首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human eye color is a polymorphic phenotype influenced by multiple genes. It has recently been reported that three single nucleotide polymorphisms (SNPs) within intron 1 of the OCA2 gene (rs7495174, rs4778241, rs4778138) and two SNPs in intron 86 (rs12913832) and the 3′ UTR region (rs1129038) of the HERC2 gene—located in the upstream of the OCA2 locus —have a high statistical association with human eye color. The present study is the first to examine in detail the genotype and haplotype frequencies for these five SNPs in an Asian (Japanese) population (n = 523) comprising solely brown‐eyed individuals. Comparison of the genotype and haplotype distributions in Japanese with those in African and European subjects revealed significant differences between Japanese and other populations. Analysis of haplotypes consisting of four SNPs at the HERC2‐OCA2 locus (rs12913832/rs7495174/rs4778241/rs4778138) showed that the most frequent haplotype in the Japanese population is A‐GAG (0.568), while the frequency of this haplotype is rather low in the European population, even in the brown‐eyed group (0.167). The haplotype distribution in the Japanese population was significantly different from that in the brown‐eyed European group (FST = 0.18915). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
3.
In Russian populations, polymorphism of two pigmentation system genes, OCA2 (loci 305, 355, and 419, tested in Russians, Buryats, Chukchi, Koryaks, and Evens) and ASIP (locus 8818, tested in Russians and Buryats) was examined. Pairwise comparisons of the F ST distances between the populations showed that only the populations from Northeast Asia (Chukchi, Koryaks, and Evens) were statistically significantly different from all other populations, at least relative to one of the OCA2 locus. In Russians from Pskov oblast and Novgorod oblast, increased frequency (up to 6%) of the OCA2 allele 419A was revealed. In earlier studies, as association of this allele with green eye color was demonstrated. The data obtained in terms of their application for ethnic population genetics.  相似文献   

4.
The collagen type Ι alpha Ι (COL1A1) gene encodes the extracellular matrix component, collagen, and resides in candidate MYP5 for high myopia on the chromosome 17q22–q23.3. This locus has recently been implicated in playing an important role in the pathogenesis of experimental myopia. We investigated the association of disruptions of COL1A1 gene with high myopia by analyzing the frequency of ten SNPs in a Japanese population of 330 subjects with high myopia of −9.25 D or less and 330 randomized controls without high myopia. Two SNPs (rs2075555 and rs2269336) were significantly associated with high myopia (P < 0.05, Pc < 0.1). Two different haplotype blocks in COL1A1 were observed by the pair-wise linkage disequilibrium between the SNPs. The frequency of GGC/GGC diplotype constructed by the three SNPs (rs2075555, rs2269336, rs1107946) was significantly high (OR = 1.6) and associated with high myopia (P = 0.028, Pc< 0.084). Together our results provide the first evidence for COL1A1 as a gene associated with high myopia.  相似文献   

5.
Ppd-D1 on chromosome 2D is the major photoperiod response locus in hexaploid wheat (Triticum aestivum). A semi-dominant mutation widely used in the “green revolution” converts wheat from a long day (LD) to a photoperiod insensitive (day neutral) plant, providing adaptation to a broad range of environments. Comparative mapping shows Ppd-D1 to be colinear with the Ppd-H1 gene of barley (Hordeum vulgare) which is a member of the pseudo-response regulator (PRR) gene family. To investigate the relationship between wheat and barley photoperiod genes we isolated homologues of Ppd-H1 from a ‘Chinese Spring’ wheat BAC library and compared them to sequences from other wheat varieties with known Ppd alleles. Varieties with the photoperiod insensitive Ppd-D1a allele which causes early flowering in short (SD) or LDs had a 2 kb deletion upstream of the coding region. This was associated with misexpression of the 2D PRR gene and expression of the key floral regulator FT in SDs, showing that photoperiod insensitivity is due to activation of a known photoperiod pathway irrespective of day length. Five Ppd-D1 alleles were found but only the 2 kb deletion was associated with photoperiod insensitivity. Photoperiod insensitivity can also be conferred by mutation at a homoeologous locus on chromosome 2B (Ppd-B1). No candidate mutation was found in the 2B PRR gene but polymorphism within the 2B PRR gene cosegregated with the Ppd-B1 locus in a doubled haploid population, suggesting that insensitivity on 2B is due to a mutation outside the sequenced region or to a closely linked gene. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. J. Beales and A. Turner contributed equally to the work.  相似文献   

6.
Preeclampsia is a heritable pregnancy disorder that presents new onset hypertension and proteinuria. We have previously reported genetic linkage to preeclampsia on chromosomes 2q, 5q and 13q in an Australian/New Zealand (Aust/NZ) familial cohort. This current study centered on identifying the susceptibility gene(s) at the 5q locus. We first prioritized candidate genes using a bioinformatic tool designed for this purpose. We then selected a panel of known SNPs within ten prioritized genes and genotyped them in an extended set of the Aust/NZ families and in a very large, independent Norwegian case/control cohort (1,139 cases, 2,269 controls). In the Aust/NZ cohort we identified evidence of a genetic association for the endoplasmic reticulum aminopeptidase 1 (ERAP1) gene (rs3734016, P uncorr = 0.009) and for the endoplasmic reticulum aminopeptidase 2 (ERAP2) gene (rs2549782, P uncorr = 0.004). In the Norwegian cohort we identified evidence of a genetic association for ERAP1 (rs34750, P uncorr = 0.011) and for ERAP2 (rs17408150, P uncorr = 0.009). The ERAP2 SNPs in both cohorts remained statistically significant (rs2549782, P corr = 0.018; rs17408150, P corr = 0.039) after corrections at an experiment-wide level. The ERAP1 and ERAP2 genes encode enzymes that are reported to play a role in blood pressure regulation and essential hypertension in addition to innate immune and inflammatory responses. Perturbations within vascular, immunological and inflammatory pathways constitute important physiological mechanisms in preeclampsia pathogenesis. We herein report a novel preeclampsia risk locus, ERAP2, in a region of known genetic linkage to this pregnancy-specific disorder.  相似文献   

7.
The association of the variable rs1801282 locus of the PPARG2 gene (peroxisome proliferator-activated receptor gamma) with type 2 diabetes mellitus and its complications was analyzed in inhabitants of the Republic of Bashkortostan. The genotype frequencies of the variable rs1801282 locus of the PPARG2 gene did not significantly differ in groups of healthy persons and patients with type 2 diabetes in all three considered inheritance models (codominant, dominant, and recessive). At the same time, it was demonstrated that the risk of one of the diabetic complications, i.e., diabetic nephropathy, was associated with the variable rs1801282 locus of the PPARG2 gene. Diabetic nephropathy was more common in patients with the C/C genotype (62.7%) compared to the C/G and G/G genotypes (37.5%), P = 0.036. The G allele is protective in regard to diabetic nephropathy (OR = 0.36) in patients with type 2 diabetes mellitus.  相似文献   

8.
9.
Chen X  Li Y  Huang J  Cao D  Yang G  Liu W  Lu H  Guo A 《Cell and tissue research》2007,329(1):169-178
The microtubule-binding protein tau has been investigated for its contribution to various neurodegenerative disorders. However, the findings from transgenic studies, using the same tau transgene, vary widely among different laboratories. Here, we have investigated the potential mechanisms underlying tauopathies by comparing Drosophila (d-tau) and human (h-tau) tau in a Drosophila model. Overexpression of a single copy of either tau isoform in the retina results in a similar rough eye phenotype. However, co-expression of Par-1 with d-tau leads to lethality, whereas co-expression of Par-1 with h-tau has little effect on the rough eye phenotype. We have found analogous results by comparing larval proteomes. Through genetic screening and proteomic analysis, we have identified some important potential modifiers and tau-associated proteins. These results suggest that the two tau genes differ significantly. This comparison between species-specific isoforms may help to clarify whether the homologous tau genes are conserved. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This study was supported by the National Science Foundation of China (30270341; 30630028), the Multidisciplinary Program (Brain and Mind) of the Chinese Academy of Sciences, the Major State Basic Research Program (“973 program”; G2000077800; G2006CB806600; 2006CB911003), the Precedent Project of Important Intersectional Disciplines in the Knowledge Innovation Engineering of the Chinese Academy of Sciences (KJCX1-09-03).  相似文献   

10.
Genome sequence analysis of Xanthomonas oryzae pv. oryzae has revealed a cluster of 12 ORFs that are closely related to the gum gene cluster of Xanthomonas campestris pv. campestris. The gum gene cluster of X. oryzae encodes proteins involved in xanthan production; however, there is little experimental evidence supporting this. In this study, biochemical analyses of xanthan produced by a defined set of X. oryzae gum mutant strains allowed us to preliminarily assign functions to most of the gum gene products: biosynthesis of the pentasaccharide repeating unit for GumD, GumM, GumH, GumK, and GumI, xanthan polymerization and transport for GumB, GumC, GumE, and GumJ, and modification of the pentasaccharide repeating unit for GumF, GumG, and GumL. In addition, we found that the exopolysaccharides are essential but not specific for the virulence of X. oryzae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Sang-Yoon Kim and Jeong-Gu Kim contributed equally to this work.  相似文献   

11.
Diploid Hordeum bulbosum (a wild relative of cultivated barley) exhibits a two-locus self-incompatibility (SI) system gametophytically controlled by the unlinked multiallelic loci S and Z. This unique SI system is observed in the grasses (Poaceae) including the tribe Triticeae. This paper describes the identification and characterization of two F-box genes cosegregating with the S locus in H. bulbosum, named Hordeum S locus-linked F-box 1 (HSLF1) and HSLF2, which were derived from an S 3 haplotype-specific clone (HAS175) obtained by previous AMF (AFLP-based mRNA fingerprinting) analysis. Sequence analysis showed that both genes encode similar F-box proteins with a C-terminal leucine-rich repeat (LRR) domain, which are distinct from S locus (or S haplotype-specific) F-box protein (SLF/SFB), a class of F-box proteins identified as the pollen S determinant in S-RNase-based gametophytic SI systems. A number of homologous F-box genes with an LRR domain were found in the rice genome, although the functions of the gene family are unknown. One allele of the HSLF1 gene (HSLF1-S 3) was expressed specifically in mature anthers, whereas no expression was detected from the other two alleles examined. Although the degree of sequence polymorphism among the three HSLF1 alleles was low, a frameshift mutation was found in one of the unexpressed alleles. The HSLF2 gene showed a low level of expression with no tissue specificity as well as little sequence polymorphism among the three alleles. The multiplicity of S locus-linked F-box genes is discussed in comparison with those found in the S-RNase-based SI system. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers AB511822–AB511825 and AB511859–AB511862.  相似文献   

12.
13.
We isolated several mutants of Arabidopsis thaliana (L.) Heynh. that accumulated less anthocyanin in the plant tissues, but had seeds with a brown color similar to the wild-type. These mutants were allelic with the anthocyaninless1 (anl1) mutant that has been mapped at 15.0 cM of chromosome 5. We performed fine mapping of the anl1 locus and determined that ANL1 is located between the nga106 marker and a marker corresponding to the MKP11 clone. About 70 genes are located between these two markers, including three UDP-glucose:flavonoid-3-O-glucosyltransferase-like genes and a glutathione transferase gene (TT19). A mutant of one of the glucosyltransferase genes (At5g17050) was unable to complement the anl1 phenotype, showing that the ANL1 gene encodes UDP-glucose:flavonoid-3-O-glucosyltransferase. ANL1 was expressed in all tissues examined, including rosette leaves, stems, flower buds and roots. ANL1 was not regulated by TTG1.  相似文献   

14.
Almost all mammals have brown or darkly‐pigmented eyes (irises), but among primates, there are some prominent blue‐eyed exceptions. The blue eyes of some humans and lemurs are a striking example of convergent evolution of a rare phenotype on distant branches of the primate tree. Recent work on humans indicates that blue eye color is associated with, and likely caused by, a single nucleotide polymorphism (rs12913832) in an intron of the gene HERC2, which likely regulates expression of the neighboring pigmentation gene OCA2. This raises the immediate question of whether blue eyes in lemurs might have a similar genetic basis. We addressed this by sequencing the homologous genetic region in the blue‐eyed black lemur (Eulemur macaco flavifrons; N = 4) and the closely‐related black lemur (Eulemur macaco macaco; N = 4), which has brown eyes. We then compared a 166‐bp segment corresponding to and flanking the human eye‐color‐associated region in these lemurs, as well as other primates (human, chimpanzee, orangutan, macaque, ring‐tailed lemur, mouse lemur). Aligned sequences indicated that this region is strongly conserved in both Eulemur macaco subspecies as well as the other primates (except blue‐eyed humans). Therefore, it is unlikely that this regulatory segment plays a major role in eye color differences among lemurs as it does in humans. Although convergent phenotypes can sometimes come about via the same or similar genetic changes occurring independently, this does not seem to be the case here, as we have shown that the genetic basis of blue eyes in lemurs differs from that of humans. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The interaction between two genes, Agouti and Melanocortin-1 receptor (Mc1r), produces diverse pigment patterns in mammals by regulating the type, amount, and distribution pattern of the two pigment types found in mammalian hair: eumelanin (brown/black) and pheomelanin (yellow/red). In domestic dogs (Canis familiaris), there is a tremendous variation in coat color patterns between and within breeds; however, previous studies suggest that the molecular genetics of pigment-type switching in dogs may differ from that of other mammals. Here we report the identification and characterization of the Agouti gene from domestic dogs, predicted to encode a 131-amino-acid secreted protein 98% identical to the fox homolog, and which maps to chromosome CFA24 in a region of conserved linkage. Comparative analysis of the Doberman Pinscher Agouti cDNA, the fox cDNA, and 180 kb of Doberman Pinscher genomic DNA suggests that, as with laboratory mice, different pigment-type-switching patterns in the canine family are controlled by alternative usage of different promoters and untranslated first exons. A small survey of Labrador Retrievers, Greyhounds, Australian Shepherds, and German Shepherd Dogs did not uncover any polymorphisms, but we identified a single nucleotide variant in black German Shepherd Dogs predicted to cause an Arg-to-Cys substitution at codon 96, which is likely to account for recessive inheritance of a uniform black coat.Genbank accession numbers are AC092250 (bacterial artificial chromosome clone RP81-20712) and AY714374 (Doberman Pinscher Agouti cDNA).  相似文献   

16.
Control of organ size is the product of coordinated cell division and expansion. In plants where one of these pathways is perturbed, organ size is often unaffected as compensation mechanisms are brought into play. The number of founder cells in organ primordia, dividing cells, and the period of cell proliferation determine cell number in lateral organs. We have identified the Antirrhinum FORMOSA (FO) gene as a specific regulator of floral size. Analysis of cell size and number in the fo mutant, which has increased flower size, indicates that FO is an organ-specific inhibitor of cell division and activator of cell expansion. Increased cell number in fo floral organs correlated with upregulation of genes involved in the cell cycle. In Arabidopsis the AINTEGUMENTA (ANT) gene promotes cell division. In the fo mutant increased cell number also correlates with upregulation of an Antirrhinum ANT-like gene (Am-ANT) in inflorescences that is very closely related to ANT and shares a similar expression pattern, suggesting that they may be functional equivalents. Increased cell proliferation is thought to be compensated for by reduced cell expansion to maintain organ size. In Arabidopsis petal cell expansion is inhibited by the BIGPETAL (BPE) gene, and in the fo mutant reduced cell size corresponded to upregulation of an Antirrhinum BPE-like gene (Am-BPE). Our data suggest that FO inhibits cell proliferation by negatively regulating Am-ANT, and acts upstream of Am-BPE to coordinate floral organ size. This demonstrates that organ size is modulated by the organ-specific control of both general and local gene networks. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
In this study, two novel SNPs (EU743939:g.5174T>C in intron 4 and EU743939:g.8350C>A in intron 7) in TNNI1 and one SNP (EU696779:g.1167C>T in intron 3) in TNNI2 were identified by PCR–RFLP (PCR restriction fragment length polymorphism) using XbaI, MspI and SmaI restriction enzyme, respectively. The allele frequencies of three novel SNPs were determined in the genetically diverse pig breeds including ten Chinese indigenous pigs and three Western commercial pig breeds. Association analysis of the SNPs with the carcass traits were conducted in a Large White × Meishan F2 pig population. The linkage of two SNPs (g.5174T>C and g.8350C>A) in TNNI1 gene had significant effect on fat percentage. Besides these, the g.5174T>C polymorphism was also significantly associated with skin percentage (P < 0.05), shoulder fat thickness (P < 0.05) and backfat thickness between sixth and seventh ribs (P < 0.05). The significant effects of g.1167C>T polymorphism in TNNI2 gene on fat percentage (P < 0.01), lean meat percentage (P < 0.05), lion eye area (P < 0.05), thorax–waist backfat thickness (P < 0.01) and average backfat thickness (P < 0.05) were also found.  相似文献   

18.
The gene encoding sucrose phosphorylase (742sp) in Leuconostoc mesenteroides NRRL B-742 was cloned and expressed in Escherichia coli. The nucleotide sequence of the transformed 742sp comprised an ORF of 1,458 bp giving a protein with calculated molecular mass of 55.3 kDa. 742SPase contains a C-terminal amino acid sequence that is significantly different from those of other Leu. mesenteroides SPases. The purified 742SPase had a specific activity of 1.8 U/mg with a K m of 3 mM with sucrose as a substrate; optimum activity was at 37°C and pH 6.7. The purified 742SPase transferred the glucosyl moiety of sucrose to cytosine monophosphate (CMP). Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Lu L  Sheng H  Li H  Gan W  Liu C  Zhu J  Loos RJ  Lin X 《Human genetics》2012,131(3):505-512
Recent studies have identified common variants in or near GC, CYP2R1 and NADSYN1/DHCR7 to be associated with 25-hydroxyvitamin D [25(OH)D] levels in European populations. We aimed to examine whether these variants also influence 25(OH)D levels in Chinese. Seven common variants were successfully genotyped and tested for associations with plasma 25(OH)D levels in a population-based cohort of 3,210 Chinese Hans from Beijing and Shanghai. Six common variants at GC (rs4588, rs7041, rs2282679 and rs1155563) and NADSYN1/DHCR7 (rs3829251 and rs1790349) loci were all significantly associated with lower plasma 25(OH)D levels (−0.036 ≤ β ≤ −0.076 per risk-allele, P ≤ 5.7 × 10−5), while CYP2R1-rs2060793 showed a trend toward association with 25(OH)D levels in the Shanghai subpopulation (P = 0.08), but not in the Beijing subpopulation (P = 0.82). Haplotype-based association analyses of the four GC variants showed that only the haplotype that contained all risk-alleles (TACC) was significantly associated with lower plasma 25(OH)D levels (β = −0.085, P = 2.3 × 10−9), while the haplotype containing the risk-alleles of rs4588 and rs2282679 (TATC) was marginally associated with lower 25(OH)D levels (β = −0.054, P = 0.0562) when compared with GCTA haplotype carrying the four protective alleles. Most notably, conditional analyses showed that only GC-rs4588 and GC-rs2282679 (r 2 = 0.97) remained significantly associated with 25(OH)D concentrations (P ≤ 1.9 × 10−5) after adjusting for the other two SNPs in GC. In conclusion, GC and NADSYN1/DHCR7 loci individually and collectively contribute to variation in plasma vitamin D levels in Chinese Hans.  相似文献   

20.
The large numbers of duplicated pairs of genes in zebrafish compared to their mammalian counterparts has lead to the notion that expression of zebrafish co-orthologous pairs in some cases can together describe the expression of their mammalian counterpart. Here, we explore this notion by identification and analysis of a second zebrafish ortholog of the mammalian Kit receptor tyrosine kinase (kitb). We show that in embryos, kitb is expressed in a non-overlapping pattern to that of kita, in the anterior ventral mesoderm, Rohon-beardRohon–Beard neurons, the otic vesicle, and trigeminal ganglia. The expression pattern of kita and kitb in zebrafish together approximates that of Kit in mouse, with the exception that neither zebrafish kit gene is expressed in primordial germ cells, a site of kit expression in the mouse embryo. In addition, zebrafish kita is expressed in a site of zebrafish primitive hematopoiesis but not required for blood development, and we fail to detect kitb expression in sites of zebrafish hematopoiesis. Thus, the expression and function of zebrafish kit genes cannot be described as a simple partition of the expression and function of mouse Kit. We discuss the possibility that these unaccounted for expression domains and functions are derived from more ancestral gene duplications and partitioning instead of the relatively recent teleost teleost-specific duplication. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号