首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doxyl stearate spin probes which differed in the attachment of the nitroxide free radical to the fatty acid have been used to study membrane fluidity in ozone-treated bovine erythrocytes and liposomes. Analysis of EPR spectra of spin labels incorporated into lipid bilayer of the erythrocyte membranes indicates an increase in the mobility and decrease in the order of membrane lipids. In isolated erythrocyte membranes (ghosts) the most significant changes were observed for 16-doxylstearic acid. In intact erythrocytes statistically significant were differences for 5-doxylstearic acid. The effect of ozone on liposomes prepared from a lipid extract of erythrocyte lipids was marked in the membrane microenvironment sampled by all spin probes. Ozone apparently leads to alterations of membrane dynamics and structure but does not cause increased rigidity of the membrane.  相似文献   

2.
We determined whether the membrane defect in hereditary pyropoikilocytosis (HPP) is associated with thermally induced changes in the lipid bilayer, the stability of which was probed by the rate of translocation of phosphatidylcholine (PC) over the two leaflets. [14C]PC was incorporated into the outer leaflet of the lipid bilayer of the intact erythrocytes using a PC-specific phospholipid exchange protein. The transbilayer equilibration of this PC was determined by measuring the time-dependent changes in its accessibility to exogenous phospholipase A2. The rate of transbilayer equilibration of PC was increased in HPP cells at 37 degrees C when compared to normal erythrocytes (rate constants, 0.07 +/- 0.02 and 0.03 +/- 0.01 h-1, respectively). A further dramatic increase in PC transbilayer equilibration was noted in HPP cells incubated at 44 degrees C (rate constant, 0.15 +/- 0.02 h-1). A similar marked acceleration in transbilayer movement of PC was also seen in normal erythrocytes when incubated at 46 degrees C (rate constant, 0.13 +/- 0.03 h-1). Despite the enhanced transbilayer mobility of PC in HPP cells when compared to normal erythrocytes, no major alteration in the asymmetric distribution could be observed when probed with phospholipase A2. Since changes in transbilayer mobility of PC and cell morphology occur in HPP cells at lower temperature than in normal red cells, it may be concluded that the enhanced thermal sensitivity of spectrin is the major factor responsible for these changes. Our results therefore support the view that the structural integrity of the skeletal network is essential for stabilization of the lipid bilayer of the red cell membrane.  相似文献   

3.
We have monitored the mixing of both aqueous intracellular and membrane-bound fluorescent dyes during the fusion of human red blood cells to influenza hemagglutinin-expressing fibroblasts using fluorescence spectroscopy and low light, image-enhanced video microscopy. The water-soluble fluorescent dye, N-(7-nitrobenzofurazan-4-yl)taurine, was incorporated into intact human red blood cells. The fluorescence of the dye in the intact red blood cell was partially quenched by hemoglobin. The lipid fluorophore, octadecylrhodamine, was incorporated into the membrane of the same red blood cell at self-quenching concentrations (Morris, S. J., D. P. Sarkar, J. M. White, and R. Blumenthal. 1989. J. Biol. Chem. 264: 3972-3978). Fusion, which allowed movement of the water-soluble dye from the cytoplasm of the red blood cell into the hemagglutinin-expressing fibroblasts, and movement of octadecylrhodamine from membranes of red blood cell to the plasma membrane of the fibroblasts, was observed by fluorescence microscopy as a spatial relocation of dyes, and monitored by spectrofluorometry as an increase in fluorescence. Upon lowering the pH below 5.4, fluorescence increased after a delay of about 30 s at 37 degrees C, reaching a maximum within 3 min. The kinetics, pH profile, and temperature dependence were similar for both fluorescent events measured simultaneously, indicating that influenza hemagglutinin-induced fusion rapidly establishes bilayer continuity and exchange of cytoplasmic contents.  相似文献   

4.
Spectrin strengthens the red cell membrane through its direct association with membrane lipids and through protein-protein interactions. Spectrin loss reduces the membrane stability and results in various types of hereditary spherocytosis. However, less is known about acquired spectrin damage. Here, we showed that α- and β-spectrin in human red cells are the primary targets of the lipid peroxidation product 4-hydroxy-2-nonenal (HNE) by immunoblotting and mass spectrometry analyses. The level of HNE adducts in spectrin (particularly α-spectrin) and several other membrane proteins was increased following the HNE treatment of red cell membrane ghosts prepared in the absence of MgATP. In contrast, ghost preparation in the presence of MgATP reduced HNE adduct formation, with preferential β-spectrin modification and increased cross-linking of the HNE-modified spectrins. Exposure of intact red cells to HNE resulted in selective HNE-spectrin adduct formation with a similar preponderance of HNE-β-spectrin modifications. These findings indicate that HNE adduction occurs preferentially in spectrin at the interface between the skeletal proteins and lipid bilayer in red cells and suggest that HNE-spectrin adduct aggregation results in the extrusion of damaged spectrin and membrane lipids under physiological and disease conditions.  相似文献   

5.
The fate of palmitoyl-lysophosphatidylcholine (lysoPC) incorporated into the membrane of intact human erythrocytes from a medium was investigated under nonhemolytic conditions at 37 degrees C by means of 14C-labeled tracers. The lysoPC was first incorporated into the outer half of the membrane lipid bilayer and then gradually translocated into the inner half during the incubation. At the same time it was metabolically converted into phosphatidylcholine (PC) and free fatty acid (FFA) plus glycerophosphorylcholine by the actions of acyltransferase and lysophospholipase, respectively. The half times of the conversion were about 14 h, while the value of 0.5 h was obtained when the half time was measured with the hemolysate of the lysoPC-loaded erythrocytes. Chymotrypsin treatment of unsealed ghosts caused a definite decrease in lysophospholipase activity, while similar treatment of resealed ghosts did not. This together with other evidence already reported in the literature suggests that both lysophospholipase and acyltransferase may be located in the inner surface of the membrane. The above findings strongly suggest that the most of the lysoPC loaded to the membrane is gradually translocated from the outer to the inner half of the bilayer and soon converted to either PC or FFA.  相似文献   

6.
The membrane skeleton, a protein lattice at the internal side of the red cell membrane, is principally composed of spectrin, actin and proteins 4.1 and 4.9. We have examined negatively stained red cell ghosts and demonstrated, on an ultrastructural level, a separation of the lipid bilayer from the membrane skeleton during echinocytic transformation. The electron micrographs of discoidal red cell ghosts suspended in hypotonic buffer revealed a filamentous reticulum that uniformly laminated the entire submembrane region. transformation of the discoidal ghosts into echinocytic form, as induced by incubation in isotonic buffer, resulted in a disruption of skeletal continuity underlying the surface contour of the membrane spicule. The submembrane reticulum extended into the base and the neck of the spiny processes of the crenated ghosts but was absent at the tip of these projections. In addition, membrane vesicles without a submembrane reticulum were detected either attached to the tips of the spicules or released into the supernatant from the echinocytic ghosts. Protein analysis revealed that the released vesicles were enriched in bands 3, 4.1 and 7 and contained very little of the membrane skeletal proteins, spectrin and actin. The data indicate that during echinocyte formation, parts of the lipid bilayer physically separate from the membrane skeleton, leading to a formation of skeleton-poor lipid vesicles.  相似文献   

7.
Phospholipid asymmetry in human erythrocyte ghosts   总被引:6,自引:0,他引:6  
Using phospholipase digestion and the fluorescent probe merocyanine 540 the maintenance of phospholipid asymmetry in the plasma membrane of human erythrocyte ghosts was investigated. Digestion with phospholipase A2 indicated that ghosts prepared in the presence of Mg++ as the only divalent cation retained the normal phospholipid asymmetry characteristic of intact erythrocytes. These ghosts, like normal erythrocytes, also failed to stain with merocyanine 540. However, the presence of as little as 5-10 microM Ca++ during ghost preparation resulted in ghosts in which lipid asymmetry had been abolished, as indicated by phospholipase digestion. Moreover, these ghosts stained with merocyanine 540. In contrast to ghosts, intact erythrocytes treated with ionophore required millimolar levels of Ca++ ions to disrupt membrane lipid asymmetry. To discover the reason for this difference in behavior between ghosts and intact cells, ghosts were prepared from preswollen cells using only small volumes of buffer for lysis. These experiments demonstrated that as the cellular contents of erythrocytes are diluted, the asymmetric arrangement of phospholipids becomes more sensitive to disruption by Ca++.  相似文献   

8.
The temperature dependence of ATPase activities and stearic acid spin label motion in red blood cells of normal and MH-susceptible pigs have been examined. Arrhenius plots of red blood cell ghost Ca-ATPase and calmodulin-stimulable Ca-ATPase activities were identical for both normal and MH erythrocyte ghosts. Arrhenius plots of Mg-ATPase activity exhibited a break (defined as a change in slope) at 24 degrees C in both MH and normal erythrocyte ghosts. However, below 24 degrees C the apparent activation energy for this activity was less in MH than normal ghosts. To determine whether breaks in ATPase Arrhenius plots could be correlated with changes in the physical state of the red blood cell membrane, the spin label 16-doxyl-stearate was introduced into the bilayer of both erythrocyte ghosts and red blood cells. With both ghosts and intact cells, at each temperature examined, the mobility of the probe in the lipid bilayer, as measured by electron paramagnetic resonance, was greater in normal than in MH membranes. While there were no breaks in Arrhenius plots for probe motion in the erythrocyte ghosts, the apparent activation energy for probe motion was significantly greater in normal than in MH ghost membranes. While there was no break in the Arrhenius plot of probe motion in normal intact red blood cell membranes, there were breaks in the Arrhenius plot of probe motion at both 24 and 33 degrees C in intact MH red blood cell membranes. Based on the altered temperature dependence of Mg-ATPase activity and spin probe motion in membranes derived from MH red blood cells, we conclude that there may be a generalized membrane defect in MH pigs which is reflected in the red blood cell as an altered membrane composition or organization.  相似文献   

9.
Ethanol tolerance, in which exposure leads to reduced sensitivity, is an important component of alcohol abuse and addiction. The molecular mechanisms underlying this process remain poorly understood. The BKCa channel plays a central role in the behavioral response to ethanol in Caenorhabditis elegans (Davies, A. G., Pierce-Shimomura, J. T., Kim, H., VanHoven, M. K., Thiele, T. R., Bonci, A., Bargmann, C. I., and McIntire, S. L. (2003) Cell 115, 655-666) and Drosophila (Cowmeadow, R. B., Krishnan, H. R., and Atkinson, N. S. (2005) Alcohol. Clin. Exp. Res. 29, 1777-1786) . In neurons, ethanol tolerance in BKCa channels has two components: a reduced number of membrane channels and decreased potentiation of the remaining channels (Pietrzykowski, A. Z., Martin, G. E., Puig, S. I., Knott, T. K., Lemos, J. R., and Treistman, S. N. (2004) J. Neurosci. 24, 8322-8332) . Here, heterologous expression coupled with planar bilayer techniques examines two additional aspects of tolerance in human BKCa channels. 1) Is acute tolerance observed in a single channel protein complex within a lipid environment reduced to only two lipids? 2) Does lipid bilayer composition affect the appearance of acute tolerance? We found that tolerance was observable in BKCa channels in membrane patches pulled from HEK cells and when they are placed into reconstituted 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine membranes. Furthermore, altering bilayer thickness by incorporating the channel into lipid mixtures of 1,2-dioleoyl-3-phosphatidylethanolamine with phosphatidylcholines of increasing chain length, or with sphingomyelin, strongly affected the sensitivity of the channel, as well as the time course of the acute response. Ethanol sensitivity changed from a strong potentiation in thin bilayers to inhibition in thick sphingomyelin/1,2-dioleoyl-3-phosphatidylethanolamine bilayers. Thus, tolerance can be an intrinsic property of the channel protein-lipid complex, and bilayer thickness plays an important role in shaping the pattern of response to ethanol. As a consequence of these findings the protein-lipid complex should be treated as a unit when studying ethanol action.  相似文献   

10.
The in vitro influence of external electrostatic fields with 200 kV/m tension on the biophysical parameters of the erythrocyte membranes and their ghosts of white outbred rats was studied. The investigation on the parameters of erythrocyte membranes and their ghosts, particularly, their microviscosity, the amount and degree of membrane proteins submersion in lipids, polarity in depth of the membrane bilayer and its viscosity was carried out by the spectrofluorimeteric method using pyrene as a hydrophobic fluorescent probe. The analyses of literature data, findings of the current study and their comparison with the results of our previous works allow of concluding that the in vitro influence of external electrostatic fields with 200 kV/m tension on the erythrocyte membranes and their ghosts occurs at different sites of membrane. It is shown that the preliminary exposure of erythrocytes in external electrostatic fields leads to the changes of the parameters both of a membrane surface layer and the intra-membrane domains. So, the decrease in the strength of peripheral proteins binding to the erythrocyte membranes and the increase in the microviscosity of the lipid bilayer are observed. The influence of the field on the ghosts of intact erythrocytes results in alterations of the studied parameters only of the membrane surface.  相似文献   

11.
ESR spectra were recorded from rat epididymal adipocyte ghosts labeled with the 5-nitroxide stearic acid spin probe, I(12,3). Polarity-corrected and approximate order parameters, that are sensitive to the flexibility of the incorporated label, were used to evaluate the membrane lipid fluidity. Addition of CaCl2 a 37 degrees C decreased the fluidity, as indicated by positive increases in the order parameters. The ordering effect of Ca2+ was concentration-dependent, reached saturation at approx. 3--4 mM, and was completely reversed by excess EGTA. Previous studies indicated that low- and high-affinity sites on adipocyte plasma membranes are able to bind 45Ca2+, and our results suggest that Ca2+-induced alterations in the lipid fluidity involve cation binding to low-affinity sites. The cellular movements of Ca2+ and, in particular, the binding of Ca2+ to the plasma membrane may play important roles in insulin's action on fat cell function. The possibility that insulin directly alters the membrane fluidity was tested by adding hormone to freshly-prepared I(12,3)-labeled adipocyte ghosts. Insulin, at concentrations (10(-6) M) that enhance glucose uptake into intact adipocytes, did not affect the fluidity of ghosts suspended in buffers with or without Ca2+. The fluidities of I(12,3)-labeled rat adipocyte ghosts or human erythrocyte ghosts were also unaffected by various forms of human growth hormone.  相似文献   

12.
It has been shown that a Triton X-100-insoluble protein matrix can be isolated from the plasma membranes of P815 tumor cells and murine lymphoid cells (Mescher, M. F., M. J. L. Jose and S. P. Balk, 1981, Nature (Lond.), 289:139-144). The properties of the matrix suggested that this set of proteins might form a membrane skeletal structure, stable in the absence of the lipid bilayer. Since purification of plasma membrane results in yields of only 20 to 40%, it was not clear whether the matrix was associated with the entire plasma membrane. To determine if a detergent-insoluble structure was present over the entire cell periphery and stable in the absence of the membrane bilayer or cytoskeletal components, we have examined extraction of whole cells with Triton X-100. Using the same conditions as those used for isolation of the matrix from membranes, we found that extraction of intact cells resulted in structures consisting of a continuous layer of protein at the periphery, a largely empty cytoplasmic space, and a nuclear remnant. Little or no lipid bilayer structure was evident in association with the peripheral layer, and no filamentous cytoskeletal structures could be seen in the cytoplasmic space by thin-section electron microscopy. Analysis of these Triton shells showed them to retain approximately 15% of the total cell protein, most of which was accounted for by low molecular weight nuclear proteins. 5'- Nucleotidase, a cell surface enzyme that remains associated with the plasma membrane matrix, was quantitatively recovered with the shells. Included among the polypeptides present in the shells was a set with mobilities identical to those of the set that makes up the plasma membrane matrix. The polypeptide composition of the shells further confirmed that cytoskeletal proteins were present to a very low extent, if at all, after the extraction. The results demonstrate that a detergent-insoluble protein matrix associated with the periphery of these cells forms a continuous, intact macrostructure whose stability is independent of the membrane bilayer or filamentous cytoskeletal elements, and thus has the properties of a membrane skeletal structure. Although not yet directly demonstrated, the results also strongly suggest that this peripheral layer is composed of the previously described set of plasma membrane matrix proteins. This article discusses possible roles for this proposed membrane skeletal structure in stabilizing the membrane bilayer and affecting the dynamics of other membrane proteins.  相似文献   

13.
Spermine (N, N'-bis(aminopropyl)-1,4-butanediamine) is a polyamine thought to be important in several cell regulatory processes. Previous studies had shown that spermine prevented the lateral diffusion of transmembrane proteins in human erythrocyte ghosts (Schindler et al. (1980) Proc. Natl. Acad. Sci. USA 77, 1457-1461). In this paper, we present results of studies on the effect of spermine on erythrocyte membranes by employing electron spin resonance spin-labeling techniques in conjunction with spin labels specific for skeletal proteins, bilayer lipids or cell-surface sialic acid of the membrane and by employing SDS-polyacrylamide gel electrophoresis analysis of extracted spectrin and Triton shells. The major findings are: (1) spermine significantly decreases the segmental motion of protein spin-label binding sites (P less than 0.0001), which are predominantly on cytoskeletal proteins; (2) addition of spermine leads to a significant increase in the rotational motion of spin-labeled terminal sialic acid residues (P less than 0.001), most of which are located on glycophorin A, a result which may be secondarily caused by spermine-induced aggregation of cytoskeletal proteins and the cytoplasmic pole of this transmembrane sialoglycoprotein; (3) spermine completely inhibits the low-ionic strength extraction of spectrin, the major protein of the skeletal network which is attached to the bilayer proteins by two or more connecting proteins; (4) pretreatment of ghosts with spermine followed by Triton extraction resulted in the retention of significantly increased amounts of Band 3 and other skeletal and bilayer proteins including Bands 4.2, 6 and 7 in Triton X-100 shells relative to that of control-treated ghosts. These results suggest that spermine acts both to increase protein-protein interactions in the cytoskeletal protein network and to bridge skeletal and bilayer proteins and are discussed with reference to possible molecular mechanisms by which spermine may influence cell functions.  相似文献   

14.
The precise molecular mechanisms by which cells transduce a mechanical stimulus into an intracellular biochemical response have not yet been established. Here, we show for the first time that the fluorescence emission of an environment-sensitive membrane probe Laurdan is modulated by mechanical strain of the lipid bilayer membrane. We have measured fluorescence emission of Laurdan in phospholipid vesicles of 30, 50, and 100 nm diameter to show that osmotically induced membrane tension leads to an increase in polarity (hydration depth) of the phospholipid bilayer interior. Our data indicate that the general polarization of Laurdan emission is linearly dependent on membrane tension. We also show that higher membrane curvature leads to higher hydration levels. We anticipate that the proposed method will facilitate future studies of mechanically induced changes in physical properties of lipid bilayer environment both in vitro and in vivo.  相似文献   

15.
Using 2H- and 31P-NMR techniques the effects of temperature variation and phenethyl alcohol addition were investigated on lipid acyl chain order and on the macroscopic lipid organization of membrane systems derived from cells of the Escherichia coli fatty acid auxotrophic strain K1059, which was grown in the presence of [11,11-2H2]oleic acid. Membranes of intact cells showed a gel to liquid-crystalline phase transition in the range of 4-20 degrees C, which was similar to that observed for the total lipid extract and for the dominant lipid species phosphatidylethanolamine (PE). Phosphatidylglycerol (PG) remained in a fluid bilayer throughout the whole temperature range (4-70 degrees C). At 30 degrees C acyl chain order was highest in PE, followed by the total lipid extract, PG, intact cells, and isolated inner membrane vesicles. Acyl chain order in E. coli PE and PG was much higher than in the corresponding dioleoylphospholipids. E. coli PE was found to maintain a bilayer organization up to about 60 degrees C, whereas in the total lipid extract as well as in intact E. coli cells bilayer destabilization occurred already at about 42 degrees C. It is proposed that the regulation of temperature at which the bilayer-to-non-bilayer transition occurs may be important for membrane functioning in E. coli. Addition of phenethyl alcohol did not affect the macroscopic lipid organization in E. coli cells or in the total lipid extract, but caused a large reduction in chain order of about 70% at 1 mol% of the alcohol in both membrane systems. It is concluded that while both increasing temperature and addition of phenethyl alcohol can affect membrane integrity, in the former case this is due to the induction of non-bilayer lipid structures, whereas in the latter case this is caused by an increase in membrane fluidity.  相似文献   

16.
Membrane cholesterol in porcine and bovine erythrocytes was elevated up to 165% of its normal value by incubation of the cells in cholesterol/phosphatidylcholine dispersions with or without serum. This alteration of membrane lipid composition brought about only a minor (10-40%) decrease of the permeability to glycerol, erythritol and to organic acids penetrating by non-ionic diffusion, although additional cholesterol had actually been incorporated into the lipid bilayer, as indicated by determinations of cell surface area from the critical hemolytic volume, in combination with quantitative evaluation of freeze-etch electron micrographs. On the basis of this finding and of the previously demonstrated (Grunze, M. and Deuticke, B. (1974) Biochim. Biophys. Acta 356, 125-130) considerable increase of permeability in cholesterol-depleted cells, it is proposed that in the erythrocyte membrane a pronounced "specific" reduction of permeability by cholesterol occurs only up to a molar ratio cholesterol/polar lipid of 0.6. At higher ratios cholesterol affects permeability only slightly, owing to an "unspecific" rigidifying effect on the membrane lipid phase.  相似文献   

17.
The incorporation of the fluorescent amine, dansyl cadaverine [N(5-aminopentyl)-5-dimethylamino-1-naphthalene sulfonamide], into the plasma membranes of intact cells was investigated. Using a fluorescent microscope, incorporation was observed when cultured mouse lymphoma (L1210) cells, cultured human fibroblasts and white cells from several sources were incubated in the presence of 0.1 mM dansyl cadaverine. While intact erythrocytes from several species did not incorporate the fluorescent amine, erythrocyte ghosts did. The uptake of dansyl cadaverine by L1210 cells was dependent upon the cell concentration, incubation time and temperature. Experiments designed to elucidate the structural requirements for fluorophor uptake demonstrated that, in addition to a hydrophobic dansyl group an extended straight hydrocarbon side chain with either an amino or hydroxyl group was necessary. The incorporated fluorophor was noncovalently associated with the cell membrane as demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membranes and extraction of dansyl cadaverine labelled cells with choroform/methanol (2:1). These results indicate that dansyl cadaverine is incorporated into plasma membranes and suggest its potential usefulness as a new fluorescent probe in cell membrane studies.  相似文献   

18.
The effects of pH on the membrane fluidity of intact human erythrocytes, ghosts, and their lipid vesicles were studied by spin label techniques in the range of pH 3.0 to 9.1. Two fatty acid spin labels, 5-nitroxide stearic acid (5NS) and 12-nitroxide stearic acid (12NS), and a maleimide spin label were used for the labeling of the membrane lipids and proteins, respectively. The outer hyperfine splitting (T parallel) was measured as a parameter of membrane fluidity. In the case of 5NS, the T parallel values for intact erythrocytes and ghosts remained almost constant over the entire pH range at 22 degrees C but those for their lipid vesicles changed slightly, indicating the vertical displacement of the labels in lipid bilayers. On the other hand, the ESR spectra of 12NS incorporated into intact erythrocytes and ghosts, as compared with their lipid vesicles, showed marked pH dependence. By means of spin labeling of membrane proteins, the conformational changes of the proteins were observed in the pH range mentioned above. These results suggest a possible association between the strong pH dependence of the T parallel values and the conformation changes of membrane proteins. The pH dependence of the membrane fluidity was also investigated in cholesterol-enriched and -depleted erythrocytes. The effects of cholesterol demonstrated that the membrane fluidity was significantly mediated by cholesterol at low pH, but not at high pH.  相似文献   

19.
The interaction of bee venom melittin with erythrocyte membrane ghosts has been investigated by means of fluorescence quenching of membrane tryptophan residues, fluorescence polarization and ESR spectroscopy. It has been revealed that melittin induces the disorders in lipid-protein matrix both in the hydrophobic core of bilayer and at the polar/non-polar interface of melittin complexed with erythrocyte membranes. The peptide has been found to act most efficiently at the concentration of the order of 10(-10) mol/mg membrane protein. The apparent distance separating the membrane tryptophan and bound 1-anilino-8-naphthalenesulphonate (ANS) molecules is decreased upon melittin binding, which results in a significant increase of the maximum energy transfer efficiency. Significant changes in the fluorescence anisotropy of both 1,6-diphenyl-1,3,5-hexatriene and 1-anilino-8-naphthalenesulphonate bound to erythrocyte ghosts, which have been observed in the presence of melittin and crude venom, indicate membrane lipid bilayer rigidization. The effect of crude honey bee venom has been found to be of similar magnitude as the effect of pure melittin at the concentration of 10(-10) mol/mg membrane protein. Using two lipophilic spin labels, methyl 5-doxylpalmitate and 16-doxylstearic acid, we found that melittin at its increasing concentrations induces a well marked rigidization in the deeper regions of lipid bilayer, whereas the effect of rigidization near the membrane surface maximizes at the melittin concentration of 10(-10) mol/mg (10(-4) mol melittin per mole of membrane phospholipid). The decrease in the ratio hw/hs of maleimide and the rise in relative rotational correlation time (tau c) of iodacetamid spin label, indicate that melittin effectively immobilizes membrane proteins in the plane of the lipid bilayer. We conclude that melittin-induced rigidization of the lipid bilayer may induce a reorganization of lipid assemblies as well as the rearrangements in membrane protein pattern and consequently the alterations in lipid-protein interactions. Thus, the interaction of melittin with erythrocyte membranes is supposed to produce local conformational changes in membranes, which are discussed in the connection with their significance during the synergistic action of melittin and phospholipase of bee venom on red blood cells.  相似文献   

20.
G D Mao  M J Poznansky 《FEBS letters》1992,305(3):233-236
The permeability of lipid bilayers and biological membranes to superoxide free radicals was examined by using superoxide dismutase (SOD)-loaded lipid vesicles and SOD-loaded erythrocyte ghosts. After exposing SOD lipid vesicles and SOD ghosts to enzymatically produced superoxide radicals and using spin-trapping and electron spin resonance (ESR) techniques, we found that SOD entrapped within erythrocyte ghosts effectively scavenges external O2.- while SOD inside the lipid bilayers has no effect. These results confirm that O2.- is able to cross through a biological plasma membrane but not across a pure lipid bilayer. The data provide instruction as to how and where anti-oxidant therapy is to be approached relative to the site of oxygen free radical production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号