL11 from tryptic digestion. The similar structural and biochemical properties as well as the significant homology between L11 from E. coli and B. stearothermophilus with the corresponding protein from Thermus thermophilus indicate an evolutionarily conserved protein important for ribosome function.  相似文献   

2.
A rice (Oryza sativa L.) cDNA clone coding for the cytoplasmic ribosomal protein L5, which associates with 5 S rRNA for ribosome assembly, was cloned and its nucleotide sequence was determined. The primary structure of rice L5, deduced from the nucleotide sequence, contains 294 amino acids and has intriguing features some of which are also conserved in other eucaryotic homologues. These include: four clusters of basic amino acids, one of which may serve as a nucleolar localization signal; three repeated amino acid sequences; the conservation of glycine residues. This protein was identified as the nuclear-encoded cytoplasmic ribosomal protein L5 of rice by sequence similarity to other eucaryotic ribosomal 5 S RNA-binding proteins of rat, chicken, Xenopus laevis, and Saccharomyces cerevisiae. Rice L5 shares 51 to 62% amino acid sequence identity with the homologues. A group of ribosomal proteins from archaebacteria including Methanococcus vanniellii L18 and Halobacterium cutirubrum L13, which are known to be associated with 5 S rRNA, also related to rice L5 and the other eucaryotic counterparts, suggesting an evolutionary relationship in these ribosomal 5 S RNA-binding proteins.  相似文献   

3.
The primary structure of the 23S rRNA binding ribosomal protein L1 from the 50S ribosomal subunit ofThermus thermophilus ribosomes has been elucidated by direct protein sequencing of selected peptides prepared by enzymatic and chemical cleavage of the intact purified protein. The polypeptide chain contains 228 amino acids and has a calculated molecular mass of 24,694 D. A comparison with the primary structures of the corresponding proteins fromEscherichia coli andBacillus stearothermophilus reveals a sequence homology of 49% and 58%, respectively. With respect to both proteins, L1 fromT. thermophilus contains particularly less Ala, Lys, Gln, and Val, whereas its content of Glu, Gly, His, Ile, and Arg is higher. In addition, two fragments obtained by limited proteolysis of the intact, unmodified protein were characterized.  相似文献   

4.
A library of random mutations in Xenopus ribosomal protein L5 was generated by error-prone PCR and used to delineate the binding domain for 5S rRNA. All but one of the amino acid substitutions that affected binding affinity are clustered in the central region of the protein. Several of the mutations are conservative substitutions of non-polar amino acid residues that are unlikely to form energetically significant contacts to the RNA. Thermal denaturation, monitored by circular dichroism (CD), indicates that L5 is not fully structured and association with 5S rRNA increases the t(m) of the protein by 16 degrees C. L5 induces changes in the CD spectrum of 5S rRNA, establishing that the complex forms by a mutual induced fit mechanism. Deuterium exchange reveals that a considerable amount of L5 is unstructured in the absence of 5S rRNA. The fluorescence emission of W266 provides evidence for structural changes in the C-terminal region of L5 upon binding to 5S rRNA; whereas, protection experiments demonstrate that the N terminus remains highly sensitive to protease digestion in the complex. Analysis of the amino acid sequence of L5 by the program PONDR predicts that the N and C-terminal regions of L5 are intrinsically disordered, but that the central region, which contains three essential tyrosine residues and other residues important for binding to 5S rRNA, is likely to be structured. Initial interaction of the protein with 5S rRNA likely occurs through this region, followed by induced folding of the C-terminal region. The persistent disorder in the N-terminal domain is possibly exploited for interactions between the L5-5S rRNA complex and other proteins.  相似文献   

5.
Well-ordered three-dimensional crystals of 70 S ribosomes and 30 S ribosomal subunits from extremely thermophilic bacteria Thermus thermophilus have been obtained. Positively stained thin sections of the crystals have been analyzed by electron microscopy. Redissolved crystalline ribosomes and small ribosomal subunits reveal sedimentation constants of 70 S and 30 S, respectively, and are functionally active in the poly(U)-system.  相似文献   

6.
The crystal structures of unbound protein L1 and its complexes with ribosomal and messenger RNAs were analyzed. The apparent association rate constants for L1-RNA complexes proved to depend on the conformation of unbound L1. It was suggested that L1 binds to rRNA with a higher affinity than to mRNA, owing to additional interactions between domain II of L1 and the loop rRNA region, which is absent in mRNA. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 4, pp. 650–657. The article was translated by the authors.  相似文献   

7.
Branch migration of Holliday junctions, which are central DNA intermediates in homologous recombination, is promoted by the RuvA-RuvB protein complex, and the junctions are resolved by the action of the RuvC protein in Escherichia coli. We report here the cloning of the ruvB gene from a thermophilic eubacterium, Thermus thermophilus HB8 (Tth), and the biochemical characterization of the gene product expressed in E. coli. The Tth ruvB gene could not complement the UV sensitivity of an E. coli ruvB deletion mutant and made the wild-type strain more sensitive to UV. In contrast to E. coli RuvB, whose ATPase activity is strongly enhanced by supercoiled DNA but only weakly enhanced by linear duplex DNA, the ATPase activity of Tth RuvB was efficiently and equally enhanced by supercoiled and linear duplex DNA. Tth RuvB hydrolyzed a broader range of nucleoside triphosphates than E. coli RuvB. In addition, Tth RuvB, in the absence of RuvA protein, promoted branch migration of a synthetic Holliday junction at 60° C in an ATP-dependent manner. The protein, as judged by its ATPase activity, required ATP for thermostability. Since a RuvA protein has not yet been identified in T. thermophilus, we used E. coli RuvA to examine the effects of RuvA on the activities of Tth RuvB. E. coli RuvA greatly enhanced the ability of Tth RuvB to hydrolyze ATP in the presence of DNA and to promote branch migration of a synthetic Holliday junction at 37° C. These results indicate the conservation of the RuvA-RuvB interaction in different bacterial species, and suggest the existence of a ruvA homolog in T. thermophilus. Although GTP and dGTP were efficiently hydrolyzed by Tth RuvB, these nucleoside triphosphates could not be utilized for branch migration in vitro, implying that the conformational change in RuvB brought about by ATP hydrolysis, which is necessary for driving the Holliday junction branch migration, cannot be accomplished by the hydrolysis of these nucleoside triphosphates. Received: 26 November 1998 / Accepted: 19 April 1999  相似文献   

8.
We have identified a novel archaeal protein that apparently plays two distinct roles in ribosome metabolism. It is a polypeptide of about 18 kDa (termed Rbp18) that binds free cytosolic C/D box sRNAs in vivo and in vitro and behaves as a structural ribosomal protein, specifically a component of the 30S ribosomal subunit. As Rbp18 is selectively present in Crenarcheota and highly thermophilic Euryarchaeota, we propose that it serves to protect C/D box sRNAs from degradation and perhaps to stabilize thermophilic 30S subunits.  相似文献   

9.
We have isolated a nuclear mutant (tsp-1) of Chlamydomonas reinhardtii which is resistant to thiostrepton, an antibiotic that blocks bacterial protein synthesis. The tsp-1 mutant grows slowly in the presence or absence of thiostrepton, and its chloroplast ribosomes, although resistant to the drug, are less active than chloroplast ribosomes from the wild type. Chloroplast ribosomal protein L-23 was not detected on stained gels or immunoblots of total large subunit proteins from tsp-1 probed with antibody to the wild-type L-23 protein from C. reinhardtii. Immunoprecipitation of proteins from pulse-labeled cells showed that tsp-1 synthesizes small amounts of L-23 and that the mutant protein is stable during a 90 min chase. Therefore the tsp-1 phenotype is best explained by assuming that the mutant protein synthesized is unable to assemble into the large subunit of the chloroplast ribosome and hence is degraded over time. L-23 antibodies cross-react with Escherichia coli r-protein L11, which is known to be a component of the GTPase center of the 50S ribosomal subunit. Thiostrepton-resistant mutants of Bacillus megaterium and B. subtilis lack L11, show reduced ribosome activity, and have slow growth rates. Similarities between the thiostreptonresistant mutants of bacteria and C. reinhardtii and the immunological relatedness of Chlamydomonas L-23 to E. coli L11 suggest that L-23 is functionally homologous to the bacterial r-protein L11.  相似文献   

10.
Malygin AA  Karpova GG 《FEBS letters》2010,584(21):4396-4400
After resolving the crystal structure of the prokaryotic ribosome, mapping the proteins in the eukaryotic ribosome is a challenging task. We applied RNase H digestion to split the human 40S ribosomal subunit into head and body parts. Mass spectrometry of the proteins in the 40S subunit head revealed the presence of eukaryote-specific ribosomal protein S28e. Recombinant S28e was capable of specific binding to the 3′ major domain of the 18S rRNA (Ka = 8.0 ± 0.5 × 109 M−1). We conclude that S28e has a binding site on the 18S rRNA within the 40S subunit head.

Structured summary

MINT-8044084: S8 (uniprotkb:P62241) and S19 (uniprotkb:P39019) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-8044095: S8 (uniprotkb:P62241), S19 (uniprotkb:P39019) and S13 (uniprotkb:P62277) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-8044024: S29 (uniprotkb:P62273), S28 (uniprotkb:P62857), S21 (uniprotkb:P63220), S20 (uniprotkb:P60866), S26 (uniprotkb:P62854), S25 (uniprotkb:P62851), S12 (uniprotkb:P25398), S17 (uniprotkb:P08708), S19 (uniprotkb:P39019), S14 (uniprotkb:P62263), S16 (uniprotkb:P62249) and S11 (uniprotkb:P62280) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)MINT-8044065: S29 (uniprotkb:P62273), S28 (uniprotkb:P62857), S19 (uniprotkb:P39019), S14 (uniprotkb:P62263) and S16 (uniprotkb:P62249) colocalize (MI:0403) by cosedimentation through density gradient (MI:0029)  相似文献   

11.
The human ribosomal protein SA, known also as a precursor of the cell-surface laminin receptor, LAMR, is a protein of the 40S ribosomal subunit. It is homologous to eubacterial ribosomal protein S2p, but has a eukaryote-specific C-terminal domain (CTD) that is responsible in LAMR for the binding of laminin as well as prions and several viruses. Using serial deletions in the SA CTD, we showed that region between amino acids 236-262 is required for binding of the protein to 40S ribosomal subunits. All SA mutants containing this region protected nucleotides in hairpin 40 (which is not bound to any protein in the eubacterial 30S ribosomal subunit) of the 18S rRNA from hydroxyl radical attack. Comparison of our data with the cryo-EM models of the mammalian 40S ribosomal subunit allowed us to locate the SA CTD in the spatial structure of the 40S subunit.  相似文献   

12.
Over 1 billion years ago, the animal kingdom diverged from the fungi. Nevertheless, a high sequence homology of 62% exists between human ribosomal protein S6 and S6A of Saccharomyces cerevisiae. To investigate whether this similarity in primary structure is mirrored in corresponding functional protein domains, the nuclear and nucleolar targeting signals were delineated in yeast S6A and compared to the known human S6 signals. The complete sequence of S6A and cDNA fragments was fused to the 5'-end of the LacZ gene, the constructs were transiently expressed in COS cells, and the subcellular localization of the fusion proteins was detected by indirect immunofluorescence. One bipartite and two monopartite nuclear localization signals as well as two nucleolar binding domains were identified in yeast S6A, which are located at homologous regions in human S6 protein. Remarkably, the number, nature, and position of these targeting signals have been conserved, albeit their amino acid sequences have presumably undergone a process of co-evolution with their corresponding rRNAs.  相似文献   

13.
The crucial role of Arg-94 in 3-isopropylmalate (IPM) dehydrogenase from Thermus thermophilus HB8 was elucidated by replacing the residue to lysine with site-directed mutagenesis. The kcat value of the R94K mutant enzyme for IPM was significantly reduced to 1/170 compared with that of native enzyme, whereas the Km for IPM was not much changed. It appeared that the major role of Arg-94 in exerting the enzymatic activity is not for the substrate recognition, but for the reaction catalysis, in such a way that Arg-94 facilitates stabilization of the transition-state in the decarboxylation step.  相似文献   

14.
Ribosomal protein (rp) S5 belongs to a family of ribosomal proteins that includes bacterial rpS7. rpS5 forms part of the exit (E) site on the 40S ribosomal subunit and is essential for yeast viability. Human rpS5 is 67% identical and 79% similar to Saccharomyces cerevisiae rpS5 but lacks a negatively charged (pI approximately 3.27) 21 amino acid long N-terminal extension that is present in fungi. Here we report that replacement of yeast rpS5 with its human homolog yielded a viable yeast strain with a 20%-25% decrease in growth rate. This replacement also resulted in a moderate increase in the heavy polyribosomal components in the mutant strain, suggesting either translation elongation or termination defects, and in a reduction in the polyribosomal association of the elongation factors eEF3 and eEF1A. In addition, the mutant strain was characterized by moderate increases in +1 and -1 programmed frameshifting and hyperaccurate recognition of the UAA stop codon. The activities of the cricket paralysis virus (CrPV) IRES and two mammalian cellular IRESs (CAT-1 and SNAT-2) were also increased in the mutant strain. Consistently, the rpS5 replacement led to enhanced direct interaction between the CrPV IRES and the mutant yeast ribosomes. Taken together, these data indicate that rpS5 plays an important role in maintaining the accuracy of translation in eukaryotes and suggest that the negatively charged N-terminal extension of yeast rpS5 might affect the ribosomal recruitment of specific mRNAs.  相似文献   

15.
The gene encoding ribosomal protein S19 (RPS19) is mutated in approximately 25% of patients with Diamond-Blackfan anemia (DBA), which is a rare congenital erythroblastopenia. DBA patients have a variety of clinical characteristics, and the role of the RPS19 gene in the pathogenesis of the disease is presently unknown. To investigate a possible role for RPS19 in erythropoiesis, we looked for proteins associated with mouse RPS19 using a yeast two-hybrid system and identified a novel protein, which we named S19 binding protein (S19BP). The deduced amino acid sequence of S19BP derived from cDNA defines a calculated mass of 15,849 and an isoelectric point of 11.3. No known functional motifs were found in S19BP except a short polylysine tract embedded in a putative nucleolar localization signal. Immunolocalization experiments revealed that S19BP was highly concentrated in nucleoli after 6 h of transfection in Cos-7 cells. S19BP was expressed ubiquitously at a basal level but a significantly high level of expression was observed in some tissues.  相似文献   

16.
Protein S8 fromThermus thermophilus consists of 138 amino acids ofM, 15,840. Its primary structure was established using peptide sequences from two different digests. Protein S8 fromT. thermophilus shares a high percentage of identity with protein S8 fromThermus aquaticus. There are some consensus sequences between proteins S8 from eubacteria, archebacteria, chloroplasts, and cyanelles.  相似文献   

17.
Ribosomal protein SA (rpSA), or p40, is a structural element of the small subunit of the eukaryotic ribosome. The N-terminal and central parts of rpSA are homologous to prokaryotic S2, whereas its C-terminal part is specific to eukaryotes. Preparations of 40S ribosomal subunits isolated from full-term human placenta proved to be deficient in SA to a varying extent. To study the rpSA binding to human 40S subunits, recombinant rpSA and its mutant forms with N-and C-terminal deletions were synthesized. The full-size and N-truncated rpSA variants bound to 40S subunits, while deletion of the C-terminal domain completely abolished the binding.  相似文献   

18.
The effect of trehalose on folding and stability of the small ribosomal protein S6 was studied. Non-disruptive point mutations distributed along the protein structure were analyzed to characterize the stabilizing effect of trehalose and map the folding pathway of S6. On average, the stability of the wild-type and S6 mutants increases by 3 kcal/mol M trehalose. Despite the non-specific thermodynamic stabilization mechanism, trehalose particularly stabilizes the less destabilized mutants. Folding/unfolding kinetics shows clearly that trehalose induces the collapse of the unfolded state to an off-pathway intermediate with non-native diffuse contacts. This state is similar to the collapsed state induced by high concentrations of stabilizing salts, as previously reported. Although it leads to the accumulation of this off-pathway intermediate, trehalose does not change the compactness of the transition state ensemble. Furthermore, the productive folding pathway of S6 is not affected by trehalose as shown by a Phi-value analysis. The unfolded state ensemble of S6 should be more compact in the presence of trehalose and therefore destabilized due to decreased conformational entropy. Increased compaction of the unfolded state ensemble might also occur for more stable mutants of S6, thus explaining the synergistic effect of trehalose and point mutations on protein stabilization.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号