共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
3.
Moe Matsuo Tetsuhiro Shimodaira Takashi Kasama Yukie Hata Ayumi Echigo Masaki Okabe Kazuya Arai Yasutaka Makino Shin-Ichiro Niwa Hideyuki Saya Toshihiko Kishimoto 《PloS one》2013,8(11)
The completion of cytokinesis is crucial for mitotic cell division. Cleavage furrow ingression is followed by the breaking and resealing of the intercellular bridge, but the detailed mechanism underlying this phenomenon remains unknown. Katanin is a microtubule-severing protein comprised of an AAA ATPase subunit and an accessory subunit designated as p60 and p80, respectively. Localization of katanin p60 was observed at the midzone to midbody from anaphase to cytokinesis in rat cells, and showed a ring-shaped distribution in the gap between the inside of the contractile ring and the central spindle bundle in telophase. Katanin p60 did not bind with p80 at the midzone or midbody, and localization was shown to be dependent on microtubules. At the central spindle and the midbody, no microtubule growth plus termini were seen with katanin p60, and microtubule density was inversely correlated with katanin p60 density in the region of katanin p60 localization that seemed to lead to microtubule destabilization at the midbody. Inhibition of katanin p60 resulted in incomplete cytokinesis by regression and thus caused the appearance of binucleate cells. These results suggest that katanin p60 contributes to microtubule instability at the midzone and midbody and facilitates cytokinesis in rat cells. 相似文献
4.
Alexander Braun Nicole M. Caesar Kyvan Dang Kenneth A. Myers 《Journal of visualized experiments : JoVE》2016,(114)
The physiological process by which new vasculature forms from existing vasculature requires specific signaling events that trigger morphological changes within individual endothelial cells (ECs). These processes are critical for homeostatic maintenance such as wound healing, and are also crucial in promoting tumor growth and metastasis. EC morphology is defined by the organization of the cytoskeleton, a tightly regulated system of actin and microtubule (MT) dynamics that is known to control EC branching, polarity and directional migration, essential components of angiogenesis. To study MT dynamics, we used high-resolution fluorescence microscopy coupled with computational image analysis of fluorescently-labeled MT plus-ends to investigate MT growth dynamics and the regulation of EC branching morphology and directional migration. Time-lapse imaging of living Human Umbilical Vein Endothelial Cells (HUVECs) was performed following transfection with fluorescently-labeled MT End Binding protein 3 (EB3) and Mitotic Centromere Associated Kinesin (MCAK)-specific cDNA constructs to evaluate effects on MT dynamics. PlusTipTracker software was used to track EB3-labeled MT plus ends in order to measure MT growth speeds and MT growth lifetimes in time-lapse images. This methodology allows for the study of MT dynamics and the identification of how localized regulation of MT dynamics within sub-cellular regions contributes to the angiogenic processes of EC branching and migration. 相似文献
5.
6.
7.
8.
Matthew S. Savoian 《Journal of biomolecular techniques》2015,26(2):66-73
In dividing animal cells, a microtubule (MT)-based bipolar spindle governs chromosome movement. Current models propose that the spindle facilitates and/or generates translocating forces by regionally depolymerizing the kinetochore fibers (k-fibers) that bind each chromosome. It is unclear how conserved these sites and the resultant chromosome-moving mechanisms are between different dividing cell types because of the technical challenges of quantitatively studying MTs in many specimens. In particular, our knowledge of MT kinetics during the sperm-producing male meiotic divisions remains in its infancy. In this study, I use an easy-to-implement photobleaching-based assay for measuring spindle MT dynamics in primary cultures of meiotic spermatocytes isolated from the fruit fly Drosophila melanogaster. By use of standard scanning confocal microscopy features, fiducial marks were photobleached on fluorescent protein (FP)-tagged MTs. These were followed by time-lapse imaging during different division stages, and their displacement rates were calculated using public domain software. I find that k-fibers continually shorten at their poles during metaphase and anaphase A through the process of MT flux. Anaphase chromosome movement is complemented by Pac-Man, the shortening of the k-fiber at its chromosomal interface. Thus, Drosophila spermatocytes share the sites of spindle dynamism and mechanisms of chromosome movement with mitotic cells. The data reveal the applicability of the photobleaching assay for measuring MT dynamics in primary cultures. This approach can be readily applied to other systems. 相似文献
9.
Aminata P. Nacoulma Veronique Megalizzi Laurent R. Pottier Manuela De Lorenzi Sylviane Thoret Jo?lle Dubois Olivier M. Vandeputte Pierre Duez Danny Vereecke Mondher El Jaziri 《PloS one》2013,8(10)
Aims
Though plant metabolic changes are known to occur during interactions with bacteria, these were rarely challenged for pharmacologically active compounds suitable for further drug development. Here, the occurrence of specific chemicals with antiproliferative activity against human cancer cell lines was evidenced in hyperplasia (leafy galls) induced when plants interact with particular phytopathogens, such as the Actinomycete Rhodococcus fascians.Methods
We examined leafy galls fraction F3.1.1 on cell proliferation, cell division and cytoskeletal disorganization of human cancer cell lines using time-lapse videomicroscopy imaging, combined with flow cytometry and immunofluorescence analysis. We determined the F3.1.1-fraction composition by gas chromatography coupled to mass spectrometry.Results
The leafy galls induced on tobacco by R. fascians yielded fraction F3.1.1 which inhibited proliferation of glioblastoma U373 cells with an IC50 of 4.5 µg/mL, F.3.1.1 was shown to increase cell division duration, cause nuclear morphological deformations and cell enlargement, and, at higher concentrations, karyokinesis defects leading to polyploidization and apoptosis. F3.1.1 consisted of a mixture of isomers belonging to the cembrenoids. The cellular defects induced by F3.1.1 were caused by a peculiar cytoskeletal disorganization, with the occurrence of fragmented tubulin and strongly organized microtubule aggregates within the same cell. Colchicine, paclitaxel, and cembrene also affected U373 cell proliferation and karyokinesis, but the induced microtubule rearrangement was very different from that provoked by F3.1.1. Altogether our data indicate that the cembrenoid isomers in F3.1.1 have a unique mode of action and are able to simultaneously modulate microtubule polymerization and stability. 相似文献10.
Stepwise Reconstitution of Interphase Microtubule Dynamics in Permeabilized Cells and Comparison to Dynamic Mechanisms in Intact Cells 总被引:2,自引:0,他引:2 下载免费PDF全文
Yasmina Saoudi Rati Fotedar Ariane Abrieu Marcel Dore Jürgen Wehland Robert L. Margolis Didier Job 《The Journal of cell biology》1998,142(6):1519-1532
Microtubules in permeabilized cells are devoid of dynamic activity and are insensitive to depolymerizing drugs such as nocodazole. Using this model system we have established conditions for stepwise reconstitution of microtubule dynamics in permeabilized interphase cells when supplemented with various cell extracts. When permeabilized cells are supplemented with mammalian cell extracts in the presence of protein phosphatase inhibitors, microtubules become sensitive to nocodazole. Depolymerization induced by nocodazole proceeds from microtubule plus ends, whereas microtubule minus ends remain inactive. Such nocodazole-sensitive microtubules do not exhibit subunit turnover. By contrast, when permeabilized cells are supplemented with Xenopus egg extracts, microtubules actively turn over. This involves continuous creation of free microtubule minus ends through microtubule fragmentation. Newly created minus ends apparently serve as sites of microtubule depolymerization, while net microtubule polymerization occurs at microtubule plus ends. We provide evidence that similar microtubule fragmentation and minus end–directed disassembly occur at the whole-cell level in intact cells. These data suggest that microtubule dynamics resembling dynamics observed in vivo can be reconstituted in permeabilized cells. This model system should provide means for in vitro assays to identify molecules important in regulating microtubule dynamics. Furthermore, our data support recent work suggesting that microtubule treadmilling is an important mechanism of microtubule turnover. 相似文献
11.
Jeffrey K. Bailey Alexander T. Fields Kaijian Cheng Albert Lee Eric Wagenaar Remy Lagrois Bailey Schmidt Bin Xia Dzwokai Ma 《The Journal of biological chemistry》2015,290(14):8987-9001
Cytokinesis partitions the cytoplasm of a parent cell into two daughter cells and is essential for the completion of cell division. The final step of cytokinesis in animal cells is abscission, which is a process leading to the physical separation of two daughter cells. Abscission requires membrane traffic and microtubule disassembly at a specific midbody region called the secondary ingression. Here, we report that WD repeat-containing protein 5 (WDR5), a core subunit of COMPASS/MLL family histone H3 lysine 4 methyltransferase (H3K4MT) complexes, resides at the midbody and associates with a subset of midbody regulatory proteins, including PRC1 and CYK4/MKLP1. Knockdown of WDR5 impairs abscission and increases the incidence of multinucleated cells. Further investigation revealed that the abscission delay is primarily due to slower formation of secondary ingressions in WDR5 knockdown cells. Consistent with these defects, midbody microtubules in WDR5 knockdown cells also display enhanced resistance to depolymerization by nocodazole. Recruitment of WDR5 to the midbody dark zone appears to require integrity of the WDR5 central arginine-binding cavity, as mutations that disrupt histone H3 and MLL1 binding to this pocket also abolish the midbody localization of WDR5. Taken together, these data suggest that WDR5 is specifically targeted to the midbody in the absence of chromatin and that it promotes abscission, perhaps by facilitating midbody microtubule disassembly. 相似文献
12.
13.
Astral Microtubule Dynamics in Yeast: A Microtubule-based Searching Mechanism for Spindle Orientation and Nuclear Migration into the Bud 总被引:21,自引:2,他引:21 下载免费PDF全文
Sidney L. Shaw Elaine Yeh Paul Maddox E.D. Salmon Kerry Bloom 《The Journal of cell biology》1997,139(4):985-994
Localization of dynein–green fluorescent protein (GFP) to cytoplasmic microtubules allowed us to obtain one of the first views of the dynamic properties of astral microtubules in live budding yeast. Several novel aspects of microtubule function were revealed by time-lapse, three-dimensional fluorescence microscopy. Astral microtubules, about four to six in number for each pole, exhibited asynchronous dynamic instability throughout the cell cycle, growing at 0.3–1.5 μm/min toward the cell surface then switching to shortening at similar velocities back to the spindle pole body (SPB). During interphase, a conical array of microtubules trailed the SPB as the nucleus traversed the cytoplasm. Microtubule disassembly by nocodozole inhibited these movements, indicating that the nucleus was pushed around the interior of the cell via dynamic astral microtubules. These forays were evident in unbudded G1 cells, as well as in late telophase cells after spindle disassembly. Nuclear movement and orientation to the bud neck in S/G2 or G2/M was dependent on dynamic astral microtubules growing into the bud. The SPB and nucleus were then pulled toward the bud neck, and further microtubule growth from that SPB was mainly oriented toward the bud. After SPB separation and central spindle formation, a temporal delay in the acquisition of cytoplasmic dynein at one of the spindle poles was evident. Stable microtubule interactions with the cell cortex were rarely observed during anaphase, and did not appear to contribute significantly to spindle alignment or elongation into the bud. Alterations of microtubule dynamics, as observed in cells overexpressing dynein-GFP, resulted in eventual spindle misalignment. These studies provide the first mechanistic basis for understanding how spindle orientation and nuclear positioning are established and are indicative of a microtubule-based searching mechanism that requires dynamic microtubules for nuclear migration into the bud. 相似文献
14.
微管骨架是细胞骨架系统的主要组成成员,大多数微管的一个显著特征便是具有能够不断解聚、聚合的动态特性,这是微管骨架完成诸多生理功能的重要保证。本文着重介绍了有关微管的动态模型及其体内、体外组装的不同特点,并进一步探讨了生物体在各层次、各水平上对细胞内微管行为的调控。 相似文献
15.
16.
Aaron C. Groen Thomas J. Maresca Jesse C. Gatlin Edward D. Salmon Timothy J. Mitchison 《Molecular biology of the cell》2009,20(11):2766-2773
Distinct pathways from centrosomes and chromatin are thought to contribute in parallel to microtubule nucleation and stabilization during animal cell mitotic spindle assembly, but their full mechanisms are not known. We investigated the function of three proposed nucleation/stabilization factors, TPX2, γ-tubulin and XMAP215, in chromatin-promoted assembly of anastral spindles in Xenopus laevis egg extract. In addition to conventional depletion-add back experiments, we tested whether factors could substitute for each other, indicative of functional redundancy. All three factors were required for microtubule polymerization and bipolar spindle assembly around chromatin beads. Depletion of TPX2 was partially rescued by the addition of excess XMAP215 or EB1, or inhibiting MCAK (a Kinesin-13). Depletion of either γ-tubulin or XMAP215 was partially rescued by adding back XMAP215, but not by adding any of the other factors. These data reveal functional redundancy between specific assembly factors in the chromatin pathway, suggesting individual proteins or pathways commonly viewed to be essential may not have entirely unique functions. 相似文献
17.
ATX-2, the C. elegans Ortholog of Human Ataxin-2, Regulates Centrosome Size and Microtubule Dynamics
Centrosomes are critical sites for orchestrating microtubule dynamics, and exhibit dynamic changes in size during the cell cycle. As cells progress to mitosis, centrosomes recruit more microtubules (MT) to form mitotic bipolar spindles that ensure proper chromosome segregation. We report a new role for ATX-2, a C. elegans ortholog of Human Ataxin-2, in regulating centrosome size and MT dynamics. ATX-2, an RNA-binding protein, forms a complex with SZY-20 in an RNA-independent fashion. Depleting ATX-2 results in embryonic lethality and cytokinesis failure, and restores centrosome duplication to zyg-1 mutants. In this pathway, SZY-20 promotes ATX-2 abundance, which inversely correlates with centrosome size. Centrosomes depleted of ATX-2 exhibit elevated levels of centrosome factors (ZYG-1, SPD-5, γ-Tubulin), increasing MT nucleating activity but impeding MT growth. We show that ATX-2 influences MT behavior through γ-Tubulin at the centrosome. Our data suggest that RNA-binding proteins play an active role in controlling MT dynamics and provide insight into the control of proper centrosome size and MT dynamics. 相似文献
18.
Steven T. Suhr Eun Ah Chang Ramon M. Rodriguez Kai Wang Pablo J. Ross Zeki Beyhan Shashanka Murthy Jose B. Cibelli 《PloS one》2009,4(12)
Background
Human induced pluripotent stem cells (IPSCs) have enormous potential in the development of cellular models of human disease and represent a potential source of autologous cells and tissues for therapeutic use. A question remains as to the biological age of IPSCs, in particular when isolated from older subjects. Studies of cloned animals indicate that somatic cells reprogrammed to pluripotency variably display telomere elongation, a common indicator of cell “rejuvenation.”Methodology/Principal Findings
We examined telomere lengths in human skin fibroblasts isolated from younger and older subjects, fibroblasts converted to IPSCs, and IPSCs redifferentiated through teratoma formation and explant culture. In IPSCs analyzed at passage five (P5), telomeres were significantly elongated in 6/7 lines by >40% and approximated telomere lengths in human embryonic stem cells (hESCs). In cell lines derived from three IPSC-teratoma explants cultured to P5, two displayed telomeres shortened to lengths similar to input fibroblasts while the third line retained elongated telomeres.Conclusions/Significance
While these results reveal some heterogeneity in the reprogramming process with respect to telomere length, human somatic cells reprogrammed to pluripotency generally displayed elongated telomeres that suggest that they will not age prematurely when isolated from subjects of essentially any age. 相似文献19.
20.