首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Campylobacter infections have been reported at prevalences ranging from 2 to 50% in a range of wild bird species, although there have been few studies that have investigated the molecular epidemiology of Campylobacter spp. Consequently, whether wild birds are a source of infection in humans or domestic livestock or are mainly recipients of domestic animal strains and whether separate cycles of infection occur remain unknown. To address these questions, serial cross-sectional surveys of wild bird populations in northern England were carried out over a 2-year period. Fecal samples were collected from 2,084 wild bird individuals and screened for the presence of Campylobacter spp. A total of 56 isolates were recovered from 29 birds sampled at 15 of 167 diverse locales. Campylobacter jejuni, Campylobacter lari, and Campylobacter coli were detected by PCR, and the prevalences of different Campylobacter spp. in different avian families ranged from 0% to 33%. Characterization of 36 C. jejuni isolates by multilocus sequence typing revealed that wild birds carry both livestock-associated and unique strains of C. jejuni. However, the apparent absence of unique wild bird strains of C. jejuni in livestock suggests that the direction of infection is predominantly from livestock to wild birds. C. lari was detected mainly in wild birds sampled in an estuarine or coastal habitat. Fifteen C. lari isolates were analyzed by macrorestriction pulsed-field gel electrophoresis, which revealed genetically diverse populations of C. lari in Eurasian oystercatchers (Haematopus ostralegus) and clonal populations in magpies (Pica pica).Infection with Campylobacter spp. continues to be the leading cause of human infectious intestinal disease in the United Kingdom and has a significant economic impact (39). Consequently, there is a continuing effort to identify effective control methods. The majority of human infections (∼90%) are caused by Campylobacter jejuni subsp. jejuni (46). Other Campylobacter species, including Campylobacter coli and Campylobacter lari, can also cause enteritis in humans, but their prevalence is lower. Most C. jejuni infections are believed to result from consumption of contaminated food, including poultry meat (27, 40), red meat (52), and milk (13), which is thought to be contaminated primarily by feces. It is well established that most livestock species, including poultry, ruminants, and pigs, carry C. jejuni asymptomatically (27), making control at the farm level difficult. However, the epidemiology of C. jejuni cannot be explained solely by food-borne exposure; C. jejuni has also been isolated from a range of environmental samples, including samples of soil, water, sand, and the feces of a number of wildlife species, including wild birds (1-3). However, the role that non-food-borne exposure plays in the epidemiology of C. jejuni is currently not well defined.High prevalences of Campylobacter species infections have been found in a wide range of wild bird species, although there is great variation between taxa (2, 4, 7, 16, 35, 47, 48). Given their ability to fly long distances and their ubiquity, wild birds have the potential to play an important role in the epidemiology and evolution of Campylobacter spp. However, whether wild birds are a source of infection for humans or domestic livestock or are mainly recipients of domestic animal strains or, indeed, whether separate cycles of infection occur remain unknown. These questions remain unanswered in part because investigations of the epidemiology of Campylobacter spp. have been complicated by their high inter- and intraspecies genetic diversity (6).The methods that have been routinely used to characterize Campylobacter isolates are restricted due to genomic instability in Campylobacter populations (10, 38, 45). Multilocus sequence typing (MLST) is a method that has the advantage of being objective since it is sequence based, which allows comparison of isolates from different laboratories and accurate determination of relationships between isolates from diverse sources (11). MLST studies of C. jejuni in farm animals and the environment, including wildlife, suggest that some strains may be associated with particular host groups (6, 10, 15, 30). However, in the same studies other strains were found to occur in several host species or habitats. Few studies have investigated the molecular epidemiology of Campylobacter infection in wild bird populations using MLST, and because only a relatively small number of isolates from wild birds have been characterized by MLST, conclusions have not been drawn yet about how wild bird isolates fit into the overall phylogenetic scheme or whether wild birds act as reservoirs, amplifiers, or merely indicators of infection of domestic animals with zoonotic genotypes.In the current study a large cross-sectional survey of wild bird populations in northern England was undertaken to investigate the epidemiology of Campylobacter infection. Previous studies that have focused on the epidemiology of Campylobacter spp. solely in wild birds have investigated either a narrow range of taxonomic groups (2, 5, 17, 23, 29, 33, 43, 50) or wild birds from a limited range of habitats (18, 25, 48). Studies that have investigated a broad range of wild bird species have used Campylobacter characterization techniques that do not allow conclusions about possible host associations to be drawn or comparison of the genetic diversity of isolates between studies (21, 25, 34, 47, 53). Therefore, the aims of this study were (i) to determine the host range and prevalence of Campylobacter spp. in a wild bird population and (ii) through molecular characterization of isolates to determine whether wild birds were a likely source of infection in humans or domestic livestock and whether separate cycles of infection with host-adapted strains of Campylobacter spp. were maintained in the wild bird population.  相似文献   

2.
Significant interest in studying the lipooligosaccharide (LOS) of Campylobacter jejuni has stemmed from its potential role in postinfection paralytic disorders. In this study we present the results of PCR screening of five LOS locus classes (A, B, C, D, and E) for a collection of 116 C. jejuni isolates from chicken meat (n = 76) and sporadic human cases of diarrhea (n = 40). We correlated LOS classes with clonal complexes (CC) assigned by multilocus sequence typing (MLST). Finally, we evaluated the invasion potential of a panel of 52 of these C. jejuni isolates for Caco-2 cells. PCR screening showed that 87.1% (101/116) of isolates could be assigned to LOS class A, B, C, D, or E. Concordance between LOS classes and certain MLST CC was revealed. The majority (85.7% [24/28]) of C. jejuni isolates grouped in CC-21 were shown to express LOS locus class C. The invasion potential of C. jejuni isolates possessing sialylated LOS (n = 29; classes A, B, and C) for Caco-2 cells was significantly higher (P < 0.0001) than that of C. jejuni isolates with nonsialylated LOS (n = 23; classes D and E). There was no significant difference in invasiveness between chicken meat and human isolates. However, C. jejuni isolates assigned to CC-206 (correlated with LOS class B) or CC-21 (correlated with LOS class C) showed statistically significantly higher levels of invasion than isolates from other CC. Correlation between LOS classes and CC was further confirmed by pulsed-field gel electrophoresis. The present study reveals a correlation between genotypic diversity and LOS locus classes of C. jejuni. We showed that simple PCR screening for C. jejuni LOS classes could reliably predict certain MLST CC and add to the interpretation of molecular-typing results. Our study corroborates that sialylation of LOS is advantageous for C. jejuni fitness and virulence in different hosts. The modulation of cell surface carbohydrate structure could enhance the ability of C. jejuni to adapt to or survive in a host.Campylobacter jejuni is an important human enteric pathogen worldwide (3, 7, 26). Infected humans exhibit a range of clinical spectra, from mild, watery diarrhea to severe inflammatory diarrhea (28). Factors influencing the virulence of C. jejuni include motility, chemotaxis, the ability to adhere to and invade intestinal cells, intracellular survival, and toxin production (28, 30, 52). Besides its role in human enteric illnesses, C. jejuni is a predominant infectious trigger of acute postinfectious neuropathies, such as Guillain-Barré syndrome (GBS) and Miller Fisher syndrome (MFS) (1). Significant interest in studying the structure and biosynthesis of the core lipooligosaccharide (LOS) of C. jejuni has resulted from its potential role in these paralytic disorders. Many studies have now provided convincing evidence that molecular mimicry between C. jejuni LOS and gangliosides in human peripheral nerve tissue plays an important causal role in the pathogenesis of GBS/MFS (16, 17, 19, 21).Initial comparative studies of C. jejuni LOS structure and the corresponding DNA sequences of the LOS biosynthesis loci identified eight different LOS locus classes. Three of these classes, A, B, and C, harbor sialyltransferase genes involved in incorporating sialic acid into the LOS (42). Sialylation of the LOS core was found to be associated with ganglioside mimicry and also to affect immunogenicity and serum resistance (21). Recently, Parker et al. (43) identified 11 additional LOS classes on the basis of the sequence at the LOS biosynthesis locus. Their investigation also suggested that the LOS loci of C. jejuni strains are hot spots for genetic exchange, which can lead to mosaicism.Despite evidence on locus variation within C. jejuni LOS classes, PCR-based screening of a collection of 123 clinical and environmental strains showed that almost 60% of C. jejuni strains belong to class A, B, or C (42). Additionally, Godschalk et al. (16) found that 53% (9/17) of GBS-associated C. jejuni strains possessed LOS of class A, while 64% (35/55) of the non-GBS-associated isolates possessed LOS of class A, B, or C, and 62% (13/21) of enteritis-associated Campylobacter strains expressed LOS of class A, B, or C, as well. This relative representation of sialylated LOS classes A, B, and C was hypothesized to be advantageous for C. jejuni in the colonization and infection of various hosts (42, 49). Recently, Louwen et al. (34) demonstrated that C. jejuni strains possessing sialylated LOS (class A, B, or C) invade Caco-2 cells significantly better than nonsialylated strains (with class D or E). Knockout mutagenesis of the LOS sialyltransferase Cst-II in three C. jejuni strains revealed a significant reduction in the invasion potentials of the mutant strains (34). The possible role of LOS in adhesion and invasion was previously highlighted in the work of Perera et al. (44) and Kanipes et al. (29), where a C. jejuni waaF mutant strain showed significant reductions in levels of adherence to and invasion of INT-407 cells.LOS class diversity in C. jejuni strains isolated from chicken meat, an important source of human campylobacteriosis (6, 7, 26), has hardly been studied at all. In addition, the role of LOS class variation in the invasion potential of C. jejuni strains from chicken meat still needs to be explored. The epidemiological relevance of C. jejuni LOS gene screening can be further elaborated by correlating its results with results from other molecular-typing tools (e.g., multilocus sequence typing [MLST] and pulsed-field gel electrophoresis [PFGE]). In the present study, we screened a diverse collection of C. jejuni isolates, from consumer-packaged chicken meats and from sporadic human cases of diarrhea, by PCR for five LOS classes (A, B, C, D, and E). Then we correlated the LOS classes assigned by PCR screening with the genotypes assigned by PFGE and MLST. Finally, we tested the invasion potentials of a representative subset of C. jejuni isolates in relation to their LOS classes and genotypic diversity.  相似文献   

3.
4.
The presence and functionality of DNA repair mechanisms in Campylobacter jejuni are largely unknown. In silico analysis of the complete translated genome of C. jejuni NCTC 11168 suggests the presence of genes involved in methyl-directed mismatch repair (MMR), nucleotide excision repair, base excision repair (BER), and recombinational repair. To assess the functionality of these putative repair mechanisms in C. jejuni, mutS, uvrB, ung, and recA knockout mutants were constructed and analyzed for their ability to repair spontaneous point mutations, UV irradiation-induced DNA damage, and nicked DNA. Inactivation of the different putative DNA repair genes did not alter the spontaneous mutation frequency. Disruption of the UvrB and RecA orthologues, but not the putative MutS or Ung proteins, resulted in a significant reduction in viability after exposure to UV irradiation. Assays performed with uracil-containing plasmid DNA showed that the putative uracil-DNA glycosylase (Ung) protein, important for initiation of the BER pathway, is also functional in C. jejuni. Inactivation of recA also resulted in a loss of natural transformation. Overall, the data indicate that C. jejuni has multiple functional DNA repair systems that may protect against DNA damage and limit the generation of genetic diversity. On the other hand, the apparent absence of a functional MMR pathway may enhance the frequency of on-and-off switching of phase variable genes typical for C. jejuni and may contribute to the genetic heterogeneity of the C. jejuni population.The gram-negative, microaerophilic bacterium Campylobacter jejuni is one of the most frequent causes of human bacterial gastroenteritis worldwide (7). Infections with C. jejuni are also associated with the development of a paralyzing neuropathy, the Guillain-Barré syndrome (64). C. jejuni can be isolated from various sources, including the chicken intestine and surface water (38). At the population level, C. jejuni is genetically highly diverse (11, 60, 62), which may facilitate bacterial environmental adaptation. Genetic diversity in C. jejuni is generated via horizontal gene transfer (9, 10, 51), intragenomic rearrangements (9), and the presence of numerous stretches of nucleotide repeats that are prone to mispairing during DNA replication (26, 41, 42, 46). In addition, the genomic DNA is probably subject to various types of damage caused by a range of endogenous and environmental factors which may cause single- or double-strand breaks, nucleotide modifications, abasic sites, bulky adducts, and mismatches (14). Virtually all bacteria have evolved more or less sophisticated DNA repair mechanisms to limit the detrimental effects of DNA damage and to maintain the structure and genetic integrity of their DNA (16). The importance of DNA repair for the survival and genetic diversity of C. jejuni, however, is still largely unknown.Bacterial DNA repair mechanisms can be divided into three classes, namely, direct repair, excision repair, and recombinational repair (14). Direct repair involves the reversal of the mutagenic event without the need for synthesis of a new phosphodiester bond. During excision repair, DNA abnormalities are removed and repaired using the intact strand as a template. Recombinational repair involves the reversal of DNA abnormalities via homologous recombination. In contrast to direct repair, DNA repair by excision and recombination does require synthesis of new phosphodiester bonds (56). The focus of the current work is on the presence of the latter two repair mechanisms in C. jejuni.Most knowledge of excision and recombinational DNA repair processes comes from studies of Escherichia coli. In E. coli, methyl-directed mismatch repair (MMR) is operating at the level of excision repair. MMR repairs replication errors that arise from misincorporations (mismatches) and strand slippage (frameshift errors). In addition, MMR inhibits recombination between homologous sequences (47). During MMR, MutS recognizes and binds to replication errors and, together with MutL, activates MutH. This protein cleaves the unmethylated daughter strand at hemimethylated GATC sequences. Part of the daughter strand with the mutation is excised by single-strand nucleases, and the gap is repaired (25, 37). A second excision repair mechanism of E. coli is nucleotide excision repair (NER). NER detects and repairs conformational changes present in DNA. Major components of the NER pathway are the UvrABC proteins. The UvrA and UvrB proteins form the damage recognition complex. After binding to the DNA, UvrB forms a stable complex with the damaged DNA (UvrB-DNA) and UvrA dissociates. UvrC binds to the UvrB-DNA complex, and incisions are made, thereby excising the damaged DNA as a 12- or 13-nucleotide-long oligomer. The resulting gap is repaired using the undamaged strand as a template (55). The third excision repair mechanism of E. coli is base excision repair (BER). This system detects and repairs modified bases. Different glycosylases, such as the uracil-DNA glycosylase Ung, are involved in the recognition of specific DNA alterations. These enzymes remove damaged bases from the DNA by cleavage of N-glycosylic bonds, leaving an apurinic or apyrimidinic site (AP site). An AP endonuclease (XthA) is necessary for cleavage of the phosphodiester bond, and the remaining deoxyribose phosphate moiety is removed by a deoxyribose phosphodiesterase (RecJ) after which the gap in the DNA is repaired (49). The recombinational repair mechanism of E. coli is involved in the repair of stalled or collapsed replication forks caused by conformational changes resulting from unrepaired mutations (8). When nicks or other lesions are present in the DNA, E. coli RecA binds to the damaged DNA and catalyzes recombinational repair via double-strand break repair or daughter strand gap repair (35).The subset and specificity of DNA repair mechanisms differ between species (1). The goal of this study was to decipher the presence and functionality of three excision repair mechanisms (MMR, NER, and BER) and RecA-dependent recombinational repair in C. jejuni. Using a set of genetically defined mutants, we present evidence that recombinational repair and the NER system, but not the MMR pathway, are functional in C. jejuni. In addition, proof was obtained that C. jejuni has a functional Ung protein involved in the BER pathway.  相似文献   

5.
Campylobacter jejuni is a recognized and common gastrointestinal pathogen in most parts of the world. Human infections are often food borne, and the bacterium is frequent among poultry and other food animals. However, much less is known about the epidemiology of C. jejuni in the environment and what mechanisms the bacterium depends on to tolerate low pH. The sensitive nature of C. jejuni stands in contrast to the fact that it is difficult to eradicate from poultry production, and even more contradictory is the fact that the bacterium is able to survive the acidic passage through the human stomach. Here we expand the knowledge on C. jejuni acid tolerance by looking at protozoa as a potential epidemiological pathway of infection. Our results showed that when C. jejuni cells were coincubated with Acanthamoeba polyphaga in acidified phosphate-buffered saline (PBS) or tap water, the bacteria could tolerate pHs far below those in their normal range, even surviving at pH 4 for 20 h and at pH 2 for 5 h. Interestingly, moderately acidic conditions (pH 4 and 5) were shown to trigger C. jejuni motility as well as to increase adhesion/internalization of bacteria into A. polyphaga. Taken together, the results suggest that protozoa may act as protective hosts against harsh conditions and might be a potential risk factor for C. jejuni infections. These findings may be important for our understanding of C. jejuni passage through the gastrointestinal tract and for hygiene practices used in poultry settings.Campylobacter jejuni is a major cause of human bacterial enteritis, with an incidence exceeding that of Salmonella spp. or Escherichia coli O157 (6, 28). Most infections are associated with consumption of contaminated food, primarily undercooked chicken meat, but unchlorinated water and unpasteurized milk can also be sources of Campylobacter infection (reviewed in reference 13). Apart from food-borne sources, additional risk factors include close contact with pets or farm animals and activities in recreational waters (reviewed in reference 13). C. jejuni is widely distributed in many animals and has also been reported to be isolated from surface waters (15) and, occasionally, even from groundwater (31). However, the bacterium has been shown to be relatively sensitive to environmental stress outside its hosts, including heating, disinfectants, oxygen exposure, osmotic stress, desiccation, and acidity (5, 9, 19, 35).Several hygiene practices have been implemented in broiler production facilities to reduce C. jejuni carriage in live birds. Such measures include hygiene barriers such as changing clothes before entering the broiler houses and disinfection of the interior of the building with acid between flock rotations (20). Such efforts may reduce the number of C. jejuni organisms, but the bacterium is still difficult to eradicate from contaminated farms, and subsequent outbreaks at the same farm are not rare (11). Contradictory to its fragility in different in vitro settings, C. jejuni seems to be well adapted to survive the acidic milieu of the human stomach during the passage to the lower intestinal tract, where infection is established. This is illustrated by the very low infectious dose for both broiler chickens (7) and humans (4) and indicates that the bacterium has developed strategies to avoid or withstand low pH in order to survive the transit. The gastric acid is the first line of defense against ingested pathogens. During fasting conditions in healthy humans, the luminal pH in the stomach is usually around 2.0, but it may range from 1.5 to 5.5 depending on food intake, such as a diet with a high pH, or the use of proton pump inhibitors (36). Laboratory studies have demonstrated that C. jejuni in solution survives a maximum of 30 min at pH levels below pH 2.5 and for up to 60 min at pH 3 (5, 23). When the bacterium is mixed with food, it seems to be protected, and it has been shown that C. jejuni inoculated onto ground beef survived at pH 2.5 for 2 h at 37°C (37).In the last few years, laboratory studies have identified a new potential epidemiological pathway for C. jejuni in which the bacterium colonizes unicellular eukaryotic organisms (protozoa) and thereby acquires protection from adverse environmental conditions (2, 17, 29). C. jejuni can colonize protozoa and survive longer in its protozoan host than as a free-living bacterium, and given the right temperature, the bacterium can also replicate intracellularly (1, 2). Protozoa, especially amoebae, serve as natural reservoirs or vehicles for the dissemination of several other pathogenic bacteria, including Legionella pneumophila (25), Vibrio cholerae (34), and Helicobacter pylori (38). Amoebae are abundant in virtually all natural water systems and can be found grazing on biofilms in water supply systems (14). In their trophozoite form, amoebae are naturally resistant to many environmental factors that are lethal to Campylobacter, and they can multiply at pHs ranging from 4 to 12 (16). Moreover, amoebae can enter a cyst form when challenged with unfavorable conditions. These cysts generally have a double cell wall that might explain their capability to survive chlorination, antimicrobials, and changes in pH and osmotic pressure. This resistance feature of amoebae makes them suitable hosts for other, less-resistant microorganisms (16, 32).In this study, we built on the advances gained in protozoa-Campylobacter research and investigated whether internalization of C. jejuni into Acanthamoeba affects bacterial tolerance to hydrochloric acid. Using an in vitro setup, we found that C. jejuni survived better in an acidic environment when it was coincubated with amoebae than when it was incubated as bacteria in solution. Furthermore, we show that bacterial motility and adhesion to and internalization into amoeba are trigged by moderately acidic conditions. The implications of these findings for the survival of C. jejuni in food production as well as in transit through the human stomach are discussed.  相似文献   

6.
The microaerophilic human pathogen Campylobacter jejuni is the leading cause of food-borne bacterial gastroenteritis in the developed world. During transmission through the food chain and the environment, the organism must survive stressful environmental conditions, particularly high oxygen levels. Biofilm formation has been suggested to play a role in the environmental survival of this organism. In this work we show that C. jejuni NCTC 11168 biofilms developed more rapidly under environmental and food-chain-relevant aerobic conditions (20% O2) than under microaerobic conditions (5% O2, 10% CO2), although final levels of biofilms were comparable after 3 days. Staining of biofilms with Congo red gave results similar to those obtained with the commonly used crystal violet staining. The level of biofilm formation by nonmotile aflagellate strains was lower than that observed for the motile flagellated strain but nonetheless increased under aerobic conditions, suggesting the presence of flagellum-dependent and flagellum-independent mechanisms of biofilm formation in C. jejuni. Moreover, preformed biofilms shed high numbers of viable C. jejuni cells into the culture supernatant independently of the oxygen concentration, suggesting a continuous passive release of cells into the medium rather than a condition-specific active mechanism of dispersal. We conclude that under aerobic or stressful conditions, C. jejuni adapts to a biofilm lifestyle, allowing survival under detrimental conditions, and that such a biofilm can function as a reservoir of viable planktonic cells. The increased level of biofilm formation under aerobic conditions is likely to be an adaptation contributing to the zoonotic lifestyle of C. jejuni.Infection with Campylobacter jejuni is the leading cause of food-borne bacterial gastroenteritis in the developed world and is often associated with the consumption of undercooked poultry products (19). The United Kingdom Health Protection Agency reported more than 45,000 laboratory-confirmed cases for England and Wales in 2006 alone, although this is thought to be a 5- to 10-fold underestimation of the total number of community incidents (20, 43). The symptoms associated with C. jejuni infection usually last between 2 and 5 days and include diarrhea, vomiting, and stomach pains. Sequelae of C. jejuni infection include more-serious autoimmune diseases, such as Guillain-Barré syndrome, Miller-Fisher syndrome (18), and reactive arthritis (15).Poultry represents a major natural reservoir for C. jejuni, since the organism is usually considered to be a commensal and can reach densities as high as 1 × 108 CFU g of cecal contents−1 (35). As a result, large numbers of bacteria are shed via feces into the environment, and consequently, C. jejuni can spread rapidly through a flock of birds in a broiler house (1). While well adapted to life in the avian host, C. jejuni must survive during transit between hosts and on food products under stressful storage conditions, including high and low temperatures and atmospheric oxygen levels. The organism must therefore have mechanisms to protect itself from unfavorable conditions.Biofilm formation is a well-characterized bacterial mode of growth and survival, where the surface-attached and matrix-encased bacteria are protected from stressful environmental conditions, such as UV radiation, predation, and desiccation (7, 8, 28). Bacteria in biofilms are also known to be >1,000-fold more resistant to disinfectants and antimicrobials than their planktonic counterparts (11). Several reports have now shown that Campylobacter species are capable of forming a monospecies biofilm (21, 22) and can colonize a preexisting biofilm (14). Biofilm formation can be demonstrated under laboratory conditions, and environmental biofilms, from poultry-rearing facilities, have been shown to contain Campylobacter (5, 32, 44). Campylobacter biofilms allow the organism to survive up to twice as long under atmospheric conditions (2, 21) and in water systems (27).Molecular understanding of biofilm formation by Campylobacter is still in its infancy, although there is evidence for the role of flagella and gene regulation in biofilm formation. Indeed, a flaAB mutant shows reduced biofilm formation (34); mutants defective in flagellar modification (cj1337) and assembly (fliS) are defective in adhering to glass surfaces (21); and a proteomic study of biofilm-grown cells shows increased levels of motility-associated proteins, including FlaA, FlaB, FliD, FlgG, and FlgG2 (22). Flagella are also implicated in adhesion and in biofilm formation and development in other bacterial species, including Aeromonas, Vibrio, Yersinia, and Pseudomonas species (3, 23, 24, 31, 42).Previous studies of Campylobacter biofilms have focused mostly on biofilm formation under standard microaerobic laboratory conditions. In this work we have examined the formation of biofilms by motile and nonmotile C. jejuni strains under atmospheric conditions that are relevant to the survival of this organism in a commercial context of environmental and food-based transmission.  相似文献   

7.
The purpose of this work was to evaluate the evolutionary history of Campylobacter coli isolates derived from multiple host sources and to use microarray comparative genomic hybridization to assess whether there are particular genes comprising the dispensable portion of the genome that are more commonly associated with certain host species. Genotyping and ClonalFrame analyses of an expanded 16-gene multilocus sequence typing (MLST) data set involving 85 isolates from 4 different hosts species tentatively supported the development of C. coli host-preferred groups and suggested that recombination has played various roles in their diversification; however, geography could not be excluded as a contributing factor underlying the history of some of the groups. Population genetic analyses of the C. coli pubMLST database by use of STRUCTURE suggested that isolates from swine form a relatively homogeneous genetic group, that chicken and human isolates show considerable genetic overlap, that isolates from ducks and wild birds have similarity with environmental water samples and that turkey isolates have a connection with human infection similar to that observed for chickens. Analysis of molecular variance (AMOVA) was performed on these same data and suggested that host species was a significant factor in explaining genetic variation and that macrogeography (North America, Europe, and the United Kingdom) was not. The microarray comparative genomic hybridization data suggested that there were combinations of genes more commonly associated with isolates derived from particular hosts and, combined with the results on evolutionary history, suggest that this is due to a combination of common ancestry in some cases and lateral gene transfer in others.Campylobacter species are a leading bacterial cause of gastroenteritis within the United States and throughout much of the rest of the developed world. According to the CDC, there are an estimated 2 million to 4 million cases of Campylobacter illness each year in the United States (37). Campylobacter jejuni is generally recognized as the predominant cause of campylobacteriosis, responsible for approximately 90% of reported cases, while the majority of the remainder are caused by the closely related sister species Campylobacter coli (27). Not surprisingly, therefore, the majority of research on Campylobacter has centered on C. jejuni, and C. coli is a less studied organism.A multilocus sequence typing (MLST) scheme of C. jejuni was first developed by Dingle et al. (13) on the basis of the genome sequence of C. jejuni NCTC 11168. There have also been a number of studies using the genome sequence data to develop microarrays for gene presence/absence determination across strains of C. jejuni and to identify the core genome components for the species (6, 15, 32, 33, 42, 43, 53, 57). Although C. coli is responsible for fewer food-borne illnesses than C. jejuni, the impact of C. coli is still substantial, and there is also evidence that C. coli may carry higher levels of resistance to some antibiotics (1). C. coli and C. jejuni also tend to differ in their relative prevalences in animal host species and various environmental sources (4, 48, 58), and there is some evidence that both taxa may include groups of host-specific putative ecotype strains (7, 36, 38, 39, 52, 56). At present, there is only a single draft genome sequence available for C. coli, and there are no microarray comparative genomic hybridization data for C. coli strains. Thus, there is no information on intraspecies variability in gene presence/absence in C. coli and how such variability might correlate with host species.The purpose of this work was to develop and apply an expanded 16-locus MLST genotyping scheme to evaluate the evolutionary history of Campylobacter coli isolates derived from multiple host sources and to use microarray comparative genomic hybridization to assess whether there are particular genes comprising the dispensable portion of the genome that are more commonly associated with isolates derived from different host species.  相似文献   

8.
Source attribution using molecular subtypes has implicated cattle and sheep as sources of human Campylobacter infection. Whether the Campylobacter subtypes associated with cattle and sheep vary spatiotemporally remains poorly known, especially at national levels. Here we describe spatiotemporal patterns of prevalence, bacterial enumeration, and subtype composition in Campylobacter isolates from cattle and sheep feces from northeastern (63 farms, 414 samples) and southwestern (71 farms, 449 samples) Scotland during 2005 to 2006. Isolates (201) were categorized as sequence type (ST), as clonal complex (CC), and as Campylobacter jejuni or Campylobacter coli using multilocus sequence typing (MLST). No significant difference in average prevalence (cattle, 22%; sheep, 25%) or average enumeration (cattle, 2.7 × 104 CFU/g; sheep, 2.0 × 105 CFU/g) was found between hosts or regions. The four most common STs (C. jejuni ST-19, ST-42, and ST-61 and C. coli ST-827) occurred in both hosts, whereas STs of the C. coli ST-828 clonal complex were more common in sheep. Neither host yielded evidence for regional differences in ST, CC, or MLST allele composition. Isolates from the two hosts combined, categorized as ST or CC, were more similar within than between farms but showed no further spatiotemporal trends up to 330 km and 50 weeks between farm samples. In contrast, both regions yielded evidence for significant differences in ST, CC, and allele composition between hosts, such that 65% of isolates could be attributed to a known host. These results suggest that cattle and sheep within the spatiotemporal scales analyzed are each capable of contributing homogeneous Campylobacter strains to human infections.Campylobacter species are the largest cause of bacterial intestinal infection in the developed and developing world (3). Almost all reported human Campylobacter infections in the United Kingdom are caused by Campylobacter jejuni, which accounts for approximately 92% of cases, and Campylobacter coli, which accounts for most of the rest (8). Campylobacter species are carried asymptomatically in a wide range of host animals and excreted into the environment in feces (23). Humans can be infected by several routes including consumption of contaminated water (14) or food (23); indeed, case control studies indicate that consumption of poultry meat is a risk factor (11, 12, 28), but other foods including unpasteurized milk (33) and meat from cattle and sheep contaminated at the abattoir might be important (30).Cattle and sheep on farms are major hosts of Campylobacter, with up to 89% of cattle herds (31) and up to 55% of sheep flocks (26) being infected. The prevalence of C. jejuni and C. coli combined, estimated at the level of individual animals from fecal specimens, is 23 to 54% in cattle (22, 25) and up to 20% in sheep (37). Campylobacter enumeration in feces shed from individual animals ranges from <102 to 107 CFU/g in both hosts (31), and the concentration shed varies with time. Meat products of cattle and sheep, by contrast, have generally lower levels of Campylobacter contamination. Prevalence values are 0.5 to 4.9% in surveys of retail beef (11a, 17, 36) and 6.9 to 12.6% in surveys of retail lamb and mutton (17, 35).Clinical Campylobacter strains can be attributed to infection sources in animals by comparing subtype frequencies in clinical cases with those in different candidate sources, including cattle, sheep, pigs, and the physical environment. Campylobacter subtype data sets are most transferable when subtypes are defined as sequence type (ST) using multilocus sequence typing (MLST). Three recent MLST-based studies based in northwestern England (34), mainland Scotland (29), northeastern Scotland (32), and New Zealand (24) have used source attribution models to infer the source of human clinical infection. The results suggest that retail chicken is the source with the highest (55 to 80%) attribution while cattle and sheep combined are ranked second (20 to 40%). These attribution models require further empirical validation but appear to be showing broadly similar results.Attribution of human Campylobacter infections to cattle and sheep raises the question of whether Campylobacter subtypes infecting farm cattle and sheep are generally homogeneous or tend to have spatiotemporal structure. Regarding spatial differences, isolates of C. jejuni from a 100-km2 study of farmland area with dairy cattle and sheep in northwestern England displayed increased genetic similarity up to 1 km apart but no further trend over distances of 1 to 14 km apart (7), and isolates from three dairy cattle farms 2 or 5 km apart in the same area demonstrated differences in the frequencies of strains of clonal complexes (CCs) ST-42 and ST-61 (15). Regarding temporal differences, isolates of C. jejuni from five dairy cattle farms in the same area demonstrated differences in the frequency of strains of CC ST-61 between the spring and summer of 2003 (15). Lastly, regarding host-associated strains, STs of CCs ST-21, ST-42, and ST-61 are associated with cattle, and the more limited data for STs from sheep also show the presence of ST-21 and ST-61 (7, 15).The larger-scale spatiotemporal structure of Campylobacter strains from cattle and sheep is poorly known. The main aims of the present study were (i) to characterize C. jejuni and C. coli from cattle and sheep from two distinct geographical Scottish regions in terms of Campylobacter prevalence and enumeration and C. jejuni and C. coli ST composition and (ii) to estimate the extent of host association of C. jejuni and C. coli STs from cattle versus sheep.  相似文献   

9.
Campylobacter jejuni, a gram-negative, microaerophilic bacterium, is a predominant cause of bacterial gastroenteritis in humans. Although considered fragile and fastidious and lacking many classical stress response mechanisms, C. jejuni exhibits a remarkable capacity for survival and adaptation, successfully infecting humans and persisting in the environment. Consequently, understanding the physiological and genetic properties that allow C. jejuni to survive and adapt to various stress conditions is crucial for therapeutic interventions. Of importance is polyphosphate (poly-P) kinase 1 (PPK1), which is a key enzyme mediating the synthesis of poly-P, an essential molecule for survival, mediating stress responses, host colonization, and virulence in many bacteria. Therefore, we investigated the role of PPK1 in C. jejuni pathogenesis, stress survival, and adaptation. Our findings demonstrate that a C. jejuni Δppk1 mutant was deficient in poly-P accumulation, which was associated with a decreased ability to form viable-but-nonculturable cells under acid stress. The Δppk1 mutant also showed a decreased frequency of natural transformation and an increased susceptibility to various antimicrobials. Furthermore, the Δppk1 mutant was characterized by a dose-dependent deficiency in chicken colonization. Complementation of the Δppk1 mutant with the wild-type copy of ppk1 restored the deficient phenotypes to levels similar to those of the wild type. Our results suggest that poly-P plays an important role in stress survival and adaptation and might contribute to genome plasticity and the spread and development of antimicrobial resistance in C. jejuni. These findings highlight the potential of PPK1 as a novel target for therapeutic interventions.Campylobacter jejuni, a gram-negative, microaerophilic bacterium, occurs as a commensal among the intestinal microflora of various animals, especially chickens and cattle (6, 73). However, C. jejuni can infect human hosts, invading the intestinal mucosa and causing watery and/or bloody diarrhea (9). C. jejuni is transmitted to humans primarily through the consumption of contaminated chicken products, raw milk, or water (2, 3). Currently, C. jejuni is considered a leading bacterial cause of human food-borne gastroenteritis (3, 61) and has also been associated with a plethora of symptoms, including acute neuromuscular paralysis (Guillain-Barré syndrome) (26). Since an appropriate vaccine for human campylobacteriosis has yet to be introduced, it has been suggested that C. jejuni infections might be alternatively controlled by reducing colonization in food animals (73). Consequently, determining the physiological and genetic properties that allow the survival of C. jejuni and its colonization of animal hosts, pathogenicity, and adaptation to various stresses is of critical importance.The mechanisms underlying C. jejuni adaptation and survival under stresses imposed by its environment and host are not well understood. High variability between different C. jejuni strains and the unavailability of appropriate genetic tools and animal models have contributed to the lack of knowledge regarding its stress tolerance and pathogenicity. However, it is suggested that the capacity of C. jejuni to form viable-but-nonculturable (VBNC) cells under stress (14) and its readiness for natural transformation (68) and acquiring resistance to antibiotics (39) are among the strategies that promote stress adaptation and survival. Although little is known about the genetics underlying these processes, recent advances in C. jejuni genomics show that this bacterium carries several important genes that might play key roles in mediating stress adaptation and survival. Of particular interest are genes encoding polyphosphate (poly-P) kinases, ppk1 (CJJ81176_1361) and ppk2 (CJJ81176_0633), that were predicted to be involved in the metabolism of poly-P (22, 25, 47), an intracellular granule that impacts several physiological properties in many bacterial species, including pathogenicity, host colonization, adaptation to different environments, and survival (28, 31, 46).Poly-P kinase 1 (PPK1) is encoded by ppk1, which mediates the synthesis of all or most of the poly-P in the cell (33), while ppk2 encodes an enzyme (PPK2) that synthesizes GTP from poly-P (27). Both ppk genes have been associated with the metabolism of poly-P, which consists of phosphate residues that are linked by high-energy phosphoanhydride bonds and is widely distributed in bacterial species (60). Previous reports showed that poly-P plays important roles in bacterial survival and stress tolerance, including ATP production (8), entry of DNA through membrane channels (13, 54), capsule composition (67), maintaining nutritional requirements during starvation (34), motility, biofilm formation, and resistance to oxidative, osmotic, heat, acid and alkaline stresses, and stationary-phase survival (28, 31, 46, 48, 50, 52, 65). Because of their importance in many bacterial species, it is not surprising to assume a role for PPK and poly-P in C. jejuni survival, colonization, and stress tolerance (8).Interestingly, PPK1 has been shown to be important for C. jejuni stress responses and pathogenicity (10). However, the role of ppk1 in key metabolic and physiological responses of C. jejuni still needs further analysis. For instance, it has been proposed that during starvation, poly-P might act as a reservoir for phosphorus and energy (7). Subsequently, poly-P would be crucial for maintaining viability/metabolism in stressed cells. This has been observed in H. pylori, where the occurrence of poly-P correlated with culturability and structurally intact cells (45). Poly-P-containing nonculturable H. pylori showed a capacity for ATP and mRNA synthesis after a nutrient stimulus (45). Consequently, poly-P might be an important factor for the formation of VBNC cells by stressed bacteria, including C. jejuni. Furthermore, natural transformation is perhaps one of the most important mechanisms in the adaptation of C. jejuni, and poly-P has been reported to play a role in the entry of DNA through membrane channels (13, 54). It follows that poly-P might be important for natural transformation, adaptation, and acquisition of antibiotic resistance genes in C. jejuni. Poly-P can further impact the survival and adaptation in C. jejuni by modulating antibiotic resistance properties. For example, poly-P interacted with Escherichia coli ribosomes (42), which are known targets of several antibiotics. These observations suggest that ppk1 might be linked to important physiology and functions such as VBNC cell formation, natural transformation, and antimicrobial resistance in C. jejuni. Therefore, in the present study, we determined the contribution of PPK1 to C. jejuni stress responses and adaptation, including the ability to form VBNC cells under acid stress, natural transformation, and antimicrobial resistance. Furthermore, we assessed the impact of ppk1 deletion on in vivo chicken colonization. Our findings highlight the importance of PPK1 in C. jejuni survival, adaptation to different environmental stresses, and in vivo colonization. These findings also indicate the suitability of PPK1 as a potential target for controlling the proliferation of this pathogen.  相似文献   

10.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

11.
The ability of various subsets of poultry intestinal microbiota to protect turkeys from colonization by Campylobacter jejuni was investigated. Community subsets were generated in vivo by inoculation of day-old poults with the cecal contents of a Campylobacter-free adult turkey, followed by treatment with one antimicrobial, either virginiamycin, enrofloxacin, neomycin, or vancomycin. The C. jejuni loads of the enrofloxacin-, neomycin-, and vancomycin-derived communities were decreased by 1 log, 2 logs, and 4 logs, respectively. Examination of the constituents of the derived communities via the array-based method oligonucleotide fingerprinting of rRNA genes detected a subtype of Megamonas hypermegale specific to the C. jejuni-suppressive treatments.Campylobacter jejuni, a spiral, flagellated epsilonproteobacterial commensal of poultry, is the predominant cause of bacterial food-borne illness in the United States, resulting in approximately 2 million cases per year. A role for endogenous poultry intestinal microbiota in competitive exclusion (CE) of Campylobacter was first investigated in 1982 (38). Since then, numerous studies have attempted to identify microbes associated with Campylobacter CE. Suspensions of intestinal bacteria, isolated from Campylobacter-free adult poultry and passaged under strict anaerobic conditions, were found to protect chicks from colonization by the pathogen (31). Bacteria derived from the scrapings of broiler intestinal mucosa were proven more effective than the earlier fecal culture, a result not surprising, as Campylobacter is known to preferentially colonize cecal crypts (4, 39). The CE function of the bacterial suspensions decreased with time in storage, however (39, 40). Evidence also indicates that CE may depend on the presence of strictly anaerobic bacteria (31). As an oxygen gradient likely occurs from the host epithelium into the luminal contents, a CE role for both mucosal and luminal microbes in concert is likely.Attempts have been made to identify specific microbes antagonistic to Campylobacter, and initial attempts isolated mucin-dwelling organisms with in vitro antagonistic effects against the pathogen (35, 36). Recent experiments have identified numerous bacterial groups producing anti-Campylobacter bacteriocins (29, 41, 42, 44, 45). Direct treatment of market-weight birds with the therapeutic bacteriocin Enterococcus faecium E 50-52 is effective for removal of Campylobacter spp. immediately prior to slaughter (44).Despite progress toward a solution to contamination of poultry products by Campylobacter species, incomplete or intermittent CE protection, combined with a lack of studies addressing long-term CE efficacy, indicates that the Campylobacter colonization problem is far from solved (35). In addition, risk factors for campylobacteriosis other than direct consumption of contaminated poultry include consumption of fresh vegetables and bottled water (14). Campylobacter has been found in poultry manure used to fertilize crops as well as in runoff from these farms (22, 24, 50). We believe that novel approaches for studying microbial ecology in the gut are necessary for development of intervention strategies, including competitive exclusion.The work described here takes a functional approach to identify microbes associated with protection of the intestine from Campylobacter jejuni colonization, an approach we are calling antibiotic dissection. The cecal contents from a Campylobacter-free adult turkey were inoculated into day-old poults and the microbial communities in these poults modified by treatment with therapeutic levels of antibiotics. The resulting modified microbiota were then tested for the ability to outcompete a C. jejuni challenge, and a microbe potentially associated with C. jejuni exclusion was identified.  相似文献   

12.
A substantial sampling among domestic human campylobacter cases, chicken process lots, and cattle at slaughter was performed during the seasonal peak of human infections. Campylobacter jejuni isolates (n = 419) were subtyped using pulsed-field gel electrophoresis with SmaI, and isolates representing overlapping types (n = 212) were further subtyped using KpnI for restriction. The SmaI/KpnI profiles of 55.4% (97/175) of the human isolates were indistinguishable from those of the chicken or cattle isolates. The overlapping SmaI/KpnI subtypes accounted for 69.8% (30/43) and 15.9% (32/201) of the chicken and cattle isolates, respectively. The occurrence of identical SmaI/KpnI subtypes with human C. jejuni isolates was significantly associated with animal host species (P < 0.001). A temporal association of isolates from chickens and patients was possible in 31.4% (55/175) of the human infections. Besides chickens as sources of C. jejuni in the sporadic infections, the role of cattle appears notable. New approaches to restrict the occurrence of campylobacters in other farm animals may be needed in addition to hygienic measures in chicken production. However, only about half of the human infections were attributable to these sources.The incidence of human enteric infections caused by campylobacters is highest in the summer months, showing a consistent peak at the end of July in Finland (www.ktl.fi/attachments/suomi/julkaisut/julkaisusarja_b/2008/2008b09.pdf), as well as in other Nordic countries (16, 33). Almost 70% of campylobacter infections detected in July and August in Finland are domestically acquired, whereas the annual average proportion of domestic cases is about 30%, and most of them are caused by Campylobacter jejuni (30). The prevalence of campylobacters in Finnish broiler flocks peaks simultaneously with the human cases (7), and similar sero- and genotypes have been reported among human and poultry strains isolated in Finland and in other countries (5, 8, 21-23). Several epidemiological studies have identified the handling and consumption of raw or undercooked poultry meat as a major risk factor for campylobacter enteritis (for example, see references 18, 20, and 41), whereas opposite conclusions about the significance of the consumption of chicken meat were drawn from the Swedish case-control study among young children (2) and an extensive Danish register-based study (6).Data derived from the genotyping studies of C. jejuni isolates from human infections and animals support the current suggestion that poultry is the most important single source of sporadic campylobacteriosis (12, 22, 29). However, several reports on genotype comparisons suggest that poultry may be a less significant source of campylobacters than generally thought, and other animal reservoirs should also be considered notable sources of campylobacters pathogenic to humans (3, 8, 17, 27, 31). Studies of the temporal occurrence of campylobacters in human infections and poultry flocks have revealed that the peak in prevalence, as well as some of the overlapping sero- and genotypes, is detected in humans prior to being detected in poultry (21, 28).Although cattle are well-known carriers of campylobacters, the survival of these fragile organisms in beef is poor (39, 42). In recent years, some authors (1, 4, 10) have raised the question of an indirect association between cattle and human cases. In a Finnish study combining data from the multilocus sequence typing of campylobacters isolated from production animals and from epidemiological studies of human cases, significant associations emerged between certain sequence-type complexes from human infections and contact with cattle, the consumption of unpasteurized milk, or the tasting or consumption of raw minced meat (23).The aim of this study was to investigate the contributions of poultry and cattle as sources of human C. jejuni infections in Finland by comparing over a limited time frame the macrorestriction profiles obtained from pulsed-field gel electrophoresis (PFGE) analysis of a geographically representative collection of C. jejuni isolates from domestically acquired sporadic human infections, chicken process lots, and cattle.  相似文献   

13.
Here, we report a fluorescence in situ hybridization (FISH) method for rapid detection of Cronobacter strains in powdered infant formula (PIF) using a novel peptide nucleic acid (PNA) probe. Laboratory tests with several Enterobacteriaceae species showed that the specificity and sensitivity of the method were 100%. FISH using PNA could detect as few as 1 CFU per 10 g of Cronobacter in PIF after an 8-h enrichment step, even in a mixed population containing bacterial contaminants.Cronobacter strains were originally described as Enterobacter sakazakii (12), but they are now known to comprise a novel genus consisting of six separate genomospecies (20, 21). These opportunistic pathogens are ubiquitous in the environment and various types of food and are occasionally found in the normal human flora (11, 12, 16, 32, 47). Based on case reports, Cronobacter infections in adults are generally less severe than Cronobacter infections in newborn infants, with which a high fatality rate is associated (24).The ability to detect Cronobacter and trace possible sources of infection is essential as a means of limiting the impact of these organisms on neonatal health and maintaining consumer confidence in powdered infant formula (PIF). Conventional methods, involving isolation of individual colonies followed by biochemical identification, are more time-consuming than molecular methods, and the reliability of some currently proposed culture-based methods has been questioned (28). Recently, several PCR-based techniques have been described (23, 26, 28-31, 38). These techniques are reported to be efficient even when low levels of Cronobacter cells are found in a sample (0.36 to 66 CFU/100 g). However, PCR requires DNA extraction and does not allow direct, in situ visualization of the bacterium in a sample.Fluorescence in situ hybridization (FISH) is a method that is commonly used for bacterial identification and localization in samples. This method is based on specific binding of nucleic acid probes to particular DNA or RNA target regions (1, 2). rRNA has been regarded as the most suitable target for bacterial FISH, allowing differentiation of potentially viable cells. Traditionally, FISH methods are based on the use of conventional DNA oligonucleotide probes, and a commercial system, VIT-E sakazakii (Vermicon A.G., Munich, Germany), has been developed based on this technology (25). However, a recently developed synthetic DNA analogue, peptide nucleic acid (PNA), has been shown to provide improved hybridization performance compared to DNA probes, making FISH procedures easier and more efficient (41). Taking advantage of the PNA properties, FISH using PNA has been successfully used for detection of several clinically relevant microorganisms (5, 15, 17, 27, 34-36).  相似文献   

14.
The bacterium Helicobacter pylori is remarkable for its ability to persist in the human stomach for decades without provoking sterilizing immunity. Since repetitive DNA can facilitate adaptive genomic flexibility via increased recombination, insertion, and deletion, we searched the genomes of two H. pylori strains for nucleotide repeats. We discovered a family of genes with extensive repetitive DNA that we have termed the H. pylori RD gene family. Each gene of this family is composed of a conserved 3′ region, a variable mid-region encoding 7 and 11 amino acid repeats, and a 5′ region containing one of two possible alleles. Analysis of five complete genome sequences and PCR genotyping of 42 H. pylori strains revealed extensive variation between strains in the number, location, and arrangement of RD genes. Furthermore, examination of multiple strains isolated from a single subject''s stomach revealed intrahost variation in repeat number and composition. Despite prior evidence that the protein products of this gene family are expressed at the bacterial cell surface, enzyme-linked immunosorbent assay and immunoblot studies revealed no consistent seroreactivity to a recombinant RD protein by H. pylori-positive hosts. The pattern of repeats uncovered in the RD gene family appears to reflect slipped-strand mispairing or domain duplication, allowing for redundancy and subsequent diversity in genotype and phenotype. This novel family of hypervariable genes with conserved, repetitive, and allelic domains may represent an important locus for understanding H. pylori persistence in its natural host.Helicobacter pylori, a gram-negative bacterium, is remarkable for its ability to persist in the human stomach for decades. Colonization with H. pylori increases risk for peptic ulcer disease and gastric adenocarcinoma (53, 70) and elicits a vigorous immune response (15). The persistence of H. pylori occurs in a niche in the human body previously considered inhospitable to microbial colonization: the acidic stomach replete with proteolytic enzymes.H. pylori strains exhibit substantial genetic diversity, including extensive variation in the presence, arrangement, order, and identity of genes (2, 4-7, 25, 51, 74). Furthermore, analyses of multiple single-colony H. pylori isolates from separate stomach biopsy specimens of individual patients have demonstrated diversity, both within hosts (27, 65), and over time (36). The mechanisms that generate H. pylori genetic diversity may be among the factors that enable persistence in this environment (3, 28).While the natural ability of H. pylori for transformation and recombination may explain some of the intra- and interhost genetic variation observed in this bacterium (43), point mutations and interspecies recombination alone are not sufficient for explaining the extent of the variation in H. pylori (14, 32). The initial genomic sequencing of H. pylori strains 26695 and J99 (6, 72) revealed large amounts of repetitive DNA (1, 59). DNA repeats in bacteria are associated with mechanisms of plasticity, such as phase variation (49, 67); slipped-strand mispairing (41, 46); and increased rates of recombination, deletion, and insertion (17, 60, 62). Because many of the recombination repair and mismatch repair mechanisms common in bacteria are absent or modified in H. pylori (28-30, 56, 76), this organism may be particularly susceptible to the diversifying effects of repetitive DNA. In fact, loci in the H. pylori genome containing repetitive DNA have been shown to exhibit extensive inter- and intrahost variation (9, 10, 28, 37).We hypothesized that identification of repetitive DNA hotspots in H. pylori would allow the recognition of genes whose variation could aid in persistence. To examine this hypothesis, we conducted in silico analyses to identify open reading frames (ORFs) enriched for DNA repeats and then used a combination of sequence analyses and immunoassays to examine the patterns associated with the specific repetitive DNA observed. Our approach led to the realization that a previously identified H. pylori-specific gene family (19, 52) exhibits extensive genetic variation at multiple levels.  相似文献   

15.
16.
FlhF proteins are putative GTPases that are often necessary for one or more steps in flagellar organelle development in polarly flagellated bacteria. In Campylobacter jejuni, FlhF is required for σ54-dependent flagellar gene expression and flagellar biosynthesis, but how FlhF influences these processes is unknown. Furthermore, the GTPase activity of any FlhF protein and the requirement of this speculated activity for steps in flagellar biosynthesis remain uncharacterized. We show here that C. jejuni FlhF hydrolyzes GTP, indicating that these proteins are GTPases. C. jejuni mutants producing FlhF proteins with reduced GTPase activity were not severely defective for σ54-dependent flagellar gene expression, unlike a mutant lacking FlhF. Instead, these mutants had a propensity to lack flagella or produce flagella in improper numbers or at nonpolar locations, indicating that GTP hydrolysis by FlhF is required for proper flagellar biosynthesis. Additional studies focused on elucidating a possible role for FlhF in σ54-dependent flagellar gene expression were conducted. These studies revealed that FlhF does not influence production of or signaling between the flagellar export apparatus and the FlgSR two-component regulatory system to activate σ54. Instead, our data suggest that FlhF functions in an independent pathway that converges with or works downstream of the flagellar export apparatus-FlgSR pathway to influence σ54-dependent gene expression. This study provides corroborative biochemical and genetic analyses suggesting that different activities of the C. jejuni FlhF GTPase are required for distinct steps in flagellar gene expression and biosynthesis. Our findings are likely applicable to many polarly flagellated bacteria that utilize FlhF in flagellar biosynthesis processes.Flagellar biosynthesis in bacteria is a complex process that requires expression of more than 50 genes in a sequential manner to ensure that the encoded proteins are secreted and interact in a proper order to construct a flagellar organelle (8). Formation of a flagellum to impart swimming motility is often an essential determinant for many bacteria to infect hosts or reside in an environmental niche. As such, flagella and flagellar motility are required for Campylobacter jejuni to initiate and maintain a harmless intestinal colonization in many wild and agriculturally important animals (16, 17, 19, 35, 47, 49), which leads to large reservoirs of the bacterium in the environment and the human food supply (13). In addition, flagellar motility is essential for the bacterium to infect human hosts to cause a diarrheal disease, which can range from a mild, watery enteritis to a severe, bloody diarrheal syndrome (4). Due to its prevalence in nature and in the food supply, C. jejuni is a leading cause of enteritis in humans throughout the world (7).C. jejuni belongs to a subset of motile bacteria that produce polarly localized flagella, which includes important pathogens of humans, such as Helicobacter, Vibrio, and Pseudomonas species. These bacteria have some commonalities in mechanisms for flagellar gene expression and biosynthesis, such as using both alternative σ factors, σ28 and σ54, for expression of distinct sets of flagellar genes (1, 6, 9, 11, 18, 20-22, 26, 36, 40, 44, 45, 49). In addition, these bacteria produce the putative FlhF GTPase, which is required in each bacterium for at least one of the following: expression of a subset of flagellar genes, biosynthesis of flagella, or the polar placement of the flagella. For instance, FlhF is required for expression of some σ54- and σ28-dependent flagellar genes and for production of flagella in the classical biotype of Vibrio cholerae (10). However, V. cholerae flhF mutants of another biotype can produce a flagellum in a minority of cells, but the flagellum is at a lateral site (14). Similar lateral flagella were found in flhF mutants of Pseudomonas aeruginosa and Pseudomonas putida (34, 37). FlhF of Vibrio alginolyticus may also be involved in the polar formation of flagella and may possibly influence the number of flagella produced (28, 29). Demonstration that FlhF is polarly localized in some of these species and the fact that FlhF has been observed to assist the early flagellar MS ring protein, FliF, in localizing to the old pole in one biotype of V. cholerae give credence that FlhF may be involved in the polar placement of flagella in the respective organisms (14, 29, 34).Bioinformatic analysis indicates that the FlhF proteins belong to the SIMIBI class of NTP-binding proteins (30). More specifically, the GTPase domains of FlhF proteins are most similar to those of the signal recognition particle (SRP) pathway GTPases, such as Ffh and FtsY. Because of the homology of the GTPase domains, these three proteins may form a unique subset within the SIMIBI proteins. Whereas the GTPase activities of the interacting Ffh and FtsY proteins have been extensively characterized (32, 38, 39, 42), little is known about the GTP hydrolysis activity of FlhF. Structural determination of FlhF of Bacillus subtilis indicates that the potential GTPase activity of FlhF is likely varied relative to those of Ffh and FtsY (2). However, no biochemical analysis has been performed to verify or characterize the ability of an FlhF protein to hydrolyze GTP. As such, no studies have correlated the biochemical activity of FlhF in relation to GTP hydrolysis with the role that FlhF performs in flagellar gene expression or biosynthesis.Through previous work, we have delineated the regulatory cascades governing flagellar gene expression in C. jejuni. We have found that formation of the flagellar export apparatus (FEA), a multiprotein inner membrane complex (consisting of the proteins FlhA, FlhB, FliF, FliO, FliP, FliQ, and FliR) that secretes most of the flagellar proteins out of the cytoplasm to form the flagellum, is required to activate the FlgS sensor kinase to begin a phosphorelay to the cognate FlgR response regulator (23, 24). Once activated by phosphorylation, FlgR likely interacts with σ54 in RNA polymerase to initiate expression of many flagellar genes encoding components of the flagellar basal body, rod, and hook (20, 24). After formation of the hook, flaA, encoding the major flagellin, is expressed via σ28 and RNA polymerase to generate the flagellar filament and complete flagellar biosynthesis (6, 18, 20, 21, 49). In two separate genetic analyses, we found that flhF mutants of C. jejuni are nonmotile and show a more than 10-fold reduction in expression of σ54-dependent flagellar genes, indicating that FlhF is required for both flagellar gene expression and biosynthesis (20). However, it is unclear how FlhF influences expression of σ54-dependent flagellar genes. Furthermore, it is unknown if the GTPase activity of FlhF is required for flagellar gene expression or biosynthesis in C. jejuni.We have performed experiments to determine that C. jejuni FlhF specifically hydrolyzes GTP, confirming that FlhF is a GTPase. Whereas the FlhF protein is required for motility, flagellar biosynthesis, and expression of σ54-dependent flagellar genes, the GTPase activity of the protein significantly influences only proper biosynthesis of flagella. These results suggest that multiple biochemical activities of FlhF (including GTPase activity and likely other, as yet uncharacterized activities mediated by other domains) are required at distinct steps in flagellar gene expression and biosynthesis. In addition, we provide biochemical and genetic evidence that FlhF likely functions in a pathway separate from the FEA-FlgSR pathway in C. jejuni to influence expression of σ54-dependent flagellar genes. This study provides corroborative genetic and biochemical analysis of FlhF to indicate that FlhF has multiple inherent activities that function at different steps in development of the flagellar organelle, which may be applicable to many polarly flagellated bacteria.  相似文献   

17.
Low-G+C thermophilic obligate anaerobes in the class Clostridia are considered among the bacteria most resistant to genetic engineering due to the difficulty of introducing foreign DNA, thus limiting the ability to study and exploit their native hydrolytic and fermentative capabilities. Here, we report evidence of natural genetic competence in 13 Thermoanaerobacter and Thermoanaerobacterium strains previously believed to be difficult to transform or genetically recalcitrant. In Thermoanaerobacterium saccharolyticum JW/SL-YS485, natural competence-mediated DNA incorporation occurs during the exponential growth phase with both replicating plasmid and homologous recombination-based integration, and circular or linear DNA. In T. saccharolyticum, disruptions of genes similar to comEA, comEC, and a type IV pilus (T4P) gene operon result in strains unable to incorporate further DNA, suggesting that natural competence occurs via a conserved Gram-positive mechanism. The relative ease of employing natural competence for gene transfer should foster genetic engineering in these industrially relevant organisms, and understanding the mechanisms underlying natural competence may be useful in increasing the applicability of genetic tools to difficult-to-transform organisms.The genera Thermoanaerobacter and Thermoanaerobacterium contain bacteria which are thermophilic, obligate anaerobes that specialize in polysaccharide and carbohydrate fermentation, producing primarily l-lactic acid, acetic acid, ethanol, CO2, and H2 (24, 27, 49). Taxonomically, they are distinguished from other anaerobic thermophilic clostridia by the ability to reduce thiosulfate to hydrogen sulfide or elemental sulfur (21). The majority of characterized Thermoanaerobacter and Thermoanaerobacterium strains have been isolated from hot springs and other thermal environments (20-22, 38, 47); however, they have also been isolated from canned foods (4, 10), soil (48), paper mills and breweries (41, 43), and deep subsurface environments (5, 13, 35), suggesting a somewhat ubiquitous environmental presence.Representatives of the Thermoanaerobacter and Thermoanaerobacterium genera have been considered for biotechnological applications, such as conversion of lignocellulosic biomass to ethanol (8, 27) or other fuels and chemicals (3, 24). However, the branched fermentation pathways of these organisms generally require modification for industrial application. Several studies have investigated manipulating bioprocess and growth conditions to alter end product ratios and yields, but this has not resulted in reliable conditions to maximize the yield of a single end product (18, 25). Genetic engineering is likely necessary for commercial application of Thermanaerobacter or Thermoanaerobacterium species (26, 27, 44). As genetic systems for these bacteria have emerged (28, 45), increased product yields have been demonstrated by gene knockout of l-lactate dehydrogenase (9, 14), phosphotransacetylase and acetate kinase (40), and hydrogenase (39). Despite this recent progress, genetic transformation is still considered the greatest barrier for engineering these organisms (44).In contrast, some of the bacteria most amenable to genetic manipulation are those exhibiting natural competence; for example, work with the naturally competent Streptococcus pneumoniae first established DNA as the molecule containing inheritable information (42). Naturally competent organisms are found in many bacterial phyla, although the overall number of bacteria known to be naturally competent is relatively small (16).The molecular mechanisms of natural competence are often divided into two stages: early-stage genes that encode regulatory and signal cascades to control competence induction, and late-stage genes that encode the machinery of DNA uptake and integration (16). The Gram-positive late-stage consensus mechanism for DNA uptake and assimilation, elucidated primarily through work with Bacillus subtilis, occurs through several molecular machinery steps. First, DNA is believed to interact with a type IV pilus (T4P) or pseudopilus that brings it into close proximity of the cell membrane. The precise mechanism of this phenomenon is unclear; although components of the T4P in both Gram-positive and Gram-negative bacteria have been shown to bind DNA (7, 19), in specific studies, a full pilus structure has been either not observed or shown not to be essential during natural competence (6, 36). Two proteins, ComEA and ComEC, are then involved in creation and transport of single-stranded DNA across the membrane, where it is subsequently bound by CinA-localized RecA and either integrated into the genome or replicated at an independent origin, as for plasmid DNA (6).Here, we report that several Thermoanaerobacter and Thermoanaerobacterium strains are naturally competent, characterize growth conditions conducive to natural competence, and identify genes in Thermoanaerobacterium saccharolyticum JW/SL-YS485 required for competence exhibition.  相似文献   

18.
19.
20.
In New Zealand the number of campylobacteriosis notifications increased markedly between 2000 and 2007. Notably, this country''s poultry supply is different than that of many developed countries as the fresh and frozen poultry available at retail are exclusively of domestic origin. To examine the possible link between human cases and poultry, a sentinel surveillance site was established to study the molecular epidemiology of Campylobacter jejuni over a 3-year period from 2005 to 2008 using multilocus sequence typing. Studies showed that 60.1 to 81.4% of retail poultry carcasses from the major suppliers were contaminated with C. jejuni. Differences were detected in the probability and level of contamination and the relative frequency of genotypes for individual poultry suppliers and humans. Some carcasses were contaminated with isolates belonging to more than one sequence type (ST), and there was evidence of both ubiquitous and supplier-associated strains, an epidemiological pattern not recognized yet in other countries. The common poultry STs were also common in human clinical cases, providing evidence that poultry is a major contributor to human infection. Both internationally rare genotypes, such as ST-3069 and ST-474, and common genotypes, such as ST-45 and ST-48, were identified in this study. The dominant human sequence type in New Zealand, ST-474, was found almost exclusively in isolates from one poultry supplier, which provided evidence that C. jejuni has a distinctive molecular epidemiology in this country. These results may be due in part to New Zealand''s geographical isolation and its uniquely structured poultry industry.Campylobacteriosis is a leading enteric zoonosis in the developed world, and the majority of cases are caused by Campylobacter jejuni (22). Poultry sources are suspected to be the major source of human infection with C. jejuni (22, 43, 49), and this conclusion is supported by high levels of contamination of poultry and the detection of identical C. jejuni genotypes in human cases and poultry samples (25). However, C. jejuni can be isolated from a variety of sources, including ruminants (17) and environmental water (41). Due to the complex epidemiology of this pathogen, there is still uncertainty about the relative contributions of individual pathways to the human disease burden (8). In New Zealand the number of notified campylobacteriosis cases increased markedly in the last decade, peaking in 2006 at a total of 15,873 notified cases (422.4 cases per 100,000 population) (1) and costing the economy an estimated US$32 million annually (42). Although there are a number of factors that may have contributed to this increase, it has been noted that the rise in campylobacteriosis cases coincided with a marked increase in the sale and consumption of fresh poultry between 1992 and 2005, while the sale of frozen poultry remained relatively static (1).New Zealand has one of the highest enteric infectious disease rates in industrialized countries (26), and the high ratio of domestic production animals to humans and the frequent use of rural water supplies in New Zealand have been postulated to be underlying causes (9). In addition, this country''s poultry industry is uniquely structured; it is almost entirely focused on the domestic market, and no raw, fresh or frozen, poultry products are imported because of biosecurity threats. Due to its geographical isolation and tight border controls, New Zealand has remained free of poultry diseases endemic in other countries, such as diseases caused by Salmonella enterica serovar Enteritidis PT4 and S. enterica serovar Typhimurium DT 104, Newcastle disease, and infectious bursal disease.The production of poultry meat in New Zealand is highly integrated; only three companies supply 90% of the chicken meat, which represents 95% of the poultry meat consumed. The remaining 5% of poultry meat consumed includes species such as turkey and duck. The chicken processors own or control most stages of production, processing, and distribution. One of the three dominant companies has one processing plant that distributes nationwide, and one company has multiple plants that tend to be more localized in their distribution, except when they make specialty products, which are distributed nationally. The other companies distribute primarily locally. The broilers are commonly barn raised, not free range, and animal welfare standards require a maximum stocking density of 38 kg (live weight) of broiler chickens per m2. There are approximately 160 broiler farms in a number of specific areas of New Zealand. These farms are usually located near the slaughterhouses that they supply.To enable regulators to implement food safety programs to reduce human campylobacteriosis, there has been great interest in understanding the importance and epidemiology of C. jejuni in the New Zealand poultry production system. A sentinel surveillance site was therefore established in the Manawatu region to quantify the contributions of different sources, including poultry suppliers, to the human disease burden and to study the molecular epidemiology of C. jejuni (33, 34). Isolates were typed using multilocus sequence typing (MLST), a method that has major advantages over other methods of genotyping when the long-term epidemiology of a disease is studied. However, other methods may be more appropriate in other settings, such as outbreak investigations (21), where a higher degree of discrimination may be required. MLST offers a large web-based archive of isolates from many sources and countries: the Campylobacter PubMLST database (10). Sequence typing by MLST is now internationally recognized as a valuable approach for national and international epidemiological characterization and source tracking of major pathogenic microorganisms, such as C. jejuni (46, 48).The use of integrated surveillance across human, domestic animal, and wildlife populations has been identified as a key component of strategies aimed at prevention and control of emerging pathogens, particularly when the population dynamics of multihost pathogens are poorly understood (52). At the Manawatu surveillance site, samples from human clinical cases, animal-derived food products, and the environment were gathered in a defined geographical area of New Zealand over a 3-year period (19, 34) and genotyped using MLST (11). The resulting data set contained a total of 969 typed samples, 502 of which were from human cases. The temporal and spatial scale of the data allowed us to obtain a more in-depth understanding of local transmission dynamics compared with the results of previous research (43, 50). The application of novel risk attribution approaches to these data previously identified poultry as the major contributor to the human disease burden, with widely varying contributions from different suppliers (33).In this study we extended the findings of risk attribution and epidemiological studies of human cases (33, 34). Data from the sentinel surveillance site were used to study the epidemiology of C. jejuni for the individual producers that comprise the poultry sector in New Zealand and to better understand the contributions of the producers to the human campylobacteriosis burden. Our study included an investigation of both the probability of contamination and the level of contamination of poultry carcasses and a study of human and poultry MLST sequence types (STs). The resulting data were compared to make inferences about the epidemiology of C. jejuni in the New Zealand poultry industry and to identify determinants for the high number of human cases attributed to this food source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号