共查询到20条相似文献,搜索用时 31 毫秒
1.
Homogeneous membranes containing immobilized glucose oxidase and catalase were stored in buffered solutions at 37 degrees C to determine the mechanisms and rates of catalyst inactivation. The experiments were designed so that inactivation occurred homogeneously throughout the membrane, thereby simplifying the analysis. The mechanism of inactivation is consistent with the reaction of hydrogen peroxide and certain catalytic intermediates of both enzymes. Based on this information, numerical simulations were developed that incorporate spatially heterogeneous catalytic and inactivation processes. 相似文献
2.
R A Messing 《Biotechnology and bioengineering》1974,16(7):897-908
The immobilization of glucose oxidase and catalase by adsorption within the pores of controlled-pore titania has yielded a remarkably stable enzyme system. Catalase apparently acts as both a stabilizer and an activator for glucose oxidase within the pores of this material. Hydrogen peroxide concentrations and flow rates have a marked effect upon the apparent activity of the immobilized enzyme system. The carrier parameters were varied to obtain optimum loading and stability information. 相似文献
3.
Glucose oxidation by immobilized glucose oxidase (GlO) and catalase (Cat) has been investigated in batch and continuous reactions for operational studies. The macrokinetics of the process depend on coupled reaction steps and diffusion rates. The problem may be approximated by a simple pseudohomogeneous model taking into account both substrates of glucose oxidase and the intermediate reaction product H2O2. The effectiveness of both enzymes is enhanced in the coupled reaction path, the overall effectiveness nevertheless is very low. H2O2 causes the inactivation of both GlO and Cat. The rates of deactivation depend on the oxidation rates of glucose that give different quasistationary levels of H2O2 concentration. As a first approximation, the deactivation rates may be described by first-order reactions with respect to H2O2. 相似文献
4.
A simple method is presented that establishes intrinsic rate parameters when slow pore diffusion of substrate limits immobilized enzyme reactions that obey Michaelis-Menten kinetics. The Aris-Bischoff modulus is employed. Data at high substrate concentrations, where the enzyme would be saturated in the absence of diffusion limitation, and at low substrate concentrations, where effectiveness factors are inversely proportional to reaction modulus, are used to determine maximum rate and Michaelis constant, respectively. Because Michaelis-Menten and Langmuir-Hinshelwood kinetics are formally identical, this method may be used to estimate intrinsic rate parameters of many heterogeneous catalysts. The technique is demonstrated using experimental data from the hydrolysis of maize dextrin with diffusion-limited immobilized glucoamylase. This system yields a Michaelis constant of 0.14%, compared to 0.11% for soluble glucoamylase and 0.24% for immobilized glucoamylase free of diffusional effects. 相似文献
5.
Yoshimoto M Wang S Fukunaga K Fournier D Walde P Kuboi R Nakao K 《Biotechnology and bioengineering》2005,90(2):231-238
The reactivity of immobilized glucose oxidase-containing liposomes (IGOL) prepared in our previous work (Wang et al. [2003] Biotechnol Bioeng 83:444-453) was considerably improved here by incorporating the channel protein OmpF from Escherichia coli into the liposome membrane as well as by entrapping inside the liposome's aqueous interior not only glucose oxidase (GO), but also catalase (CA), both from Aspergillus niger. CA was used for decomposing the hydrogen peroxide produced in the glucose oxidation reaction inside the liposomes. The presence of OmpF enhanced the transport of glucose molecules from the exterior of the liposomes to the interior. In a first step of the work, liposomes containing GO and CA (GOCAL) were prepared and characterized. A remarkable protection effect of the liposome membrane on CA inside the liposomes at 40 degrees C was found; the remaining CA activity at 72 h incubation was more than 60% for GOCAL, while less than 20% for free CA. In a second step, OmpF was incorporated into GOCAL membranes, leading to the formation of OmpF-embedded GOCAL (abbreviated GOCAL-OmpF). The activity of GO inside GOCAL-OmpF increased up to 17 times in comparison with that inside GOCAL due to an increased glucose permeation across the liposome bilayer, without any leakage of GO or CA from the liposomes. The optimal system was estimated to contain on average five OmpF molecules per liposome. Finally, GOCAL-OmpF were covalently immobilized into chitosan gel beads. The performance of this novel biocatalyst (IGOCAL-OmpF) was examined by following the change in glucose conversion, as well as by following the remaining GO activity in successive 15-h air oxidations for repeated use at 40 degrees C in an airlift bioreactor. IGOCAL-OmpF showed higher reactivity and reusability than IGOL, as well as IGOL containing OmpF (IGOL-OmpF). The IGOCAL-OmpF gave about 80% of glucose conversion even when the catalyst was used repeatedly four times, while the corresponding conversions were about 60% and 20% for the IGOL and IGOL-OmpF, respectively. Due to the absence of CA, IGOL-OmpF was less stable and resulted in drastically inhibited GO. 相似文献
6.
Glucose oxidase (EC 1.1.3.4, from Aspergillus niger) has been entrapped in a crosslinked 2-hydroxycthyl methaerylate gel containing 20% poly(vinyl pyrrolidone). The kinetic behavior and thermal stability of the entrapped enzyme were found to closely approximate that of the free enzyme. The entrapped glucose oxidase shows a broadened pH profile which is attributed to a buffering effect of the gel. Stability of gel entrapped glucose oxidase is extremely good at room temperature, suggesting a variety ofanalytical and control uses for this system. 相似文献
7.
8.
9.
Studies have been performed in a tubular flow reactor to characterize the deactivation of immobilized glucose oxidase. The effects of oxygen concentration in the range of 0.09 to 0.467mM and hydrogen peroxide concentrations in the range of 0.1 to 10mM were studied. A simple mathematical model assuming first-order reaction and deactivation was found to describe the deactivation behavior adequately. The deactivation rate constant was found to increase with increasing levels of feed oxygen. Hydrogen peroxide was found to deactivate the enzyme severely and the deactivation rate constants were higher than those for oxygen deactivation. The influence of external and internal diffusion effects on the deactivation rate constant were examined. Although diffusional restrictions were negligible for oxygen transfer to the pellet, they were significant for transfer of hydrogen peroxide to the bulk stream. Increasing deactivation rates. Severe internal diffusion limitations were observed for the glucose oxidase system. However, for particle sizes in the range of 500 to 2000 μm, no effect on the rate of deactivation of the enzyme was observed. 相似文献
10.
S. A. M. van Stroe-Biezen J. M. H. van der Loo L. J. J. Janssen F. M. Everaerts 《Bioprocess and biosystems engineering》1996,15(2):87-94
The enzyme glucose oxidase (GO) was covalently immobilized onto a poly(vinyl alcohol) hydrogel, cross-linked with glutardialdehyde and a polyazonium salt. To compare the kinetic parameters of immobilized GO with the known kinetic parameters of soluble GO, the diffusion cell method was used.Between two compartments, containing solutions with different glucose concentrations, a GO-containing hydrogel membrane was placed. Simultaneous diffusion through and enzymatic reaction in the membrane occurred. In this way diffusional effects of the membrane could be eliminated from the effective kinetic parameters to yield the inherent kinetic parameters.It appeared that the enzymatic reaction is independent of the oxygen concentration at oxygen concentrations 0.22 mol m–3 (Michaelis constant for oxygen < 0.22 mol m–3). Further, the Michaelis constant for glucose does not change dramatically after immobilizing the enzyme. The maximal reaction rate is depending on the enzyme concentration. As the enzyme concentration in the membrane is not exactly known (mainly due to leakage of enzyme out of the membrane during membrane preparation), only an estimation of the turnover number can be made.The diffusion cell method is easy to carry out. Still, some recommendations can be made on the performance.List of Symbols
g
,
0x
partition coefficient of glucose and oxygen, respectively
-
thickness of the wetted membrane (m)
-
A
m
surface area of membrane (m–2)
-
C
constant (mol2 m–3)
-
c
g
, c
0x
concentration of glucose and oxygen, respectively (mol m–3)
-
c
g,0
c
g,
glucose concentration at the filter-paper/membrane interface next to compartment A and B, respectively (mol m–3)
-
c
g, A
c
g, B
glucose concentration in compartment A and B, respectively (mol m–3)
-
c
GO
glucose oxidase concentration (mol m–3)
-
D
eff
effective diffusion coefficient (m2 s–1)
-
D
m
, D
sl
diffusion coefficient in, respectively, the membrane and the solution layer (m2 s–1)
-
d
dl
, d
df
, d
sl
thickness of, respectively, the diffusion layer, the filter-paper and the solution layer (m)
-
h
B
initial slope of concentration versus time curve of compartment B (mol m–3 s–1)
-
J
flux (mol m–2 s–1)
-
J
0
flux in the membrane at membrane/filter-paper interface next to compartment A and B, respectively (mol m–2 s–1)
-
J
A
, J
B
flux leaving compartment A and entering compartment B, respectively (mol m–2 s–1)
-
J
m
flux through the membrane (mol m–2 s–1)
-
k
total mass transfer coefficient (m s–1)
-
k
1
, k
2
rate constant of a particular reaction step (m3 mol–1 s–1)
- k–1, k–2
rate constant of a particular reaction step (s–1)
-
k
cat
(intrinsic) catalytic constant of turnover number (s–1)
-
k
cat
*
inherent catalytic constant, determined by inserting D
m
(s–1)
-
k
cat
**
inherent catalytic constant, determined by inserting D
eff (s–1)
-
k
m
(g)
(intrinsic) Michaelis constant for glucose (mol m–3)
-
k
m
(o)
(intrinsic) Michaelis constant for oxygen (mol m–3)
-
k
m
*
(g)
inherent Michaelis constant for glucose (mol m–3)
-
k
m
*
(o)
inherent Michaelis constant for oxygen (mol m–3)
-
m
GO
number of moles of GO present (mol)
-
P
m
permeability of glucose in the mebrane (m s–1)
-
P
eff
effective permeability (m s–1)
-
V
volume (m3)
-
v
0
initial reaction velocity (mol m–3 s–1)
-
V
max
**
inherent maximal reaction velocity, determined by inserting Deff (mol m–3 s–1)
-
x
distance (m) 相似文献
11.
In a previous paper, the overall or macrokinetics of the immobilized glucose oxidase--catalase system has been presented. In this paper a detailed analysis of the interaction of diffusion and reaction in this system will be presented. The mathematical treatment includes two consecutive reactions with two-substrate kinetics. Furthermore, the deactivation of both enzymes due to the intermediate product peroxide is taken into account. The predicted results suggest that the efficiency of the glucose oxidase reaction depends on the concentration ranges of the two substrates. Furthermore, the external mass-transfer rate may cause a shift from glucose limitation to oxygen limitation. The efficiency of the coupled system is always higher than that predicted for the uncoupled reaction path. The calculations show that the economics of the coupled system depend a great deal on the deactivation of the enzymes. 相似文献
12.
13.
Alkis Constantinides Wolf R. Vieth Peter M. Fernandes 《Molecular and cellular biochemistry》1973,1(1):127-133
Summary The enzyme glucose oxidase (E.C. 1.1.3.4) was immobilized on collagen — a proteinaceous material found in biological systems as a structural material for a wide variety of cells and membranes. The novel technique of electrocodeposition, which utilizes the principles of electrophoresis, was used to deposit the enzyme-collagen complex on stainless steel helical supports. This technique has been developed in our laboratory. The mechanism of complex formation between collagen and enzyme involves multiple salt linkages, hydrogen bonds and van der Waals interactions.As a first step toward examining its feasible technical use, the kinetic behavior of the collagen-supported glucose oxidase was studied in a batch recycle type reactor and was compared with that for the soluble form. A novel reactor configuration consisting of multiple concentric electrocodeposited helical coils was used. The reactor was found to attain a stable level of activity which was maintained for several months under cyclic testing. The optimum levels of pH and temperature for the immobilized form of the enzyme were the same as those of the soluble enzyme, but the immobilized enzyme was more active than the soluble form at higher temperatures and pH. The values of the Michaelis-Menten parameters indicate that the overall reaction rate of the immobilized enzyme may be partially restricted by bulk and matrix diffusion. 相似文献
14.
Meso-tetra(4-carboxyphenyl)porphine (CTPP(4)) binds reversibly to immobilized glucose oxidase (GOD), resulting in an absorbance peak for the CTPP(4)-GOD complex at 427nm. The absorbance intensity of the 427nm peak is reduced upon exposure to glucose, which causes the dissociation of CTPP(4) from GOD. The change in absorbance at 427nm shows linear dependence on glucose concentration from 20 to 200mg/dL (1.1-11.1mM). 相似文献
15.
16.
Konstantina-Anna Caridis Paul Christakopoulos Basil J. Macris 《Applied microbiology and biotechnology》1991,34(6):794-797
Summary A number of factors affecting simultaneous production of cell-bound glucose oxidase and catalase by the fungus Alternaria alternata have been investigated. Consecutive optimization of the type and concentration of nitrogen and carbon source, the initial pH and growth temperature resulted in a simultaneous increase in glucose oxidase and catalase by 780% and 68% respectively. Two second-order equations, describing the combined effect of pH and temperature on the activity of each enzyme, revealed that glucose oxidase had its optima at pH 7.9 and 32.3°C and catalase at pH 8.5 and 18.1°C. Under certain growth conditions, yields as high as 23.5 and 18,100 units/g carbon source for glucose oxidase and catalase, respectively, were simultaneously obtained.Offprint requests to: B. J. Macris 相似文献
17.
Glucose oxidase (GOD) and catalase (CAT) were simultaneously co-immobilized onto magnesium silicate (florisil) by covalent coupling. Glucose was added in immobilization mixture and hydrogen peroxide which is the substrate of CAT was produced in coupling mixture during immobilization time. Therefore, co-immobilization of GOD and CAT was carried out in presence of both their substrate: glucose and hydrogen peroxide, respectively. The effect of glucose concentration in immobilization mixture on activities of GOD and CAT of co-immobilized samples were investigated. Maximum GOD and CAT activities were determined for samples co-immobilized in presence of 15 and 20 mM glucose, respectively. Co-immobilization of GOD and CAT in presence of their substrates highly improved the activity and reusability of both enzymes. 相似文献
18.
Glucose oxidase (GOD) and catalase (CAT) were simultaneously co-immobilized onto magnesium silicate (Florisil®) by covalent coupling. Glucose was added in immobilization mixture and hydrogen peroxide, which is the substrate of CAT, was produced in coupling mixture during immobilization time. Therefore, co-immobilization of GOD and CAT was carried out in the presence of both their substrates: glucose and hydrogen peroxide, respectively. The effect of glucose concentration in immobilization mixture on activities of GOD and CAT of co-immobilized samples were investigated. Maximum GOD and CAT activities were determined for samples co-immobilized in the presence of 15 and 20 mM glucose, respectively. Co-immobilization of GOD and CAT in the presence of their substrates highly improved the activity and reusability of both enzymes. 相似文献
19.
A polyethylene-g-acrylic acid (PE-g-AA) graft copolymer was prepared via gamma-ray-irradiation-induced postirradiation procedures, and was used as support material for the immobilization of glucose oxidase. Soluble carbodiimides were used as the coupling agent. Reasonable yields were obtained with CMC but not with EDAC, EEDQ, or WRK. A number of factors were studied. (1) The use of water-soluble carbodiimides as condensing agent was attempted and the optimum condition for coupling glucose oxidase to PE-g-AA was established; (2) the effect of pH and temperature on the reactivity of native and immobilized glucose oxidase was studied. When exposed to temperatures in excess of 60 degrees C, the immobilized glucose oxidase was less sensitive to thermal inactivation than the native enzyme. The optimum pH value for the performance of the enzyme-immobilized membrane was 5. 6. For 200 tests, the response error of glucose sensor was less than 4% and its linear detected range was 0-1000 ppm. The obtained glucose oxidase-immobilized PE-g-AA membranes were kept in pH 5. 6 acetate buffer solution at 4 degrees C. The glucose oxidase activity of the membrane was determined at sevenday intervals. The membranes still have 92% glucose oxidase activity even after eight weeks of storage. 相似文献
20.
Simultaneous and sequential co-immobilization of glucose oxidase and catalase onto florisil 总被引:1,自引:0,他引:1
The co-immobilization of Aspergillus niger glucose oxidase (GOD) with bovine liver catalase (CAT) onto florisil (magnesium silicate-based porous carrier) was investigated to improve the catalytic efficiency of GOD against H2O2 inactivation. The effect of the amount of bound CAT on the GOD activity was also studied for 12 different initial combinations of GOD and CAT, using simultaneous and sequential coupling. The sequentially co-immobilized GOD-CAT showed a higher efficiency than the simultaneously co-immobilized GOD-CAT in terms of the GOD activity and economic costs. The highest activity was shown by the sequentially co-immobilized GOD-CAT when the initial amounts of GOD and CAT were 10 mg and 5 mg per gram of carrier. The optimum pH, buffer concentration, and temperature for GOD activity for the same co-immobilized GOD-CAT sample were then determined as pH 6.5, 50 mM, and 30 degrees C, respectively. When compared with the individually immobilized GOD, the catalytic activity of the co-immobilized GOD-CAT was 70% higher, plus the reusability was more than two-fold. The storage stability of the co-immobilized GOD-CAT was also found to be higher than that of the free form at both 5 degrees C and 25 degrees C. The increased GOD activity and reusability resulting from the co-immobilization process may have been due to CAT protecting GOD from inactivation by H2O2 and supplying additional O2 to the reaction system. 相似文献