首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Human progesterone receptors (PR) exist as two independent naturally occurring steroid-binding forms of approximately 120 kDa (B-receptors) and 94 kDa (A-receptors). Both are phosphorylated in hormone-untreated T47Dco breast cancer cells. Hormone treatment leads to receptor transformation and an increased phosphorylation state: the 32P-labeling intensity is 3-5 times higher after progestin treatment and 8-10 times higher after RU 486 treatment. Only serine residues are phosphorylated. To determine whether there are unique phosphorylation sites in transformed nuclear PR, we analyzed the phosphopeptides of untransformed and transformed A- and B-receptors by tryptic cleavage and reverse-phase high pressure liquid chromatography. Untransformed A- and B-receptors share at least five common phosphopeptides, and a sixth is unique to B. Following transformation by either R5020 or RU 486, A-receptors generate at least six and B-receptors seven phosphopeptides. Compared with untransformed PR, there are at least two different phosphopeptides in transformed nuclear PR. Cyanogen bromide cleavage of transformed nuclear A-receptors, which lack the proximal 165 amino-terminal residues of the 933 amino acid B-receptors, produces two large fragments of approximately 43 and 19 kDa. These fragments contain all of the 32P label and comprise amino acids 165-595. Cleavage of transformed B-receptors also produces peptides of 43 and 19 kDa plus an additional 36-kDa fragment corresponding to residues 1-165. No 32P-labeled low molecular mass peptides are detected. Thus, all the hormone-dependent phosphoserine residues produced in nuclei are located in the first 595 amino acids of human PR, representing the amino terminus and 28 residues of the DNA-binding domain.  相似文献   

2.
We have studied the phosphorylation of progesterone receptors (PR) in T47Dco human breast cancer cells using a monoclonal antibody directed against human PR called AB-52. This antibody recognizes both the A- (Mr approximately 94,000) and B- (Mr approximately 120,000) hormone binding proteins of PR, and was used to immunoprecipitate phosphorylated receptors isolated from cells incubated in vivo with [32P]orthophosphate. The specific activity, or phosphorylation levels, relative to protein levels was quantified by combined immunoblotting and autoradiography followed by densitometry. We find that immunopurified untransformed hormone-free receptors, which have a characteristic triplet B, singlet A structure, are phosphoproteins with similar levels of phosphate incorporation in all protein bands. If PR are first transformed to the nuclear binding form by treatment of cells with progesterone, and then labeled with [32P]orthophosphate, the receptor proteins are additionally phosphorylated. These chromatin-bound hormone occupied receptors incorporate five to 10 times more labeled phosphate per total receptor protein than do PR from untreated cells during the same [32P]incubation time. The second round of phosphorylation may also account for mobility shifts of transformed A- and B-receptors observed in sodium dodecyl sulfate-polyacrylamide gels. Both untransformed and transformed species of A- and B-receptors are phosphorylated only on serine residues, and neither the extent of phosphorylation, nor the phosphoamino acids, are affected by treatment of the cells with epidermal growth factor or insulin. We previously reported that after hormone binding and transformation of receptors to the tight chromatin binding state, PR undergo processing, or nuclear down-regulation. AB-52 was used to compare PR protein and phosphorylation levels when cells were treated for 0.5-48 h with progesterone or the synthetic progestin R5020. Both agonists lead to hyperphosphorylation of nuclear PR before phosphorylation levels decrease, in parallel with the drop in protein levels as receptors down-regulate. Treatment of cells with RU 486, an antiprogestin, leads to PR transformation as determined by immunoblotting, but subsequent down-regulation does not occur. After transformation, chromatin-bound RU 486-occupied receptors become intensely phosphorylated however, with specific activities 15 times greater than those of untransformed PR. Since these receptors are phosphorylated but not processed, the hormone-induced nuclear phosphorylation of PR is unlikely to be a signal for receptor processing.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The structure and function of progesterone receptors in breast cancer   总被引:1,自引:0,他引:1  
This paper is a review of the clinical role of progesterone receptors (PR) in the management of breast cancer, and the use of synthetic progestins in treatment of the metastatic disease. Also reviewed are our basic molecular studies dealing with the structure of human breast cancer PR, focusing on the two hormone binding proteins (the A- and B-receptors) and the role of phosphorylation. A model for the structure of PR and their subcellular compartmentalization following hormone treatment is presented.  相似文献   

4.
5.
6.
We have examined the potential for using calf uterine progesterone receptor (PR) as a substrate for phosphorylation by cAMP-dependent protein kinase (cAMP-PK), PR was found to interact with anti-PR monoclonal antibody alpha PR6 (Sullivan et al., 1986), which was to immunopurify the receptor. Protein staining of the purified preparation revealed the presence of two major bands corresponding to 114 kDa and 90 kDa peptides; only 114 kDa peptide could be photoaffinity-labeled with R5020. The 90 kDa peptide co-migrated with 90 kDa heat shock protein (hsp-90) precipitated by anti-hsp-90 monoclonal antibody AC88 (Riehl et al., 1985). Incubation of the immunopurified protein-A-Sepharose-adsorbed PR with the catalytic subunit of cAMP-PK in the presence of gamma-[32P]ATP and divalent cations resulted in a Mg++-dependent incorporation of 32P-radioactivity into both the 114 kDa and the hsp-90 peptides. Small 32P-incorporation was also seen in the 114 kDa peptide in the presence of Mn++. A 60 degrees C preincubation of immunopurified PR increased the extent of phosphorylation of the hsp-90 peptide. A pretreatment with alkaline phosphatase reduced the ability of PR to act as a substrate while the steroid occupancy of PR appeared to enhance the phosphorylation of the 114 kDa peptide. The differential cation requirement for the phosphorylation of 114 kDa and hsp-90 peptides and a selective hormone-dependent increase in the phosphorylation of the 114 kDa peptide suggest a possible role of phosphorylation in mediating progesterone action in the calf uterus.  相似文献   

7.
Human progesterone receptors (PR) were overexpressed in Spodoptera frugiperda (Sf9) insect cells using a recombinant baculovirus system. Recombinant viruses were constructed that produced either full-length A (94K) or B (120K) forms of human PR, and each was expressed as a functional protein. Steroid and DNA binding activities were found to be indistinguishable from that of endogenous human PR in T47D breast cancer cells. Moreover, as analyzed by gel-mobility shift, recombinant PR-A and PR-B each bound to specific progesterone response elements in a strictly hormone-dependent manner. Native receptors expressed in Sf9 cells also exhibited structural properties similar to that of endogenous PR. Cytosolic PR (PR-A or PR-B), prepared in low salt buffer, sedimented on density gradients as an 8S oligomeric complex that was converted largely to 4S by treatment with 0.4 M NaCl. Immune isolation of the 8S cytosol PR complex and analysis of protein composition revealed the presence of two specific copurifying proteins of approximately 90K and 70K. The 90-K component was identified immunologically as heat shock protein 90. The 70-K component was not identified but is likely to be the insect equivalent of heat shock protein 70. Immune isolation of PR from Sf9 cells metabolically labeled with [32Pi], revealed that expressed PR was capable of being phosphorylated in insect cells. Hormone addition to Sf9 cells, however, did not stimulate the same increase in PR phosphorylation or upshift in mobility on sodium dodecyl sulfate gels that occurs with endogenous receptors in T47D cells. Thus some, but not all, phosphorylations occur with human PR expressed in Sf9 cells. These phosphorylation data, together with the fact that expressed PR required hormone for DNA binding, indicate that the hormone-dependent phosphorylation step responsible for PR upshifts on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is not required for receptor binding to DNA. The baculovirus expression system, therefore, may prove valuable in dissecting the functional role(s) for both hormone-dependent and hormone-independent PR phosphorylation.  相似文献   

8.
9.
Progesterone receptors on human spermatozoa   总被引:2,自引:0,他引:2  
Progesterone, primarily recognized as a female steroid hormone, is reported to affect several sperm functions especially capacitation, motility and acrosome reaction. These effects of progesterone on the spermatozoa are mediated via the progesterone binding sites/progesterone receptor (PR) on the acrosomal membrane. These receptors in response to progesterone increase the intercellular Ca2+ levels and stimulate Ca2+ influx in the mature human spermatozoa via non-genomic mode of actions. Characterization of this receptor reveals that the sperm PR is masked protein and is exposed to the surface by some non-ionic detergents. Localized on to the acrosome region of the spermatozoa, these receptors are recognized by most antibodies directed towards the C-terminal region of the conventional PR. The estimated molecular weight of PR on spermatozoa varies from 27 kDa to 85 kDa. At the molecular level, sequences encoding for the entire DNA and hormone binding domains of the conventional PR are detected in the mRNA derived from spermatozoa. No insertions, deletions or mutations are detected in this region. These results are suggestive of the fact that at least the C terminal region of the conventional PR is conserved in the sperm. It is hypothesized that post-translational modifications or peptide splicing of the conventional PR in spermatozoa may possibly lead to the variant of the steroid hormone receptor. Detailed characterization of the sperm PR will be important in understanding the alternate non-genomic mode of action of steroid hormone receptors.  相似文献   

10.
It is believed that human progesterone receptor (PR) contains a ligand binding subunit A (83 kDa) or subunit B (120 kDa) and 2 copies of heat shock proteins (hsp90) of molecular weight 90 kDa. To elucidate the mechanism of hormone binding, we employed radiation inactivation to determine its functional size. The functional masses determined in the presence of glycerol, molybdate and potassium chloride were 120 \pm 14, 124 \pm 13 and 130 \pm 20 kDa, respectively. From scatchard plot analysis, the radiation decreased the binding sites and increased the binding affinity of PR with ligand. The functional masses of PR dissolved in the three variant buffers were similar to the molecular weight of PR subunit B. The results implied that PR subunit B could bind with ligand despite hsp90 and hsp90 was not involved in the PR binding to progesterone.  相似文献   

11.
Recent experiments have shown that calf uterus oestrogen receptor exists in a tyrosine-phosphorylated hormone binding form and in non-phosphorylated, non-hormone binding form. We report here that physiological concentrations of oestradiol in complex with the receptor stimulate the calf uterus receptor kinase that converts the non-hormone binding receptor into hormone binding receptor through phosphorylation of the receptor on tyrosine. The activity of this enzyme has been followed by reactivation of hormone binding sites and phosphorylation on tyrosine of calf uterus phosphatase-inactivated receptor. Phosphorylation of the receptor has been demonstrated by interaction of kinase 32P-phosphorylated proteins with anti-receptor antibody followed either by sucrose gradient centrifugation or SDS-PAGE of the immunoprecipitated proteins. Hormone stimulation of the kinase is inhibited by receptor occupancy of the anti-oestrogen tamoxifen. Oestradiol-receptor complex increases the affinity of the kinase for the dephosphorylated receptor. Findings of this report are consistent with the observation that several protein tyrosine kinases that are associated with peptide hormone receptors are stimulated by the binding of the hormone to the receptor. This is the first report on the activation of a tyrosine kinase by a steroid hormone. The finding that hormones can regulate their own receptor binding activity through a tyrosine kinase is also new.  相似文献   

12.
IL-7 is a glycoprotein involved in the regulation of lymphocyte precursor growth. In addition, it has a comitogenic effect on mature T cells but not on mature B cells. The exact mechanism whereby IL-7R mediates these cell growth properties remains unknown. Because many growth factor receptor systems on various cell types transduce signals by activating a tyrosine kinase, we have studied here the effect of IL-7R ligation on protein tyrosine phosphorylation. We found that human rIL-7 consistently induced tyrosine phosphorylation of five major proteins, of 175, 155, 135, 110, and 85 kDa, and five minor proteins. The effect of human rIL-7 on tyrosine phosphorylation of these substrates was concentration and time dependent. One of the known substrates that is phosphorylated on tyrosine residues after binding of growth factors to their receptors is the phosphoinositide-specific phospholipase C. Several phospholipase C isozymes have been recently recognized; one isozyme, phospholipase C-gamma 1, was demonstrated to be phosphorylated rapidly after ligand binding to the platelet-derived growth factor receptor and the T cell Ag receptor. We show here that, in contrast to Ag receptor ligation, activation of IL-7R does not induce tyrosine phosphorylation on phospholipase C-gamma 1. Consistent with these results, human rIL-7 failed to increase phosphatidylinositol turnover and did not induce a rise in cytosolic free Ca2+ in the thymocytes, mature T cells, or pre-pre-B cells. The results indicate that the IL-7R mediates the activation of the tyrosine phosphorylation pathway but does not induce the phosphatidylinositol-phospholipase C pathway.  相似文献   

13.
Most G protein-coupled receptors are desensitized by a uniform two-step mechanism: phosphorylation followed by arrestin binding and internalization. In this study we explored the time-, ligand-, and concentration dependence of alpha2-adrenoceptor internalization in human embryonal kidney (HEK-293) cells expressing alpha2A- and alpha2B-adrenoceptors. We also explored the relationship between ligand-induced receptor internalization and agonist efficacy, determined with a [35S]GTPgammaS binding assay. The results showed rapid dose-dependent internalization of both alpha2A- and alpha2B-receptors; the extent of internalization was directly proportional to agonist efficacy. The agonist UK 14,304 had a subtype-specific high efficacy at alpha2A-AR and dexmedetomidine at alpha2B-AR. Agonist-induced [35S]GTPgammaS binding was totally blocked by pretreatment with pertussis toxin (PTX) for both receptor subtypes, while only about 50% of the internalization was blocked by PTX. The results indicate that the extent of internalization of alpha2A-AR and alpha2B-AR is proportional to agonist efficacy, but only partly dependent on Gi protein coupling.  相似文献   

14.
Steroid antagonists, at receptor level, are valuable tools for elucidating the mechanism of steroid hormone action. We have examined and compared the interaction of avian and mammalian progesterone receptors with progestins; progesterone and R5020, and a newly synthesized antiprogesterone ZK98299. In the chicken oviduct cytosol, [3H]R5020 binding to macromolecule(s) could be eliminated with prior incubation of cytosol with excess radioinert steroids progesterone or R5020 but not ZK98299. Alternatively, [3H]ZK98299 binding in the chicken oviduct was not abolished in the presence of excess progesterone, R5020, or ZK98299. In the calf uterine cytosol, [3H]R5020 or [3H]ZK98299 binding was competeable with progesterone, R5020 and ZK98299 but not estradiol, DHT or cortisol. Furthermore, immunoprecipitation and protein A-Sepharose adsorption analysis revealed that in the calf uterine cytosol, the [3H]R5020-receptor complexes were recognized by anti-progesterone receptor monoclonal antibody PR6. This antibody, however, did not recognize [3H]ZK98299-receptor complexes. When phosphorylation of progesterone receptor was attempted in the chicken oviduct mince, presence of progesterone resulted in an increased phosphorylation of the known components A (79 kDa) and B (110 kDa) receptor proteins. Presence of ZK98299 neither enhanced the extent of phosphorylation of A and B proteins nor did it reverse the progesterone-dependent increase in the phosphorylation. The avian progesterone receptor, therefore, has unique steroid binding site(s) that exclude(s) interaction with ZK98299. The lack of immunorecognition of calf uterine [3H]ZK98299-receptor complexes, suggests that ZK98299 is either interacting with macromolecule(s) other than the progesterone receptor or with another site on the same protein. Alternatively, the antisteroid binds to the R5020 binding site but the complex adopts a conformation that is not recognized by the PRG antibodies.  相似文献   

15.
16.
The biochemical properties of insulin receptors from toad retinal membranes were examined in an effort to gain insight into the role this receptor plays in the retina. Competition binding assays revealed that toad retinal membranes contained binding sites that displayed an equal affinity for insulin and insulin-like growth factor I (IGF-I). Affinity labeling of toad retinal membrane proteins with 125I-insulin resulted in the specific labeling of insulin receptor alpha-subunits of approximately 105 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of partially reduced (alpha beta-heterodimer) receptors affinity-labeled with 125I-insulin indicated the presence of a disulfide-linked beta-subunit of approximately 95 kDa. Endoglycosidase F digestion of the affinity-labeled alpha-subunits increased their mobility by reducing their apparent mass to approximately 83 kDa. This receptor was not detected by immunoblot analysis with a site-specific antipeptide antibody directed against residues 657-670 of the carboxy terminal of the human insulin receptor alpha-subunit, whereas this antibody did label insulin receptor alpha-subunits from pig, cow, rabbit, and chick retinas. In in vitro autophosphorylation assays insulin stimulated the tyrosine phosphorylation of toad retina insulin receptor beta-subunits. These data indicate that toad retinal insulin receptors have a heterotetrameric structure whose alpha-subunits are smaller than other previously reported neuronal insulin receptors. They further suggest that a single receptor may account for both the insulin and IGF-I binding activities associated with toad retinal membranes.  相似文献   

17.
Hexamerins are multifunctional insect storage proteins utilized during metamorphosis of holometabolous insects. These proteins are stage specifically taken up by the fat body cells from the haemolymph due to receptor-mediated endocytosis. The hexamerin receptor and the concomitant hexamerin sequestration in the rice moth Corcyra cephalonica is controlled by the steroid hormone 20-hydroxy-ecdysone (20E). However, the mechanism of receptor activation for hexamerin uptake is not yet clear. We report here that 20E stimulates the phosphorylation of 120 kDa hexamerin binding protein which has been demonstrated to represent the receptor. Phosphorylation of the receptor is suggested to be essential for receptor activation and occurs prior to the hexamerin uptake. The 20E stimulated phosphorylation is mediated partly by a tyrosine kinase as phosphotyrosine antibodies cross-react with the receptor and its phosphorylation is blocked partly by genistein. Back phosphorylation study provides additional evidence for 20E regulation of hexamerin receptor phosphorylation in intact fat body. The receptor phosphorylation is developmentally regulated. This is the first report demonstrating that (i) the uptake of hexamerin is dependent on the phosphorylation of hexamerin receptor and (ii) the phosphorylation is catalyzed partly by a tyrosine kinase which is activated by 20E through a non-genomic action.  相似文献   

18.
In classical models of nuclear steroid hormone receptor function, ligand binds receptor, heat shock proteins dissociate, and receptor dimers enter or are withheld in the nucleus and interact with coregulatory molecules to mediate changes in gene expression. The footnotes, "receptors become phosphorylated" and "dynamic nucleo-cytoplasmic shuttling occurs" describe well-accepted, but less well-understood aspects of receptor action. Recently, the idea that several protein kinases are activated in response to steroid hormone binding to cognate cytoplasmic or membrane-associated receptors has become fashionable. However, the precise role of steroid hormone receptor phosphorylation and our understanding of which cytoplasmic kinases are activated and their functional significance remain elusive. This review provides an overview of the primary ways in which steroid hormone receptor and growth factor cross-talk occurs, using the human progesterone receptor (PR) as a model. The functional consequences of PR phosphorylation by protein kinases classically activated in response to peptide growth factors and novel extranuclear or nongenomic functions of PR as potential independent initiators of signal transduction pathways are discussed. Intracellular protein kinases are emerging as key mediators of steroid hormone receptor action. Cross-talk between steroid receptor- and growth factor-initiated signaling events may explain how gene subsets are coordinately regulated by mitogenic stimuli in hormonally responsive normal tissues, and is suspected to play a role in their cancer biology.  相似文献   

19.
In the absence of hormone, human progesterone receptors (PR) are recovered in the cytosolic fraction of cell lysates as a multimeric complex containing the steroid-binding polypeptide, heat shock protein-90 (hsp90), and heat shock protein-70 (hsp70). Activated forms of human PR that acquire the ability to bind to DNA are dissociated from hsp90, but retain association with hsp70. The present study has examined whether associated hsp70 has a function in receptor-DNA binding. When activated PR was bound to specific target DNA in a gel shift assay, no hsp70 was detectable in the PR-DNA complex, as evidenced by the failure of several antibodies to hsp70 to affect the mobility or the amount of complexes. To determine whether hsp70 might indirectly influence DNA-binding activity, we have examined the effect of hsp70 dissociation on PR-DNA-binding activity. Dissociation was achieved either by treatment of immunoaffinity-purified immobilized PR complexes with ATP or by the binding of PR complexes to ATP-agarose, followed by elution with high salt. Under both conditions, dissociation from hsp70 neither enhanced nor impaired the ability of PR to bind to specific DNA. These results suggest that hsp70 is not involved in PR binding to DNA, either directly by participating in DNA binding or indirectly by modulating PR-DNA-binding activity. This implies that hsp70 functions at an earlier stage in the receptor activation pathway. Consistent with the known involvement of hsp70 in stabilizing unfolded states of other target proteins, we propose that hsp70 may assist in nuclear transport of PR or in assembly-disassembly of the 8-10S multimeric complex.  相似文献   

20.
The progesterone receptor (PR) can be isolated in its native conformation able to bind hormone, yet its ligand-binding domain rapidly loses its activity at elevated temperature. However, an in vitro chaperoning system consisting of five proteins (HSP40, HSP70, HOP, HSP90, and p23) with ATP is capable of restoring this function. The first step of this chaperoning mechanism is usually thought to be the binding of HSP70 to PR. Our findings here show that the binding of HSP40 to PR is, instead, the first step. HSP40 binding occurred rapidly and was not dependent on ATP or other proteins. The stoichiometry of HSP40 to native PR in these complexes was approximately 1:1. HSP40 bound specifically and with a high affinity to native PR (K(d) = 77 nm). The binding of HSP40 to PR was sustained and did not interact in the highly dynamic fashion that has been observed previously for HSP90 in this system. The HSP40 small middle dotPR complex could be isolated as a functional unit that could, after the addition of the other chaperones, progress to a PR complex capable of hormone binding. These results indicate that HSP40 initiates the entry of PR into the HSP90 pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号