首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Isolated cytoplasmic membranes from Micrococcus lysodeikticus were able to incorporate [14C]mannose from GDP-[14C]mannose. Labelled mannose remained in the membrane fraction after its repeated washing and lipid extraction. Sodium dodecyl sulfate gel electrophoresis in 12% acrylamide showed a set of bands with molecular weights ranging from 230 000 to 19 000 which stained for protein and carbohydrate, and incorporated [14C]mannose. Some of these bands reacted with different lectins (concanavalin A, wheat germ agglutinin and ricin).Furthermore, the mannose was incorporated via a glycosylation pathway similar to that followed in eukaryotic system as shown by the preliminary identification of a lipid intermediate transfering the sugar to proteins and by the differential sensitivity to bacitracin and tunicamycin.These complex membrane components were sensitive to digestion with pronase. All the results presented suggest their glycoprotein nature.  相似文献   

2.
An axolemma-enriched membrane fraction prepared by an improved procedure from bovine white matter catalyzes the enzymatic transfer of [14C]mannose and N-acetyl[14C]glucosamine from their nucleotide derivatives into a mannolipid and an N-acetylglucosaminyl lipid in the presence of exogenous dolichyl monophosphate. The labeled glycolipid products have the chemical and chromatographic characteristics of mannosylphosphoryldolichol and N-acetylglucosaminylpyrophosphoryldolichol. The initial rates of synthesis of the glycolipids by the axolemma-enriched membrane fraction have been compared with the initial rates of glycolipid formation catalyzed by a microsomal preparation and myelin in the presence or absence of dolichyl monophosphate. Essentially no glycolipid synthesis was observed when either GDP-[14C]mannose or UDP-N-acetyl[14C]glucosamine were incubated with myelin in the presence or absence of exogenous dolichyl monophosphate. A comparison of the initial rates of synthesis of the glycolipids using endogenous acceptor lipid revealed that the rate of formation of mannolipid was 7 times faster for the microsomal membranes than the axolemma-enriched membranes. In the presence of an amount of dolichyl monophosphate approaching saturation the initial rate of glycolipid synthesis was markedly enhanced for both membrane preparations. However, due to a more dramatic enhancement in the axolemma-enriched membranes the initial rate of mannolipid synthesis was only approx. 2.5 times greater in the microsomal membranes. A similar observation was made when the initial rates of N-acetylglucosaminyl lipid synthesis were compared for axolemma-enriched and microsomal preparations in the presence and absence of exogenous dolichyl monophosphate. These studies indicate that the axolemma-enriched membranes have a relatively lower content of dolichyl monophosphate than the microsomal membranes although the difference in the amount of mannosyltransferase is only two to three-fold lower. The presence of a sugar nucleotide pyrophosphatase activity capable of degrading GDP-mannose and UDP-N-acetylglucosamine has also been demonstrated in the axolemma-enriched membrane fraction.  相似文献   

3.
—Incubation of bovine retina membranes with UDP-[14C]glucose resulted in the incorporation of [14C]glucose into endogenous α-1, 4-glucan proteins. The transferring system was concentrated in membranes that floated at 0.94 and 1.10m -sucrose when centrifuged in a discontinuous sucrose density gradient and was almost absent in the rod outer segment (ROS) and the 100, 000 g supernatant fractions. The glucan proteins labelled by incubation with the radioactive sugar nucleotide at micromolar concentrations were distinguished in two fractions by their solubilities in trichloroacetic acid (TCA): glucan protein-I (GP-I), insoluble in TCA, and glucan protein-II (GP-II), soluble in TCA and precipitable by ethanol from the TCA soluble fraction. GP-I and GP-II were precipitated by trichloroacetic acid-phosphotungstic acid (TCA-PTA). A third fraction, glucan protein-III (GP-III) was found when incubations were carried out with UDP-[14C]glucose at millimolar instead of micromolar concentrations. GP-III was soluble in TCA and in TCA-PTA and precipitable by ethanol from the TCA soluble fraction. GP-II was excluded from a Sephadex G-200 column and showed a greater size than GP-I in a Sepharose 2B column. The radioactive residues obtained from the glucan proteins after digestion with pronase were totally included in a Sephadex G-25 column and were of a greater size than the labelled residues released with salivary α-amylase. Only radioactive maltose was found after a-amylase treatment. When membranes containing labelled GP-I and GP-II were incubated with unlabelled UDP-glucose at millimolar concentrations, GP-I was converted into GP-II and GP-III was formed.  相似文献   

4.
These studies compare the secretory pathways of newly formed rat serum glycoproteins and albumin by studying their submicrosomal localization at early times after the beginning of their synthesis and also by determining the submicrosomal site of incorporation of N-acetylglucosamine, mannose, galactose, and leucine into protein. N-acetylglucosamine, mannose, and galactose were only incorporated in vitro into proteins from membrane-attached polysomes and not into proteins from free polysomes. Mannose incorporation occurred in the rough endoplasmic reticulum, was stimulated by puromycin but not by cycloheximide, and 90% of the mannose-labeled protein was bound to the membranes. Galactose incorporation, by contrast, occurred in the smooth microsome fraction and 89% of the radioactive protein was in the cisternae. Albumin was mostly recovered (98%) in the cisternae, with negligible amounts in the membranes. To determine whether the radio-active sugars were being incorporated into serum proteins or into membrane protein, the solubilized in vivo-labeled proteins were treated with specific antisera to rat serum proteins or to albumin. Immunoelectrophoresis of the 14C-labeled leucine membrane and cisternal proteins showed that the membranes contained radioactive serum glycoprotein but no albumin, while the cisternal fraction contained all of the radioactive albumin and some glycoproteins. The results indicate that newly formed serum glycoproteins remain attached to the membranes of the rough endoplasmic reticulum after they are released from the membrane-attached polysomes, while albumin passes directly into the cisternae.  相似文献   

5.
Glycosylation of endogenous phosphoisoprenyl lipids and membrane-associated proteins was shown to occur in preparations of chicken embryo fibroblasts incubated with GDP[14C]mannose and UDP-N-acetylglucosamine. The two preparations used were cells released from the culture dishes by buffered saline containing EDTA and crude membranes from those cells. Both β-mannosyl-phosphoryldolichol and oligosaccharide-phosphoryl lipids with five to eight sugar residues were labelled under the conditions employed. The oligosaccharide isolated from the octasaccharide-lipid fraction was shown to be heterogeneous after an analysis of the products formed by treatment of the oligosaccharide with glycosidases. Some of the oligosaccharides appeared to contain N-acetylglucosamine at positions external to that of [14C]mannose. Lipids with oligosaccharide moieties of different structures were made by the two preparations. The results of pulse-chase experiments were consistent with the glycosylated lipids being intermediates in glycoprotein biosynthesis.  相似文献   

6.
The distribution of membrane-bound enzymes involved in mannan biosynthesis in plasma and mesosomal membranes of Micrococcus lysodeikticus has been investigated.Isolated mesosomal vesicles, unlike plasma membrane preparations, cannot catalyze the transfer of [14C]mannose from GDP-[14C]mannose into mannan. This appears to result from the inability of this membrane system to synthesize the carrier lipid [14C]mannosyl-l-phosphorylundecaprenol. In contrast, this is the major manno-lipid synthesized from GDP-[14C]mannose by isolated plasma membranes. The possibility that substrate inaccessibility could account for the failure to detect the enzyme in isolated mesosomal vesicles appears unlikely from the lack of activity following disruption of the vesicles with ultrasound or with surface active agents.Both membrane preparations possessed the ability to catalyse the transfer of [14C]mannose from purified [14C]mannosyl-l-phosphorylundecaprenol into mannan. Furthermore, free mannan and mannan located on both unlabeled mesosomal and unlabeled plasma membranes could act as acceptors of [14C]mannosyl units from 14C-labeled carrier lipid located in prelabeled plasma membranes. The possibility that the juxtaposition of mesosomal vesicles and enveloping plasma membrane (i.e. the mesosomal sacculus) in vivo allows mannan, located on mesosomal vesicles, to accept mannosyl units from carrier lipid located in the sacculus membrane is discussed.  相似文献   

7.
The effect of alpha-dihydrodecaprenyl phosphate, dolichyl phosphate and solanesyl phosphate on the lipid intermediate pathway for protein glycosylation was studied with crude membrane fraction prepared from AH 70Btc hepatoma cells. alpha-Dihydrodecaprenyl phosphate increased the incorporations of [14C]mannose from GDP-[14C]mannose into CHCl3-CH3OH (2:1, v/v) extract, oligosaccharide-lipid and proteins. The above and the other data showed that alpha-dihydrodecaprenyl phosphate may function as a mannose carrier in the lipid intermediate pathway.  相似文献   

8.
1. Subcellular fractions isolated from livers of 19-day-old chicken embryos were analyzed in order to assess whether liver mitochondria contained glycosylated proteins or had mannosyl- or sialyl-transferases that could transfer sugars to mitochondrial macromolecules. 2. Proteins in liver mitochondrial membranes and matrix fractions were screened for their affinities for concanavalin A (Con A). 3. After separation by gel electrophoresis under denaturing conditions, a significant number of the proteins bound [125I]Con A, and the binding of the lectin was substantially inhibited by alpha-methyl-D-mannoside. 4. In addition, radio-iodinated matrix proteins were screened for lectin-binding properties by chromatography on Con A covalently linked to agarose. 5. A number of proteins, representing 14% of those loaded onto the column, became tightly bound to the agarose-linked lectin, and the molecular weights of several of those proteins are reported. 6. Mannosyltransferase activities were measured in fractions highly enriched for mitochondria. 7. In the reactions, mannose was transferred from guanosine diphosphomannose to materials insoluble in 0.3% trichloroacetic acid or in chloroform:methanol (2:1). 8. The fractions also catalyzed the transfer of mannose to materials extractable in chloroform:methanol and which migrated with the Rf of dolichol phosphate on Silica Gel H. 9. Dolichol phosphate stimulated the transfer of mannose to those materials extractable in the organic solvents. 10. Marker enzyme analyses indicated that the mannosyl transferase activity in the mitochondrial fraction could not be accounted for entirely by contaminating microsomal membranes. 11. Although sialyltransferase activity was detected also in the mitochondrial fractions, the levels of the activity and the kinetics of the reactions indicated that Golgi membranes were most likely the sources of the enzyme.  相似文献   

9.
—An in vitro system from the frog has been used to study fast axonal transport of glycoproteins. The migration of [3H]fucose-, [3H]glucosamine- and [35S]sulphate-labelled material was followed from the dorsal ganglia, along the sciatic nerve towards the gastrocnemius muscle. The distribution in different subcellular fractions, effect of cycloheximide and transport kinetics did not differ very much between fucose- and glucosamine-incorporation into the nerve. Cycloheximide blocked the synthesis of TCA-insoluble radioactivity, which was transported at a rate of 60–90 mm per day at 18°C, more effectively than the synthesis of stationary proteins in the ganglia. About 10 per cent of the TCA-insoluble and transported radioactivity was extracted by chloroform-methanol (2:1, v/v) and might be glycolipids and the rest glycoproteins. Results suggest that TCA-soluble activity, which was recovered in the nerve, originated in part from labelled macromolecules consumed along the axons. The rapidly transported TCA-insoluble radioactivity was 85 per cent particulate and mainly associated with structures sedimenting in the microsomal fraction. [35S]Sulphate-labelled TCA-insoluble material was resistant towards chloroform-methanol (2:1, v/v) extraction and rapidly transported from the ganglia into the nerve. The synthesis was inhibited by cycloheximide. The material, probably proteoglycans, represented a quantitatively minor part of transported glycoproteins.  相似文献   

10.
Free N-acetylsialic acid (NeuNAc) and CMP-N-acetylsialic acids (CMP-NeuNAc) are extracted from freeze-clamped or liquid nitrogen-frozen biological material by sequential extraction with cold acetone and acetone/water. [14C]NeuNAc and [14C]CMP-NeuNAc (20,000 dpm each) are added to the frozen material to correct for small losses occurring during the subsequent steps. NeuNAc and CMP-NeuNAc are separated by anion-exchange chromatography. CMP-NeuNAc is hydrolyzed with formic acid and again chromatographed on an ion-exchange column. The NeuNAc-containing fractions (representing free NeuNAc and CMP-NeuNAc) are converted to [14C]CMP-NeuNAc in the presence of [14C]CTP and CMP-NeuNAc synthetase. [14C]CMP-NeuNAc is separated by paper chromatography and the radioactivity measured by liquid scintillation counting. The amount of NeuNAc is calculated from a calibration curve obtained with NeuNAc standards. The small amounts of [14C]NeuNAc and [14C]CMP-NeuNAc added initially do not interfere with the final assay. The method gives reliable values down to 50 pmol/assay, but the sensitivity can be easily increased by a factor of 10. Recoveries, with NeuNAc and CMP-NeuNAc added to biological extracts, were 98.3 and 98.5% for NeuNAc and CMP-NeuNAc, respectively. With this method values of 61.2 ± 12.8 and 24.4 ± 5.2 nmol/g wet wt were found in rat liver for free NeuNAc and CMP-NeuNAc, respectively. Values for free NeuNAc found in human blood plasma were 600 ± 476 and 373 ± 180 pmol/g plasma for healthy persons and patients with breast cancer, respectively. Free CMP-NeuNAc could not be found in plasma.  相似文献   

11.
Hamsters were injected intraperitoneally with [14C]mannose, [14C]retinol and [3H]mevalonic acid. The livers were removed, extracted with chloroform-methanol and the lipids chromatographed on DEAE-cellulose and silicic acid. The hamster liver lipid contained a component which could be labelled with mannose and mevalonic acid. The properties of this compound were in accord with it being dolichyl-mannosyl-phosphate, a possible lipid intermediate required for the biosynthesis of some glycoproteins. [14C]Retinol and [14C] mannose were incorporated into another phospholipid which was labile to mild alkali conditions commonly used for the preparation of dolichyl-mannosyl-phosphate. The retinol labelled compound had similar properties to in vitro prepared mannosyl-retinyl-phosphate.  相似文献   

12.
Docosahexaenoic acid (DHA, 22:6n-3), the most prevalent fatty acid in phospholipids of rod outer segments (ROS), is essential for visual transduction and daily renewal of ROS membranes. We investigated the association of [3H]DHA-lipids to rhodopsin in ROS from frogs (Rana pipiens) after in vitro (4 hrs) and in vivo (1 day and 32 days) labeling. Lipids from lyophilized ROS were sequentially extracted with hexane (neutral lipids), chloroform:methanol (phospholipids) and acidified chloroform:methanol (acidic phospholipids). After in vitro labeling, free [3H]DHA was easily extracted with hexane (66% of total ROS free DHA), implying a weak association with proteins (rhodopsin). In contrast, after in vivo labeling free [3H]DHA was mainly recovered in the acidic solvent extract (89–99%). Of all phospholipids, [3H-DHA]phosphatidic acid (PA) displayed the highest binding to rhodopsin after both in vitro (43% in acidic extract) and in vivo (>70%) labeling suggesting a possible modulatory role of free DHA and DHA-PA in visual transduction.  相似文献   

13.
A membrane fraction with sarcolemmal properties was purified from the smooth muscle layers (myometrium) of rat uterus by successive differential and equilibrium centrifugation in sucrose. The putative sarcolemmal fraction was identified by iodination with [125I]iodosulfanilic acid, had an equilibrium density of 1.15, and was enriched in enzyme activities usually associated with the plasma membrane including 5′-nucleotidase (EC 3.1.3.5) and (Na+ + K+) ATPase (EC 3.6.1.3). These membranes were free of mitochondrial or nuclear membrane contamination, suggesting the relative enrichment of sarcolemmal membranes in the fraction. Proteins of the membranes were heterogeneous with respect to molecular weight, but only a few were labelled when intact muscle was radioiodinated. Uniform resistance of sarcolemmal proteins to trypsin digestion and salt extraction suggested many are tightly bound or intrinsic membrane proteins and was a further indication of the homogeneity of membranes in this fraction.  相似文献   

14.
Microsomal preparations from rat adipose tissue catalyse the transfer of [14C]mannose from GDP-[14C]mannose to an endogenous acceptor forming a [14C]mannosyl lipid. The mannosyl lipid co-chromatographs with hen oviduct dolichyl monophosphate β-mannose on three solvent systems. It is stable to mild alkaline hydrolysis, but strong alkaline treatment yields a compound that co-migrates with mannose 1-phosphate. The mannosyl lipid is labile to mild acid hydrolysis, yielding [14C]mannose. Formation of the compound is reversible by GDP, but not GMP, and is stimulated by exogenous dolichyl phosphate.

The kinetics of transfer of [14C]mannose from GDP-[14C]mannose to form dolichyl monophosphate mannose were studied by using preparations derived from rats fed on one of four diets: G (high glucose), L (high lard), F (fructose) or GC (high glucose, 0.9% cholesterol). The Km and Vmax. values for transfer from GDP-mannose were virtually indistinguishable in the four preparations.

In the absence of exogenous dolichyl phosphate, the largest amount of transfer of [14C]mannose into the mannosyl lipid was observed with preparations from fructose-fed animals. Preparations from glucose-fed animals showed about 60% as much transfer, whereas membranes from rats fed the other diets showed intermediate values between the fructose- and glucose-fed animals. The inclusion of cholesterol in the glucose diet elicited an increase in transfer of mannose.

Under conditions of saturating exogenous dolichyl phosphate, preparations from lard-fed animals have 1.5 times as much enzyme activity as do preparations from animals fed the other three diets.

  相似文献   

15.
The labelled glycopeptides obtained by Pronase digestion of rat intestinal epithelial cell membranes were examined by gel filtration after injection of D-[2-3H]mannose and L-[6-3H]fucose. Three labelled fraction were eluted in the following order from Bio-Gel P-6, Fraction I, which was excluded from the gel, was labelled mostly with [3H]fucose and slightly with [3H]mannose. Fraction II contained "complex" asparagine-linked oligosaccharides since it was labelled with [3H]mannose and [3H]fucose, was stable to mild alkali treatment, and resistant to endo-beta-N-acetyl-glucosaminidase H. Fraction III contained "high-mannose" asparagine-linked oligosaccharides, which were labelled with [3H]mannose, but not with [3H]fucose; these were sensitive to endo-beta-N-acetylglucosaminidase H, and were adsorbed on concanavalin A-Sepharose and subsequently eluted with methyl alpha-D-mannopyranoside. The time course of incorporation of [3H]mannose into these glycopeptides in microsomal fractions showed that high-mannose oligosaccharides were precursors of complex oligosaccharides. The rate of this processing was faster in rapidly dividing crypt cells than in differentiated villus cells. The ratio of radioactively labelled complex oligosaccharides to high-mannose oligosaccharides, 3h after [3H]mannose injection, was greater in crypt than in villus-cell lateral membranes. Luminal membranes of both crypt and villus cells were greatly enriched in labelled complex oligosaccharides compared with the labelling in lateral-basal membranes. These studies show that intestinal epithelial cells are polarized with respect to the structure of the asparagine-linked oligosaccharides on their membrane glycoproteins. During differentiation of these cells quantitative differences in labelled membrane glycopeptides, But no major qualitative change, were observed.  相似文献   

16.
Cholesterol readily exchanges between human skin fibroblasts and unilamellar phospholipid vesicles. Only a fraction of the exchangeable cholesterol and only 10–15% of the total cellular free cholesterol is available for net movement or depletion to cholesterol-free phosphatidylcholine vesicles. [14C]Cholesterol introduced into the fibroblast plasma membrane by exchange from lipid vesicles does not readily equilibrate with fibroblast cholesterol labelled endogenously from [3H]mevalonic acid. While endogenously-synthesized [3H]cholesterol readily becomes incorporated into a pool of esterified cholesterol, little, if any, of the [14C]cholesterol introduced into the fibroblast plasma membrane by exchange from lipid vesicles becomes available for esterification. We interpret these findings as suggesting that: (1) net cholesterol movement from fibroblasts to an acceptor membrane is limited to a small percentage of the plasma membrane cholesterol, and (2) separate pools of cholesterol exist in human skin fibroblasts, one associated with the plasma membrane and the second associated with intracellular membranes, and equilibration of cholesterol between the two pools is a very limited process.  相似文献   

17.
Neuraminidase in Calf Retinal Outer Segment Membranes   总被引:1,自引:1,他引:0  
Abstract: An enzyme catalyzing the hydrolysis of sialic acid ( N -acetylneuraminic acid: NeuNAc)-containing glycoconjugates has been found in bovine retinal rod outer segment (ROS) membranes. The enzymatic activity is optimal at pH 4.0 and is stimulated by 0.15% Triton X-100. Total activity was determined by the release of NeuNAc from endogenous and exogenous substrates (GDla). The ROS enzyme preferentially hydrolyses the ROS gangliosides, possibly because they are more accessible than the glycoproteins as substrates for the neuraminidase. Release of NeuNAc from gangliosides leads to important changes in the ganglioside patterns; whereas the amounts of GM1 increased throughout the incubation, the levels of polysialogangliosides GTlb and GD3 diminished owing to their rapid hydrolysis. The finding that gangliosides are hydrolysed more extensively than glycoproteins suggests that endogenous ROS gangliosides may be the principal source of metabolically available sialic acid in ROS. It was also observed that the activity of ROS neuraminidase is not affected by illumination of the membranes.  相似文献   

18.
The transfer of mannose from GDP[14C]mannose to lipid and to insoluble polymer by a particulate preparation of Phaseolus aureus has been investigated. The evidence favours the lipid being a prenol phosphate mannose. Of a range of prenol phosphates tried, betulaprenol phosphate was the most effective exogenous acceptor of mannose. Most of the insoluble [14C]polymer formed was glycoprotein in nature although small quantities of 14C were associated with glucomannan and galactoglucomannan fractions. Time studies failed to reveal a typical precursor-product relationship between the lipid and polymer fractions but on incubation of [14C]mannolipid with the particulate fraction a small transfer (0·5–0·7%) of [14C] to polymer was detected. p-Hydroxymercuribenzoate inhibited (by 90%) the transfer of [14C] from GDP[14C]-mannoseto polymer and simultaneously increased (3-fold) the [14C] recovered in the lipid fraction. The effect was nullified by mercaptoethanol. Attempts to solubilize the transfer system were only partially successful. The formation of a chromatographically identical mannolipid was demonstrated in particulate fractions of Codium fragile and tomato roots.  相似文献   

19.
White matter membrane preparations from pig brain catalyze the transfer of [14C]mannose from exogenous [14C]mannosylphosphoryldolichol into an endogenous oligosaccharide lipid. Under the same incubation conditions label is also incorporated into endogenous membrane glycoproteins. The enzymatic labeling of both classes of endogenous acceptors is stimulated by the addition of Ca2+. Several enzymatic properties of the mannosyltransferase activity responsible for the transfer of mannose from mannosylphosphoryldolichol into the oligosaccharide lipid intermediate have been examined. The [Man-14C] oligosaccharide lipid synthesized by this in vitro system has the solubility, hydrolytic and chromatographic characteristics of a pyrophosphate-linked oligosaccharide derivative of dolichol. The free [Man-14C]oligosaccharide liberated from the carrier lipid by mild acid treatment is estimated to contain 8 glycose units. All of the [14C]mannosyl units in the [Man-14C]oligosaccharide derived from exogenous [14C]mannosylphosphoryldolichol are released as free [14C]mannose by an α-mannosi-dase. No [14C]mannose is released during incubation with a β-mannosidase. The presence of an N,N′-diacetylchitobiose unit at the reducing end of the lipid-bound [Man-14C]oligosaccharide is indicated by its susceptibility to digestion by endo-β-N-acetylglucosaminidase H. Pronase digestion of the enzymatically labeled [Man-14C]glycoprotein yields a single [Man-14C]gly-copeptide fraction on Bio-Gel P-6 that appears to be slightly larger than the free [Man-14C]oligosac-charide released from the carrier lipid by mild acid hydrolysis. The [Man-14C]glycopeptide is cleaved by endo-β-N-acetylglucosaminidase H, and the neutral [Man-14C]oligosaccharide product appears to be identical to the product formed when the lipid-bound [Man-14C]oligosaccharide is degraded by the endoglycosidase. The glycopeptide linkage in the [Man-14C]glycoprotein is stable to mild alkali treatment. These results are consistent with the dolichol-linked [Man-14C]oligosaccharide, mannosy-lated via exogenous [14C]mannosylphosphoryldoiichol, being subsequently transferred en bloc from dolichyl pyrophosphate to asparagine residues in endogenous membrane polypeptide acceptors. SDS-polyacrylamide gel electrophoresis of the [Man-14C]glycoprotein, labeled when white matter membranes are incubated with [14C]mannosylphosphoryldolichol. revealed a major labeled polypeptide with an apparent mol wt of 24,000. A minor labeled membrane glycoprotein is also seen, having an apparent mol wt of 105,000.  相似文献   

20.
1. Non-desmosomal plasma membranes enriched in plasma-membrane marker enzymes and in metabolically labelled glycoproteins were isolated on a large scale from up to 500g of pig ear skin slices. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and periodic acid/Schiff staining revealed the presence of four major glycosylated components in the apparent molecular-weight range 150000–80000. 2. A large proportion of the marker enzymes, the d-[3H]glucosamine-labelled glycoproteins and the periodic acid/Schiff-stained glycoproteins were solubilized by 1% (w/v) sodium deoxycholate. However, several non-glycosylated proteins, in particular those with mol.wts. 81000, 41000 and 38000 (possibly cytoskeletal components), were relatively resistant to solubilization. 3. The deoxycholate-solubilized membranes were fractionated by lectin affinity chromatography using both concanavalin A–Sepharose 4B and lentil lectin–Sepharose 4B. From 75 to 85% of the applied glycoprotein was recovered from the columns. From 30 to 40% of the recovered glycoprotein was specifically bound by the lectins and was eluted with 2% (w/v) α-methyl d-mannoside. The enrichment of labelled glycoproteins in the material bound by the lectins (2.5-fold) was similar with both lectins, although the yield was somewhat greater when lentil lectin was used. The glycoprotein-enriched fraction was also enriched in all the plasma-membrane marker enzymes, indicating their probable glycoprotein nature. 4. The glycoprotein-enriched fraction contained the four major periodic acid/Schiff-stained bands that were detected in the original plasma membrane. They had apparent mol.wts. 147000, 130500, 108000 and 91400. The higher-molecular-weight components contained relatively more d-[3H]glucosamine, indicating differences in the sugar composition or in the metabolic turnover of the individual glycoproteins in culture. The material bound by the lectins also contained a number of lower-molecular-weight Coomassie Brilliant Blue-stained components. These were weakly stained by periodic acid/Schiff reagent and were lightly labelled with d-[3H]glucosamine, indicating that they contained less carbohydrate than the four major glycoprotein bands. 5. Chloroform/methanol-extracted plasma membranes and isolated glycoproteins had a similar carbohydrate composition, containing sialic acid, hexosamine, fucose, xylose, mannose, galactose and glucose. Glucose was not enriched in the isolated glycoproteins, suggesting that it may be a contaminant. Xylose, however, was enriched in the isolated glycoproteins. It remains to be established whether this sugar, which is not usually found in plasma-membrane glycoproteins, is a genuine constituent of plasma-membrane glycoproteins in the epidermis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号