共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
Anne Francez-Charlot Julia Frunzke Judith Zingg Andreas Kaczmarczyk Julia A. Vorholt 《PloS one》2016,11(3)
In Alphaproteobacteria, the general stress response (GSR) is controlled by a conserved partner switch composed of the sigma factor σEcfG, its anti-sigma factor NepR and the anti-sigma factor antagonist PhyR. Many species possess paralogues of one or several components of the system, but their roles remain largely elusive. Among Alphaproteobacteria that have been genome-sequenced so far, the genus Methylobacterium possesses the largest number of σEcfG proteins. Here, we analyzed the six σEcfG paralogues of Methylobacterium extorquens AM1. We show that these sigma factors are not truly redundant, but instead exhibit major and minor contributions to stress resistance and GSR target gene expression. We identify distinct levels of regulation for the different sigma factors, as well as two NepR paralogues that interact with PhyR. Our results suggest that in M. extorquens AM1, ecfG and nepR paralogues have diverged in order to assume new roles that might allow integration of positive and negative feedback loops in the regulatory system. Comparison of the core elements of the GSR regulatory network in Methylobacterium species provides evidence for high plasticity and rapid evolution of the GSR core network in this genus. 相似文献
8.
T. Schweder Angela Kolyschkow Uwe Völker Michael Hecker 《Archives of microbiology》1999,171(6):439-443
Glucose-limited continuous cultures were used to analyze σB activity at decreasing growth rates. Expression of the σB-dependent genes gsiB and ctc started to increase at a growth rate of 0.2 h–1, and both genes were induced approximately fivefold at a growth rate of 0.1 h–1 as compared to expression at the maximal growth rate. However, maximal σB activity was only reached when the growth stopped as a result of the exhaustion of the carbon and energy source glucose.
During glucose-limited growth, increased expression of the general stress regulon at growth rates below 0.2 h–1 did not provide wild-type cells with a growth advantage over sigB mutants. Instead, expression of the stress regulon seems to constitute a significant burden during glucose-limited growth,
resulting in a selective growth advantage of the sigB mutant as compared to the wild-type at a growth rate of 0.08 h–1.
Received: 7 January 1999 / Accepted: 22 March 1999 相似文献
9.
10.
σ(D) proteins from Aeribacillus pallidus AC6 and Bacillus subtilis bound specifically, albeit weakly, to promoter DNA even in the absence of core RNA polymerase. Binding required a conserved CG motif within the -10 element, and this motif is known to be recognized by σ region 2.4 and critical for promoter activity. 相似文献
11.
12.
13.
14.
The Bacillus subtilis extracytoplasmic function (ECF) σ factor σ(M) is inducible by, and confers resistance to, several cell envelope-acting antibiotics. Here, we demonstrate that σ(M) is responsible for intrinsic β-lactam resistance, with σ(X) playing a secondary role. Activation of σ(M) upregulates several cell wall biosynthetic enzymes including one, PBP1, shown here to be a target for the beta-lactam cefuroxime. However, σ(M) still plays a major role in cefuroxime resistance even in cells lacking PBP1. To better define the role of σ(M) in β-lactam resistance, we characterized suppressor mutations that restore cefuroxime resistance to a sigM null mutant. The most frequent suppressors inactivated gdpP (yybT) which encodes a cyclic-di-AMP phosphodiesterase (PDE). Intriguingly, σ(M) is a known activator of disA encoding one of three paralogous diadenylate cyclases (DAC). Overproduction of the GdpP PDE greatly sensitized cells to β-lactam antibiotics. Conversely, genetic studies indicate that at least one DAC is required for growth with depletion leading to cell lysis. These findings support a model in which c-di-AMP is an essential signal molecule required for cell wall homeostasis. Other suppressors highlight the roles of ECF σ factors in counteracting the deleterious effects of autolysins and reactive oxygen species in β-lactam-treated cells. 相似文献
15.
Jessica L. Hastie Kyle B. Williams Craig D. Ellermeier 《Journal of bacteriology》2013,195(14):3135-3144
During growth in the environment, bacteria encounter stresses which can delay or inhibit their growth. To defend against these stresses, bacteria induce both resistance and repair mechanisms. Many bacteria regulate these resistance mechanisms using a group of alternative σ factors called extracytoplasmic function (ECF) σ factors. ECF σ factors represent the largest and most diverse family of σ factors. Here, we demonstrate that the activation of a member of the ECF30 subfamily of ECF σ factors, σV in Bacillus subtilis, is controlled by the proteolytic destruction of the anti-σ factor RsiV. We will demonstrate that the degradation of RsiV and, thus, the activation of σV requires multiple proteolytic steps. Upon exposure to the inducer lysozyme, the extracellular domain of RsiV is removed by an unknown protease, which cleaves at site 1. This cleavage is independent of PrsW, the B. subtilis site 1 protease, which cleaves the anti-σ factor RsiW. Following cleavage by the unknown protease, the N-terminal portion of RsiV requires further processing, which requires the site 2 intramembrane protease RasP. Our data indicate that the N-terminal portion of RsiV from amino acid 1 to 60, which lacks the extracellular domain, is constitutively degraded unless RasP is absent, indicating that RasP cleavage is constitutive. This suggests that the regulatory step in RsiV degradation and, thus, σV activation are controlled at the level of the site 1 cleavage. Finally, we provide evidence that increased resistance to lysozyme decreases σV activation. Collectively, these data provide evidence that the mechanism for σV activation in B. subtilis is controlled by regulated intramembrane proteolysis (RIP) and requires the site 2 protease RasP. 相似文献
16.
17.
Phototropin (phot) is a blue light (BL) receptor in plants and is involved in phototropism, chloroplast movement, stomata opening, etc. A phot molecule has two photo-receptive domains named LOV (Light-Oxygen-Voltage) 1 and 2 in its N-terminal region and a serine/threonine kinase (STK) in its C-terminal region. STK activity is regulated mainly by LOV2, which has a cyclic photoreaction, including the transient formation of a flavin mononucleotide (FMN)-cysteinyl adduct (S390). One of the key events for the propagation of the BL signal from LOV2 to STK is conformational changes in a Jα-helix residing downstream of the LOV2 C-terminus. In contrast, we focused on the role of the A’α-helix, which is located upstream of the LOV2 N-terminus and interacts with the Jα-helix. Using LOV2-STK polypeptides from Arabidopsis thaliana phot1, we found that truncation of the A’α-helix and amino acid substitutions at Glu474 and Lys475 in the gap between the A’α and the Aβ strand of LOV2 (A’α/Aβ gap) to Ala impaired the BL-induced activation of the STK, although they did not affect S390 formation. Trypsin digested the LOV2-STK at Lys603 and Lys475 in a light-dependent manner indicating BL-induced structural changes in both the Jα-helix and the gap. The digestion at Lys603 is faster than at Lys475. These BL-induced structural changes were observed with the Glu474Ala and the Lys475Ala substitutes, indicating that the BL signal reached the Jα-helix as well as the A’α/Aβ gap but could not activate STK. The amino acid residues, Glu474 and Lys475, in the gap are conserved among the phots of higher plants and may act as a joint to connect the structural changes in the Jα-helix with the activation of STK. 相似文献
18.
The general stress response and the decision-making processes of sporulation initiation are interconnected pathways in the regulatory network of Bacillus subtilis. In a previous study we provided evidence for a mechanism capable of impairing sporulation by σ(B) -dependent induction of spo0E, encoding a phosphatase specifically inactivating the sporulation master regulator Spo0A~P. Here we show that the σ(B) promoter (Pσ(B) ) of spo0E is responsive to sub-inhibitory levels of ethanol stress, producing a σ(B) -dependent sporulation deficient phenotype. In addition to positive regulation by σ(B) , we identified Rok, the repressor of comK, to be a direct repressor of spo0E expression from Pσ(B) . This constellation provides the possibility to integrate signals negatively acting on sporulation initiation through the σ(B) branch as well as a positive feedback loop acting on Pσ(B) by Rok that is most likely a direct consequence of Spo0A~P activity. Thus, the molecular mechanism described here offers the opportunity for cross-talk between the general stress response and sporulation initiation in the adaptational gene expression network of B.?subtilis. 相似文献
19.
20.
Manas K. Chattopadhyay Chithra N. Keembiyehetty Weiping Chen Herbert Tabor 《The Journal of biological chemistry》2015,290(29):17809-17821
To study the physiological roles of polyamines, we carried out a global microarray analysis on the effect of adding polyamines to an Escherichia coli mutant that lacks polyamines because of deletions in the genes in the polyamine biosynthetic pathway. Previously, we have reported that the earliest response to polyamine addition is the increased expression of the genes for the glutamate-dependent acid resistance system (GDAR). We also presented preliminary evidence for the involvement of rpoS and gadE regulators. In the current study, further confirmation of the regulatory roles of rpoS and gadE is shown by a comparison of genome-wide expression profiling data from a series of microarrays comparing the genes induced by polyamine addition to polyamine-free rpoS+/gadE+ cells with genes induced by polyamine addition to polyamine-free ΔrpoS/gadE+ and rpoS+/ΔgadE cells. The results indicate that most of the genes in the E. coli GDAR system that are induced by polyamines require rpoS and gadE. Our data also show that gadE is the main regulator of GDAR and other acid fitness island genes. Both polyamines and rpoS are necessary for the expression of gadE gene from the three promoters of gadE (P1, P2, and P3). The most important effect of polyamine addition is the very rapid increase in the level of RpoS sigma factor. Our current hypothesis is that polyamines increase the level of RpoS protein and that this increased RpoS level is responsible for the stimulation of gadE expression, which in turn induces the GDAR system in E. coli. 相似文献